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Abstract- Treating risk as a “currency” has proven to be key  
in systematically optimizing the design of spacecraft 
systems. This idea has been applied in the design of 
individual components of spacecraft systems, and in the 
end-to-end design of such systems. The process, called 
“Defect Detection and Prevention” (DDP), its tool support, 
and applications, are described in [1]. The process can be 
summarized as determining the consequences of various risk 
elements (technical, programmatic, other) on the various 
requirements and then determining the optimal combination 
of approaches to reducing the risks to acceptable levels. 
 
We are now extending this process to include consideration 
of architectural alternatives, qualification of components, 
fabrication and assembly, integration and test, and mission 
operation.  The results of applying this extended process in 
the pre-formulation, formulation and implementation phases 
of various NASA and other government agency missions 
will be discussed.  This paper will also discuss the results of 
developing optimized technology development and 
qualification plans.   
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1. INTRODUCTION 
The formulation, implementation and operation of complex 
spacecraft systems is a challenging endeavor.  There are 
usually significant amounts of advanced technology, the 
various subsystems are composed of state-of-the-art 
components and the integration of these subsystems into a 

spacecraft is a complex task in its own right.  To further 
complicate the task of deploying complex spacecraft, there 
is significant pressure to reduce the schedule, cost and risk 
of these missions.  Finally, many of these spacecraft rely on 
the parallel maturation of advanced technologies in order to 
achieve aggressive mission objectives.   
 
Thus, one can imagine a risk landscape covering many 
dimensions including time (schedule), performance (or 
utility), risk level, risk type, and available resources.  Once 
one can make risk a measurable quantity versus the other 
dimensions one could generate such a risk landscape 
surface.  Many useful views would then be possible which 
would be of significant utility to decision makers: 
 
Let us first examine the view show in Figure 1 which plots 
the risk versus schedule (time) for fixed performance, fixed 
resource constraints:  From this view, one can see that while 
Option C promises the lowest operational risk it has 
deferred much of its life cycle risk until late  
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Figure 1 Plot of risk versus schedule for three 
hypothetical project options.  Note the differences in 
deferred risk versus schedule for the three options. 
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Figure2 Plot of risk versus performance level for two 
hypothetical projects.  Note the large gain in 
performance level for only minimal increases in risk in 
the region from A to B, but the large increase in risk for 
minimal increases in risk in the region to the right of B. 

implementation, and thus, has a lower probability of 
achieving the operations advantage.  Option B appears to be 
the best options since it addresses much of its risk very early 
and achieves lower operations risk as well.  Explicit trades 
of early application of resources to “buy down” downstream 
risk are now possible.  Note that the risks are reducing as we 
implement solutions (prototypes, simulations, etc.).  Also 
note that the repair of a discovered risk element costs more 
money, takes more time and usually has more system ‘ripple 
effects’ the later in the life cycle it is addressed. 
 
Let us now examine the view show in Figure 2 which plots 
the risk versus schedule (time) for fixed schedule and 
resources for some performance parameter.  From this view, 
one can see that instead of only Performance level A one 
can obtain Performance level B for only a small incremental 
increase in risk (which can be further reduced by 
additional/earlier resource allocations.  Performance level C 
is still too risky and could benefit (presumably) from 
technology maturation or re-architecting.  Note that the A, B 
and C used to differentiate performance levels, are not the 
same A, B and C used in the previous figure to describe 
project options. 

 
As motivational as these views are, we must return to 
today’s state of affairs to see how we can get there. 
 
 

2. DDP PROCESS REVIEW 

The DDP process has been discussed in detail in a previous 
publication [1] but is summarized briefly as: determine what 
we are trying to accomplish, determine what could get in the 
way and determine what we can do about these potential 
stumbling blocks.  The process is also summarized 
graphically below in Figure 3.  Note that trees of potential 
failure modes (or risk elements) are generated and their 
impacts (and likelihood) are evaluated against trees of 

weighted requirements in the R matrix.  The E matrix then 
evaluates the effectiveness of various PACT (Preventative 
measures, Analyses, process Controls and Tests) options 
against the potential risks.  The user can then select various 
PACTs to mitigate (prevent or detect) various risk elements 
and the tool keeps track of the cumulative resource costs for 
the selected PACT combination. 
 
The engine computes using the entered information – the a 
priori likelihood of each risk element, the impact of each 
risk element upon each requirement, the effectiveness at 
detection/prevention of each PACT versus each risk 
element.  This internal computation is fairly simple and 
performs weighted sums (across the rows of the R matrix) to 
generate the requirement impact, and weighted sums (down 
the columns of the R matrix) to generate the initial risk.   
The engine also computes the residual risk by evaluating the 
product of the effectiveness of the selected PACTs for each 
of risk element. 
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Figure 3 Graphical summary of the DDP process. The 
Requirements matrix results in a prioritized set of Failure 
modes (sorted in the bar chart), a representation of the 
driving requirements (not shown), and the residual risk if 
the selected PACTs are implemented. 
 
The DDP process is a near real-time risk management 
process in the sense that it uses all currently available 
information to generate a collection of risks which can then 
be reduced, re-ordered/balanced, refined or accepted by the 
application (or not) of various detection and prevention 
activities.  Early in the project life cycle, much of this 
information is generated in real-time during half-day 
sessions involving a ‘critical mass’ of experts.  However, 
existing information (previous analyses, test results, 
information of previous projects, etc.) is integrated as it is 
available and relevant. 
 
Note that  one can evaluate risks in more detail and with 
greater fidelity (e.g. simulations and prototypes) as the size 
or uncertainty in the risk warrants.  Thus, the DDP process 
can be used as a front-end to a more detailed probabilistic 
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Figure 4  Chart illustrates the risk “bow wave” which 
results from optimizing the risk reduction in each project 
phase and not over the whole life cycle. 

calculation by identifying the tallest poles for additional 
evaluation. Ideally, the work a project is doing anyway 
would be addressing those areas where risk is greatest 
and/or most uncertain.  However, as we shall see the project 
life cycle tends to result in project focusing on those risks 
which are immediately impacted rather than those lurking 
downstream. 
 

 
3. TOWARDS RISK AS A RESOURCE 

Risk is usually thought of as bad luck or oversight in the 
sense that it is a consequence of the good work we have 
already done.  Thus, risks are those items which escaped our 
carefully orchestrated processes.  However, we submit that 
merely defining risk as the inability (still impact times 
likelihood) to meet requirements opens up a new way of 
considering risk over the entire life-cycle. 
 
If risk is to be considered a resource one must define what 
we mean by risk in early design cycle phases.  Keeping in 
mind that risk is the inability to meet requirements, we can 
use more generalized notions of risk to watch the risk 
landscape evolve over the life cycle. 
 
Generalized Notions of Risk 

 
Consider the following risk categories: 
 
Nominal Function [N]: The inability of the design to 
perform its basic function(s). 
 
System Compatibility [S]: The inability of the various 
system constituents to function as an integrated system. 
 
Robustness/Resiliency [R]: The inability of the system (or 
constituents) to function normally in unexpected situations 
or environments. 
 
Environmental Compatibility [E]: The inability of the 
system (or constituents) to function normally over the 
expected environments (ground, launch, vacuum, etc.). 
 
Manufacturing and Assembly [M]: The inability of the 
system (or constituents) to be manufactured, assembled or 
integrated. 
 
Parts and Materials [P]: The inability to obtain or utilize the 
desired parts and materials required for the desired end 
product. 
 
Humans and Organizations [H]: The inability of humans or 
organizations to perform the functions necessary to produce 
the desired end product. 
 
These categories of risk are for discussion purposes only 
and there may be a more complete, or logical grouping.  
However, using these categories we can examine the degree 

of attention which is focused on the issues within each 
category.  In many cases, the early (formulation) portion of 
the project life cycle is focused on ensuring that the basic 
system requirements are achievable and self-consistent.  
Later in the implementation phase, more attention is focused 
on the Environmental Compatibility, Parts and Materials 
and Manufacturing and Assembly risk categories.  Finally, 
as launch approaches, more attention is focused on the 
robustness and Human categories.  We are not saying this is 
how everyone approaches the addressing of risks in these 
categories, but we are saying this is not the right approach.   
 
This discussion is illustrated in Figure 4 where the size of 
the gray boxes represent the degree to which attention is 
focused on the reduction of risks in these areas.  Note that 
bars to the right are a representation of the residual risk in 
each area at various phases and are ordered to show a ‘bow 
wave’ of risk as areas are addressed with differing levels of 
attention in the project life cycle.  This risk bow wave is 
result of a series of sub-optimizations in which we first 
determine the architecture and system design, then 
determine how to design it within the architectural and 
system constraints, then determine how to implement it 
within the design constraints, then determine how to make it 
robust given the implementation constraints, then figure out 
how to operate it given the robustness constraints.  Given 
the increasing cost of fixing a problem as the design 
matures, it is obvious that there would be large payoff from 
focusing some more attention initially on the potential 
implementation, robustness and operational risks associated 
with a given architecture, or design. 
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Generalized Notions of PACTs 

PACTs for detecting or preventing risk can be thought of as 
more than tests or analyses.  When a risk is the risk of 
having inadequate data processing speed, PACT options 
include various processor types (each of which may have 
additional risks associated with them).  Note that the 
architecture and design of the system now entails selecting 
PACTs to minimize the risks identified at that phase. 
 
 
4. OPTIMIZATION OF RISK REDUCTION ACTIVITIES  

The primary purpose of DDP is to enable users to emerge 
with a judicious selection of PACTs (risk mitigation 
activities). Each selected PACT has benefits – it reduces the 
risks against which it is effective (and thereby increases the 
attainment of the requirements impacted by those risks), but 
incurs costs – dollars, schedule, allocation of mass, 
electrical power, etc. Judicious selection means picking a set 
of PACTs that together ensure cost-effective attainment of 
requirements over the life-cycle. 
 
To date, DDP has relied on users to manually select PACTs, 
using several cogent visualizations of the relevant 
information to assist them in this task. Recently, we have 
begun the automation of this selection process, by casting it 
as an optimization problem. For example, the users can set a 
cost cap, and pose the optimization problem of finding the 
most effective set of PACTs whose sum total cost does not 
exceed that cap.  
 
The scope of the optimization problem depends on the user 
constraints.  Ideally, one would maximize the expected 
value of the return (e.g. expected value of requirements 
achieved) with respect to cost.  However, the realities of 
interplanetary flight development process results in a variety 
of additional constraints including cost and schedule as well 
as pre-determined science objective constraints.  There may 
be a variety of other factors including availability of launch 

vehicles and various technologies, environmental 

compatibility issues, and round-trip light travel time to 
name a few.  Thus, the typical optimization problem 
encountered is to maximize the science return subject to the 
various constraints.  Since the DDP process evaluates risk 
element significance by impact on requirements (times the 
likelihood of occurrence), maximizing the science 
(requirement) return is equivalent to minimizing the risks 
for the given project. 
 
Application of the process has revealed an interesting 
degree-of-freedom in the optimization problem: the relative 
importance of the various requirements.  Since requirements 
are weighted, changing their relative weights can have 
significant effects upon the risk balance… 
 
The subsections that follow present DDP’s support for 
manual selection of PACTs, for automated optimization, 
and finally a brief discussion of elaborations to the cost 
model. 
 
 
Manual selection of PACTs 

To date, DDP has relied on users to manually select PACTs. 
To facilitate this activity, DDP provides the following 
visualizations of information relevant to this task: 
 
Risks x PACTs lists – this visualization presents a list of all 
the risks, and for each risk, a list of all the PACTs 
applicable to reducing that risk. A snapshot of a portion of 
such a view is shown below in Figure 5. This view allows 
the users to see for a given risk which PACTs mitigate that 
risk, and by how much. Furthermore, a PACT may mitigate 
multiple risks, in which case it appears in each of those 
risks’ list of PACTs. Such occurrences are made visible by 
flashing all instances of a PACT when the user moves the 
mouse over any one of them. This is an interactive view – 
users can both see, and change, the selection of PACTs by 
clicking on the check box on a given PACT to toggle its 
‘selectedness’. 

 
Figure 5  Snapshot of the Risk x PACTs list view available in the tool. This view is a better way to view the 
relationships between matrix elements when the matrix is sparsely populated. 



There is the analogous view of PACTs x Risks lists, in 
which each PACT is listed, and alongside each PACT, the 
list of all the risks is mitigates.  
 
PACTs bar chart – this visualization presents a bar-chart 
where each bar corresponds to one PACT. The height of the 
bar is proportional to the sum total effectiveness of the 
PACT (i.e., the total amount of risk reduction it achieves). 
We have found it useful to calculate and display two 
variants of total effectiveness for each PACT: the “solo” 
effectiveness – the sum total risk reduction it would achieve 
if it were selected in isolation, and the “delta” effectiveness 
– the incremental risk reduction it would achieve if it were 
selected in addition to the other already selected PACTs. 
These two totals can be quite different, due to the fact that 
other already selected PACTs might significantly reduce a 
risk, so selecting an additional PACT has less of an 
incremental risk reduction than its solo effectiveness (this is 
a consequence of the way that effectiveness of multiple 
PACTs combine). 
 
Risk bar chart coupled with PACT viewer – this 
visualization (shown in Figure 6 below) presents a bar-chart 
where each bar corresponds to one risk. The height of the 
bar is proportional to the sum total impact of the risk (i.e., 
the total amount of requirements loss it causes).We calculate 
and display two impact totals for each risk – the sum total 
impact ignoring PACTs, and the sum total impact taking the 
mitigating effect of the currently selected PACTs into 
account. 
 
The bars can be ordered in one of three ways: 
1. by the occurrence of the risks in the Risk tree (as shown 

in the figure), 
2. sorted once in descending order of remaining risk, and 

held in that order 
3. sorted in descending order of remaining risk and 

continually resorted as this changes. 
 
Finally, the user can suppress the view of the original risk 
level, and choose instead to see deltas (increases in risk and 

decreases in risk) with respect to a previous PACT selection 
set.  The combination of these features allows the users to 
switch between views that show the progressive and/or 
comparative effect of PACT selections,  and (notably by 
sorting) to see the outstanding risks remaining to be dealt 
with.  When the user clicks on a risk’s bar, an 
accompanying window shows all the PACTs applicable to 
mitigating that risk, how much each PACT costs, how 
effective it is, etc. In manual selection of PACTs, we have 
found users to employ this pairing of windows to make most 
of their PACT selection decisions. 
 
Resource meter – this visualization presents a running tally 
of the resource costs of the PACTs currently selected.  
Currently, resources used are mass, power and $, but 
additional user-defined database fields are available to allow 
other resources to be tracked. 
 
 
Automated optimization 

The selection of the best possible set of PACTs is a 
daunting one.  A typical project may have as many as 100 or 
more possible PACTs.  Cost restrictions limit the number of 
PACTs that can be chosen, but the number of combinations 
that have the same or similar cost is astronomical.  For 
example, a blindly exhaustive search for the permutations of 
the 100 PACT options results in 2100 options which would 
require at least 300 years to evaluate (if we had 1013 Gflop 
computing capability!).  Selecting among these 
combinations requires calculating how much of the original 
requirements would be preserved by each candidate set.  
This calculation itself is not trivial even ignoring 
interactions between PACTs.  As can be seen, this kind of 
“selection” optimization is not amenable to some standard 
techniques such as those found in those based on continuous 
variables such as operations research. While there is some 
grouping of PACTs and their effectiveness versus risk 
elements (e.g. various optical alignment design and test 
options all have some effectiveness versus a specific subset 
of risk elements), in general, each candidate subset of 
PACTs is unrelated to any other.  There is no obvious way 

 

Figure 6  Snapshot of the risk bar chart view available in the tool.  The numbers at the bottom of each bar correspond 
to and identified risk element. 



to gradually transform the candidates by seeking local or 
global minima or maxima, but this is still being explored 
and will be discussed later in this paper. 
 
One approach we have considered and implemented in the 
latest release of the DDP software tool, is a genetic 
algorithm based on some work done at JPL on designing 
quantum circuits.  A quantum circuit is a set of quantum 
logic elements whose overall transition matrix matches the 
desired behavior.  This problem has many of the same 
characteristics as ours.  The number and variety of logic 
elements is relatively small but each circuit is independent 
of all others.  The genetic algorithm attempts to make small 
changes to identical copies of quantum circuits and test their 
nearness to the desired solution.  The nearness to the desired 
behavior is used to bias the next generation to employ the 
elements that appear to be helping to achieve the goals.  
Thus, it is an ‘evolutionary’ process with the ‘best’ 
candidates breeding the most candidates for the next 
iteration.  The “small changes” include moving the logic 
element to a different wire, changing the control element, 
adding or removing a random element and similar.  In our 
case, it is rather harder to define small changes, but we can 
add or remove a single PACT from the candidate set .  We 
have implemented this algorithm as a new feature in DDP 
version 3.0.  It should be emphasized that this optimization 
technique is not guaranteed to produce the ‘best’ solution 
(i.e. global optimum), but testing to date on tractable 
problems has found excellent agreement.  We are still 
exploring mutation parameter sensitivities. 
 
Another approach under investigation is due to Tim 
Menzies who is on contract to JPL.  He has developed an 
approach where many sets of PACTs (candidate solutions or 
“treatments”) are run and the members that seem to have a 
very large effect, either positive or negative are identified.  
Tim has shown that there are always a few members of a 
treatment that have a much larger effect than others and 
these can be used as a basis for the best treatment.  These 
“outriders” are PACTS that always seem to be identified 
with treatments that produce large percentages of surviving 
requirements while maintaining cost constraints. We are 
hoping that these members can be forced into new 
treatments and other lesser, but still important PACTs 
identified in a recursive way. 
 
We are still exploring other methods of optimization.  We 
may be able to take advantage of the fact that most PACTs 
can only be performed at a single phase of the project.  By 
“phase” we mean preliminary design, breadboarding, 
prototyping, final build, system test etc. Suppose we have 
the typical five or six phases each with about an equal 
number of PACTs.  Then we only have to consider 
searching for the best 5 out of 20 for each phase and that is a 
far more tractable problem.  It turns out that NASA and 
many other funding sources schedule the money to perform 
these PACTs by phase so the amount of money available in 
each phase is usually known ahead of time.  This fact leads 
to a very simple fit of the real funding profile to the 

tractability of the exhaustive search – a fortunate co-
incidence.  If we optimize by phase, we do introduce the 
possibility that we are missing an overall global solution 
that might achieve the same degree of requirement survival 
at a lower overall project cost.  However, political realities 
do not usually allow us to divide up the project budget into 
the project phases any way, but cause us to follow 
predetermined funding profiles. 
 
In our implementation of the optimization process, we 
believe that we should show to the operator all the 
intermediate results, since this may give the operator further 
insight about the optimization process.  In the case of the 
genetic algorithm, we show all the considered solutions and 
their score in terms of the percentage of the requirements 
that are preserved by them.  It is possible that a user might 
notice a pattern that it not easily discernable to the code that 
the user could take advantage of. 
 
 
Elaborated cost model 

In recent months we have elaborated the DDP cost model 
Full details of this model are given in [2].  Briefly, the 
elaborations are to: 
• Make a distinction between different categories of 

mitigations - preventions, detections and alleviations. 
• Separate the cost of performing a detection-style risk 

mitigation from the cost of repairing the problems it 
detects. 

• Assign detection mitigations to distinct phases of 
development, permitting the calculation of repair cost to 
take into account the phase in which the repair is 
conducted. 

 
These elaborations have significant consequences for PACT 
selection, whether done manually or automatically. In 
particular, they extend the intertwinedness of PACTs. For 
example, in this elaborated cost model, it is possible to 
select an additional PACT and see both the benefit increase 
and the total costs decrease! This occurs when the PACT 
discovers (or prevents) problems early on that would 
otherwise be discovered and repaired in later stages, by 
which time their repair costs are significantly higher.  Thus, 
we can now explicitly introduce the well-known (but poorly 
documented) 1:10:100 rule, where it costs 10X more to fix a 
problem at each level of integration.2 
 
The net result is that an incremental selection strategy, in 
which users manually pick PACTs one by one, is less viable 
as a means to arrive at a satisfactory selected final set when 
managing risks for large-scale projects. 
 
 
                                                           
2 One can image various designs which would follow the 
1:x:x2 rule, where x can be larger, or smaller, than 10.  For 
example, highly modular designs should result in x less than 
10. 



5. SUMMARY AND CONCLUSIONS 
The DDP process has been described and provides an 
illustration of the utility of considering more generalized 
notions of risk.  This results in a risk landscape in which 
risk is the currency by which one navigates the landscape – 
one can reduce risk by applying more PACTs or selecting a 
different combination of  PACTs.  The consideration of life-
cycle risk has been shown to be important in reducing the 
pain associated with the late implementation phase of nearly 
all space-flight development projects.  It has been shown 
that earlier application of resources may not only result in 
lower risk, it may also result in lower cost! 
 
This leads to the question of how to optimize the PACT 
selection over the entire project life cycle. Several 
approaches to solving the optimization problem have been 
presented and some preliminary results have been discussed.   
 
Future work includes deploying additional optimization 
capability and developing optimization approaches for the 
case where the impacts, likelihoods and effectiveness values 
have additional uncertainty associated with them. 
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