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Local Delamination Buckling of a
Laminated Beam due to
Three-Point Bending
Asymmetric three-point bending of a layered beam containing an interior interface crack
is analyzed on the basis of the classical beam theory. Axial compressive and tensile forces
are induced by bending in the parts of the beam above and below the delamination, and
they are determined by modeling the cracked part as two lapped beams jointed together
at the corners of both beams. When the magnitude of the applied load is small, the beam
deflects, retaining the mutual contact of whole crack faces, but as the applied load
reaches a critical value, local delamination buckling of the compressed part occurs. The
relation between the magnitude of the applied load and the deflection at the point of load
application is found to be nearly bilinear. The validity of this prediction is confirmed by
experiments. It is also shown that once the delamination buckling occurs, the energy
release rate generally becomes larger as compared with the case of a perfect contact of
delaminated surfaces. �DOI: 10.1115/1.4001444�
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Introduction
Fiber-reinforced materials are usually utilized as laminates, but

uch laminated beams or plates often contain interior delamina-
ions, or interface cracks, which are introduced easily by low-
elocity impact normal to the surface of laminates or from manu-
acturing errors in the bonding process. To make clear the
onditions for the growth of initial interior delaminations is im-
ortant for practical applications of laminates. Consequently,
any literatures have been presented on the delamination of lami-

ated materials.
Maikuma et al. �1� studied the problem where an interface

rack at the center of a laminated beam made by bonding two
sotropic beams of equal material properties extends by a sym-

etrical three-point bending. Suemasu and Majima �2,3� solved
he parallel problems where multiple penny-shaped interlaminar
elaminations grow under a transverse concentrated force applied
t the center of a circular plate. Hutchinson and Lu �4� derived the
nergy release rate of an internal delamination embedded in an
rthotropic beam when it is subjected to temperature gradient.
oya et al. �5� analyzed an edge delamination of a laminated beam
ubjected to temperature gradient. The present authors �6� also
nalyzed the asymmetrical three-point bending of a laminated
eam consisting of two beams with different elastic properties and
ontaining a delamination along the bond-line. Based on a simple
eam theory, closed-form solutions for the deflection of the point
f load application were obtained as a function of the applied
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force and the delamination length. The energy release rate and its
mode I and II components at both tips of the delamination were
then derived. These analytical results were also confirmed by the
numerical analyses based on finite-element analyses.

In our previous model �6� the contact of crack faces was as-
sumed. In a course of experiments to test our theory, however, we
found that when the thickness of one constituent beam is thin
enough, local delaminaiton buckling occurred when the magni-
tude of the applied load reaches some critical value. Therefore,
our previous analyses based on the assumption of the mutual con-
tact of whole crack faces are valid only up to a certain critical
value of applied loads, and the analyses have to be newly con-
ducted for the study of post-buckling behavior of laminated
beams.

Many papers treating the local buckling of one-dimensional or
circular delaminations in beams or plates caused by uniaxial or
axisymmetric in-plane compressive loadings �7–12� have been
presented. To the best of the present authors’ knowledge, however,
the local buckling of delaminations caused by transverse loading
has not been presented yet.

In this paper, on the basis of a simple beam theory we study the
problem where delaminations in laminated beams cause local
buckling by three-point bending �cf. Fig. 1�. A nonlinear equation
determining the axial forces induced by bending in the parts of the
beam above and below the delaminations is derived �Sec. 2�. This
equation possesses only one solution for small loads, whereas it
yields more than two solutions as the applied load becomes large.
By examining the deflection curves of the beam corresponding to
each solution, it is found that the occurrence of buckling corre-
sponds to the advent of the second solution. Therefore, critical
buckling loads may be defined as the load at which the second

solution comes to appear first. On the other hand, for loads
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maller than the critical load, our previous theory �6� assuming the
ontact of whole crack faces is effective. Nearly bilinear relations
etween the applied load and deflection at the point of load appli-
ation are obtained for some model laminates, which are shown to
gree well with the experiments �Sec. 4�. The effect of delamina-
ion buckling on the energy release rate is also discussed in Sec. 3.
t is concluded that the energy release rate generally becomes
arger as compared with the case of perfect contact of crack faces
ue to buckling. Our theory may be extended to orthotropic lay-
red beams if each beam is orthotropic with respect to the beam
xis.

Analyses of Local Delamination Buckling

2.1 Case Where the Point of Load Application Lies on the
elaminated Region. Analytical model is shown in Fig. 1. The

ength of the beam �the distance between the two supports� is
enoted by L. The height and width of the beam, Young’s modu-
us, and the moment of inertia are denoted by hi, bi, Ei, and Ii �i
1,2�, where suffixes 1 and 2 correspond to the upper and lower
eams, respectively. It is assumed that an initial internal delami-
ation �interface crack� with length c is embedded, with the dis-
ance of the left-hand and right-hand tips from the left and right-
and supports being aL and aR, respectively. Further, a
oncentrated normal force P is applied at the point distant d apart
rom the left support �or d�=L−d from the right support�. The
ase where the point of load application lies on the cracked part
aL�d�L−aR� is considered first. As shown in Fig. 1, the posi-
ion of load application is distant cL from the left-side edge of the
rack and cR from the right-side edge �c=cL+cR�.

We cut the beam at points B and D to isolate three elements
B, BD, and DF, and consider the free-body diagrams of each
art. The delaminated part BD may be regarded as two lapped
eams jointed together at the corners of both beams �6�. The ac-
ion of the two joints is to produce a horizontal compressive force
Z for the upper beam and extensional force Z for the lower
eam, the magnitude of which is later determined from the com-
atibility condition for the longitudinal deformation of both
eams. Also, the joints exert upward and downward forces �RB
nd �RD at both ends of the beam. By replacing the joints with
hese forces, we have free-body diagrams of the two upper and
ower beams to the delamination, as shown in Fig. 2.

We consider the situation where cL�cR and the delaminated
urfaces are contacting one another in the interval BC, whereas

ig. 1 Three-point bending of a laminated beam containing an
nterface crack

ig. 2 Analytical model for the delaminated part „free-body

iagrams for the interval BD…
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the part CD of the upper beam causes local delamination buck-
ling, as depicted by a dashed curve in Fig. 1. Thus mutual beam
reactions �q�x� act in the interval BC. We assume no frictional
forces act on contact surfaces, so that q�x� acts normal to the crack
faces. Shearing forces �1FB and �3FD, bending moments M1B and
M1D, compressive force Z, and upward forces RB and RD are
applied at the ends of the upper beam in the direction, as shown in
Fig. 2. Shearing forces �1FB and �3FD, bending moments M2B
and M2D, extensional force Z, and downward forces RB and RD
likewise act for the lower beam. Here, �1, �3, �1, and �3 are
constants that satisfy the relation �1+�1=1 and �3+�3=1.

To simplify the analyses we a priori assume that the contact
region is coincident with the interval BC. But instead, in order to
analyze the deflection, we have to assume that a part of the ap-
plied load �2P acts on the upper beam and �2P on the lower
beam, where �2+�2=1, and the value of �2 �or �2� have to be
determined in the course of the solution procedure.

The conditions of equilibrium lead to the following equations:

FB = Pd�/L, FD = Pd/L

M1B + M2B = FBaL, M1D + M2D = FDaR �1�

In the interval BC, taking the coordinate x with the origin at B, the
bending moments Mx1 and Mx2 at point x on the neutral axes of
the upper and lower beams, are given as follows:

Mx1 = M1 + �1�FBx + Zy�x� +�
0

x

q�x���x − x��dx� �2�

Mx2 = M2 + �1�FBx − Zy�x� −�
0

x

q�x���x − x��dx� �3�

where y is the deflection �the positive y is downward�, which is
assumed to be identical for both beams, and we have put

�1�FB = �1FB + RB, �1�FB = �1FB − RB �4�

M1 = M1B − Zh1/2, M2 = M2B − Zh2/2 �5�

where �1�+�1�=1. The equations of deflections are

D1d2y/dx2 = − Mx1, D2d2y/dx2 = − Mx2 �6�

with Di being the flexural rigidity of the upper and lower beams,
respectively, i.e., Di=EiIi, Ii=bihi

3 /12 �i=1,2�. Adding Eq. �6�,
we have the deflection in the interval BC relative to point B �x
=0� as follows:

yBC = s1x3 + s2x2 + s3x �7�

where

s1 = − FB/�6D� �8�

s2 = �− FBaL +
1

2
hZ�/�2D� �9�

where D=D1+D2, h=h1+h2, and s3 is an unknown constant. The
distribution of the reactive force is obtained as a function of Z

q�x� = − Z
d2yBC

dx2 =
d�PZ

LD
�x + aL −

LhZ

2d�P
� �10�

We also have the end moments Mi �i=1,2� given by Eq. �5� as a
function of Z

Mi = − DiyBC� �x=0 = Di�FBaL − hZ/2�/D �i = 1,2� �11�

In the interval CD �d−aL�x�c�, the two beams no longer retain
mutual contact due to local buckling, so that q�x�=0 and the de-
flections of the two beams are different from one another. We

denote y1 and y2 as the deflections of the upper and lower beams,
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espectively. Using Eq. �10�, we have from Eqs. �2� and �3� the
oments at x as follows:

Mx1 = M1 + �1�FBx + f1Z − f2Zx + Zy1�x� − �2P�x − d + aL�
�12�

Mx2 = M2 + �1�FBx − f1Z + f2Zx − Zy2�x� − �2P�x − d + aL�
�13�

here

f1 =
− FB�d − aL�2

D
	d − aL

3
+

1

2
�aL −

hZ

2FB
�
 �14�

f2 =
FB�d − aL�

2D
�− d − aL +

hZ

FB
� �15�

olving Eq. �6�, we obtain

y1 = A1 sin�k1x� + B1 cos�k1x� − �M1 + �1�FBx�/Z − f1 + f2x

+ �2P�x − d + aL�/Z �16�

y2 = A2 exp�k2x� + B2 exp�− k2x� + �M2 + �1�FBx�/Z − f1 + f2x

− �2P�x − d + aL�/Z �17�

here

k1 = �Z/D1, k2 = �Z/D2 �18�

aking the coordinate x with the origin at A, the deflections yAB
nd yDF in the interval AB and DF are given as follows:

yAB = − FBx3/�6D�� + s4x �19�

yDF =
FD

6D�
x3 −

Pd

2D�
x2 + s5x + s6 �20�

here D� is the flexural rigidity of the composite beam, which
ay be expressed as �6�

D� = D + h2D0/4 �21�

ith

D0 = 1/��b1E1h1�−1 + �b2E2h2�−1� �22�

urther, from the condition yDF �x=L=0, we have

s6 = PdL2/�3D�� − s5L �23�

he nine unknown constants Ai, Bi �i=1,2�, s3–s5, �1�, and �2 are
etermined as functions of Z from the conditions of continuity of
eflections and the angle of inclination at points B, C, and D.
hey are given in Appendix A.
Finally, we determine the axial force Z. We consider a rectangle

n the delaminated part of the beam BD prior to deformation,
hich consists of the pair of neutral axes of the upper and lower
eams to the delamination and the pair of side lines with length
/2 connecting both end points of the neutral axes on the cross
ections at B and D �cf. Fig. 2�. After the jointed beam BD is
eformed and local buckling of the delamination occurs, side lines
nd beam axes still remain perpendicular at all four corner points.
n the other hand, the distance BD between the end points of the
eutral axis of the upper beam becomes short by the axial com-
ressive force Z and by the effect of curvature induced by bending
7�. Likewise, the distance BD of the neutral axis of the lower
eam changes by the axial extensional force Z and by the effect of
urvature. The difference between the two distance changes
hould be equal to h /2� �sum of the angles of the inclination of
he cross sections at points B and D�. This condition leads to the
ollowing equation for Z:

F�Z� = 0 �24�
here

ournal of Engineering Materials and Technology
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F�Z� =
Zc

E1h1b1
+

Zc

E2h2b2
+

1

2�
d−aL

c

�y1��
2dx −

1

2�
d−aL

c

�y2��
2dx

−
h

2
��L + �R� �25�

with �L and �R being the angles of inclination at points B and D

�L = �dyBC

dx
�

x=0
= s3, �R = − �dy1

dx
�

x=c

�26�

In Eq. �25�, the third and fourth terms in the right-hand side of the
equation correspond to the change in the distance CD due to the
curvatures of the upper and lower beams, respectively. For con-
venience, explicit expressions of the integrals appearing in Eq.
�25� are given in Appendix B. Equation �24� is a nonlinear equa-
tion for Z and has to be solved numerically. Once solution Z is
obtained, all the unknown constants are completely determined.
The deflection � at the point of load application is obtained from

� = yAB�x=aL
+ yBC�x=cL

�27�

2.2 Numerical Solution of Z . In this section we assume a
model laminate consisting of a stainless steel beam with thickness
h1=0.5 mm, width b1=20 mm, and Young’s modulus E1
=195.2 GPa for the upper layer, and an aluminum beam with
thickness h2=2 mm, width b2=30 mm, and Young’s modulus
E2=72.4 GPa for the lower layer, and obtain numerical solutions
for the critical buckling load, axial forces Z, and deflection curve.
�The values of the Young’s moduli are from our experiments.� The
lengths of the beam and the crack are chosen to be L=400 mm
and c=240 mm, respectively, and the locations of the load point
and the right-hand crack tip are taken to be d=150 mm and aR
=50 mm, respectively.

Now in order to obtain the insight of the behavior of solution Z
of F�Z�=0, we plot F�Z� against Z. Figures 3�a�–3�c� show the
plots of F�Z� for the case when the magnitude of the applied load
P is 1.0 N, 2.3 N, and 3.5 N, respectively. It is seen that when the
magnitude of the load is small, there is only one solution of
F�Z�=0, and as the load is increased the number of solutions
increases. There appear three solutions for P=3.5 N �cf. Fig.
3�c��. Figures 4�a�–4�c� show the deflection curves corresponding
to the solutions Z�1�, Z�2�, and Z�3� of Fig. 3�c�. It is seen that for
deflection curves corresponding to solutions Z�1� and Z�3�, the
upper beam comes to the lower position of the lower beam �Fig.
4�a��, or a part of the upper beam overlaps the lower beam �Fig.
4�c��; hence, solutions Z�1� and Z�3� are irrelevant.

On the other hand, as shown in the deflection curves in Fig.
4�b�, curves corresponding to Z�2� does not contain any inconsis-
tency, so that Z�2� is the only relevant solution corresponding to
the local buckling. Similar results were found for other values of
P and therefore, the critical buckling load Pcr can be defined as
the load at which the second solution comes to appear first. Thus,
in the present case, Pcr=2.3 N as seen in Fig. 3�b�. The relation
between the load and deflection at the point of load application
�P-� curve� after the load is increased beyond the critical point
may be obtained by first finding solution Z�2� of Eq. �24� for
several values of P and then substituting this into Eq. �27�.

When the load is less than the critical buckling load, a beam
will deflect, keeping mutual contact of the delaminated surfaces.
In this case previous analyses �6� are effective. The deflection � is
proportional to the applied force P, and the compliance of the

beam 	=� / P has been given by

JULY 2010, Vol. 132 / 031007-3
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	 = −
1

3L2� 1

D
−

1

D�
��d2�d� − cR�3 + d�2�d − cL�3�

−
1

4c
� 1

D
−

1

D�
� f2 +

d2d�2

3LD
�28�

here

f = �d��2aL + cL�cL + d�cR + 2aR�cR�/L �29�

igure 5�a� shows the plot of the P-� relation of the model beam,
hich indicates that it is nearly bilinear, and the beam becomes
ore flexible than it is before the delamination buckling. Figure

�a� also compares the theory with the experimental results, which
ill be described in Sec. 4. Detailed discussions of Fig. 5 will be
iven in Sec. 5.

2.3 Case Where the Point of Load Application Lies Out-
ide of the Delaminated Region. Next we consider the case
here the point of load application C lies between A �the left-hand

dge, or support of the beam� and B �left-hand tip of the delami-
ation�, i.e., d�aL �cf. Fig. 1�. The analysis for this case becomes

ig. 3 Plots of F„Z… for several values of the applied force: „a…
=1.0 N, „b… P=2.3 N, and „c… P=3.5 N
uch easier since there is no contact region. The deflection curves

31007-4 / Vol. 132, JULY 2010
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for the delaminated parts of beams y1 and y2 with the origin of
x-coordinate at the left-hand crack tip B are given as

y1 = Ā1 cos�k1x� + B̄1 sin�k1x� − �M̄1 − FD�̄x�/Z �30�

y2 = Ā2 cosh�k2x� + B̄2 sinh�k2x� + �M̄2 − FD�1 − �̄�x�/Z �31�

where expressions of Āi, B̄i �i=1,2�, �̄, and M̄1�=M̄ −M̄2� are
given in Appendix C. The deflections for the intervals of beams
AC, CB, and DF expressed as functions of x with the origin at
point A are given as follows:

yAC = − FBx3/�6D�� + j1x �32�

yCB =
FD x3 −

dP
x2 + j2x + j3 �33�

Fig. 4 Deflection curves corresponding to the solution Z„1…,
Z„2…, and Z„3… of F„Z…=0 for P=3.5 N: „a… Z„1…, „b… Z„2…, and „c…
Z„3…. Delamination lies between 0.11 m�x�0.35 m and load-
ing point is at x=0.15 m.
6D� 2D�
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yDF =
FD

6D�
x3 −

dP

2D�
x2 + j4�x − L� +

dPL2

3D�
�34�

he constants j1– j4 are given in Appendix C. The nonlinear equa-
ion for determining the axial force Z is given by Eqs. �24� and
25� with y1 and y2 replaced with Eqs. �30� and �31�, and by
eplacing the lower limit of the integrals with 0. The explicit ex-
ressions of the results of integration are also given in Appendix
. We found that the behavior of the solutions is quite similar to

he foregoing case, and the second smallest solution Z�2� is the
nly appropriate solution for the buckling. After obtaining the
olution Z�2�, the deflection at the load point is determined from
q. �32� as �=yAC �x=d.
On the other hand when the load is less than Pcr, the crack faces

etain mutual contact and � is proportional to P. As have been
hown in Ref. �6�, when the point of load application is outside of
he delaminated part, the compliance of the beam is given as

	 =
d2c3

12L2� 1

D
−

1

D�
� +

d2d�2

3D�L
�35�

e take the same model beam as considered in the previous cal-
ulations. Assuming now that c=160 mm �with all other dimen-
ions being kept unchanged�, we calculated the load versus the
eflection curve, the result of which is shown in Fig. 5�b�. We
gain observe that the P-� relation is nearly bilinear. Reflecting
he fact that the length of the crack is now relatively short, the
uckling load becomes large �Pcr=5.0 N� as compared with the
alue of 2.3 N for c=240 mm. Also the decrease in the slope for
he post-buckling condition is not so pronounced as in Fig. 5�a�.

For the same beam model we calculated the critical buckling
oad for various crack lengths. The results are shown in Fig. 6. We
bserve that as expected, Pcr decreases as the crack length is in-

ig. 5 Relation between the applied load P and the deflection
t the point of load application �: „a… c=240 mm „d
aL…; „b…
=160 mm „d�aL…
reased.

ournal of Engineering Materials and Technology
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3 Energy Release Rate
One of the most important parameters characterizing the onset

of the growth of delamination is the energy release rate. In this
section, assuming that the widths of the upper and lower layers are
equal �b1=b2
b�, we calculate the energy release rates for both
before and after buckling states to elucidate the effect of buckling
on the energy release rate. As is well known, for a specimen with
the linear relation between the load and the deflection at the point
of load application, the energy release rate G is given by G
= �P2 /2b�d	 /dc for crack extension under a constant load condi-
tion. Thus, when the point of load application lies on the delami-
nated region and delamination grows, maintaining mutual contact
of cracked surfaces, then the energy release rates at the left- and
right-hand tips GaL

and GaR
, respectively, are obtained from Eq.

�28� as follows �6�:

GaL
=

P2

2b

d	

dcL
=

P2c2

8b
� 1

D
−

1

D�
�	d�

L
− � cR

c
�2
2

�36�

GaR
=

P2c2

8b
� 1

D
−

1

D�
�	 d

L
− � cL

c
�2
2

�37�

In the case when the load point lies outside of the delaminated
part, we have from Eq. �35� for both crack tips �6�

GaL
= GaR

=
P2d2c2

8bL2 � 1

D
−

1

D�
� �38�

For the calculation of the energy release rate for the post-buckling
condition, we utilize the formulas of Suo and Hutchinson �13�.
They considered the energy release rates of a split beam with a
unit width subjected to the general loading condition, as shown in
Fig. 7. Applying their formulas to the present post-buckling prob-
lem, the energy release rate for the plane stress condition is given
as

G =
1

2E1
	 P0

2

Ah1
+

M0
2

Fh1
3 +

2P0M0

�AFh1
2
��D� − D�D1

�D� − D1�D
 �39�

where

M0 = �M1
� − D1M3/D��/b �40�

Fig. 6 Critical buckling load Pcr plotted for the crack length
c /L

Fig. 7 Split-beam element with unit width under general load-
ing condition „� is the distance of the neutral axis of the

bonded beam from the top surface…
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P0 = �Z − hD0M3/�2D���/b �41�

ith M1
� and M3 representing the moments pertinent to the left-

nd right-hand crack tips. The dimensionless constants A and F
re defined by

A =
D0D2

bE1h1�D� − D1�
, F =

D2

12D
�42�

n the case where the point of application of load is on the delami-
ated zone, we have

M1
� = D1�FBaL − hZ/2�/D, M3 = FBaL �43�

or the left-hand tip of the delamination. Likewise, the moment

1
� for the right-hand crack tip is obtained from Eq. �12� by

eplacing x with c. M3 is given by M3=FDaR. Quantities M1
� and

3 for the case where the load point lies outside of the delami-
ated zone may be similarly obtained.

As an example, we take the same material combination as taken
n the foregoing calculations, but we now assume that the widths
f the two beams are equal �b1=b2=30 mm� and the height of the
pper beam is assumed to be 0.4 mm. As before, the length of the
eam is 400 mm, and the positions of the load application and the
ight-hand crack tip are fixed to be d=150 mm and aR=50 mm,
espectively, while the crack length is varied from 100 mm to 320
m. The magnitude of the load is assumed to be P=11.0 N,
hich corresponds to the critical buckling load for c=100 mm.
Figure 8 shows the variation in the energy release rates at the

eft-hand crack tip �Fig. 8�a�� and right-hand crack tip �Fig. 8�b��
ith the normalized crack length c /L. It is seen that generally the

nergy release rate increases by the delamination buckling, and
hat this effect is particularly pronounced for the left-side tip. We
lso note in Fig. 8�a� that for both buckled and contact conditions,
he energy release rates increase as the crack length increases
rom c=100 mm, and take the maximum values at c /L=0.5, i.e.,

ig. 8 Energy release rates: „a… left-hand tip; „b… right-hand tip
hen the left-hand tip of the delamination coincides with the point
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of load application. For further increase in the crack length, the
energy release rates decrease. This feature may be attributed to the
closure of the crack faces near the tip due to the compression
caused by the applied force.

According to Griffith’s theory of fracture, the onset of delami-
nation growth is stated as G=Gc, with Gc being the fracture
toughness of the interface. Referring to Fig. 8, we see that if the
fracture toughness of the interface Gc is relatively large, then, for
example, for a crack with a length of 100 mm, the left-hand tip
will extend by the buckling toward the point of load application,
while the right-hand tip remains stationary, since the energy re-
lease rate at the left-hand tip is larger than that at the right-hand
tip. On the other hand, if the initial crack length c /L is larger than
0.65, then the right-hand crack tip will extend, while the left-hand
tip remains stationary, because in this case, the energy release rate
is greater at the right-hand tip.

Generally, delamination growth is expected to occur after
delamination buckling for relatively tough interface so that the
assessment of delamination growth should be done based on the
assumption of local buckling.

4 Experiments
We made the same steel-aluminum composite beam specimens

as assumed in the analyses in Sec. 2 and conducted experiments.
Thin PTFE adhesive tape with a thickness of 0.08 mm was glued
on the surface of the steel beam along the prospective crack edges
so that the crack edges might be made straight and normal to the
axis of the beam. Two thin steel wires with a diameter of 0.04 mm
�Nilaco Co., Japan� have also been spread parallel to the axes of
the aluminum beams at an interval of 8 mm over the whole length
of the beam prior to bonding. This manipulation was done so that
the thin steel layer above the delamination would not have initial
curvature, which would be induced by the gravity force. The two
beams were then bonded by an epoxy binding agent Araldite
�Vantico Co., Japan� except for the prospective delamination sur-
faces. Four composite beams containing an interface crack with
lengths c=160 mm, 200 mm, 240 mm, and 280 mm �all with
aR=50 mm� have been prepared. A three-point flexure test �d
=150 mm� subject to displacement control condition was con-
ducted using a universal testing machine �Shimazu Co., Japan�.
The displacement at the load point was measured by a laser dis-
placement meter �Hioki Co., Japan�.

Experimental results for the relation between P and � for the
cases of c=160 mm and 240 mm have been shown in Fig. 5. As
seen from these graphs, the critical buckling loads were nearly
two times larger than the predicted value for the loading pro-
cesses. This tendency was common to other test pieces. After the
occurrence of buckling, the load immediately dropped, and after
that, the P-� relation well traced the calculated paths, as seen in
Fig. 5. We also observe from Fig. 5 that for unloading processes,
the load-deflection relations agree well with the calculations.

In all tests, the P-� relations were nearly bilinear. Figure 9
summarizes the experimental results for the slopes for the cases of
contact and post-buckling conditions. In the figure, 	 indicates
the compliance for the condition of contact of the whole crack
surfaces, whereas it indicates the inverse of the slope of the P-�
relation for the post-buckling condition. We observe that the ex-
perimental results agree well with the theoretical analyses.

5 Discussions
The characteristic feature found in the experiments is that the

magnitudes of the buckling loads are generally two times larger
than those predicted from the theory. For further loading after the
occurrence of buckling, and in the unloading processes, experi-
mental P-� relations agree well with the theoretical predictions. In
the present analyses, we only considered the first mode of buck-
ling, where the contact region is fixed in the interval BC �cf. Fig.

1� and buckling occurs in the interval CD �cf. Fig. 1� with no
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ontact occurring in this interval. Though this model is valid for
he first mode of buckling, it may exclude the second mode of
uckling. It is possible that the experimental buckling loads in fact
ndicate the load level corresponding to the second mode and that,
ince the second mode is unstable, the mode of deflection imme-
iately changed to that of the first mode. The sudden drop of the
pplied load �from P=6 N to 4.5 N in Fig. 5�a� and from P
9.5 N to 8.5 N in Fig. 5�b�� indicates this mode change. It is

nferred that, as suggested from Fig. 4�c�, the second mode con-
ains the contact region, which extends in the interval CD in Fig.
. Hence, in a more general analysis of buckling, which covers the
econd mode of buckling, the contact in the buckled region CD
hould be taken into account, i.e., the length of the contact should
e considered as an active part of the solution. The solution pro-
edure of this generalized model would be reduced to the deter-
ination of two unknown parameters Z and the length of the

ontact region. The analyses of this generalized model will be-
ome somewhat involved but are necessary to fully explain the
xperimental results.

Conclusions
In this paper, on the basis of a simple beam theory, analyses

ere given for local delamination buckling in two-layered beams
ubjected to three-point bending. A nonlinear equation determin-
ng the axial forces induced by bending in the parts of the beam
bove and below the delaminations was derived. This equation
ossesses only one solution for small loads, whereas it yields
ore than two solutions as the applied load becomes large. By

xamining the deflection curves of the beam corresponding to
ach solution, it was concluded that the occurrence of buckling
orresponds to the advent of the second solution. Thus, the critical
uckling loads were defined as the load at which the second so-
ution comes to appear first. On the other hand, for loads smaller
han the critical load, our previous theory �6� assuming the contact
f whole delamination surfaces is effective. Nearly bilinear rela-
ions between the applied load and deflection at the point of load
pplication were obtained for some model laminates, which were
hown to agree well with experiments.

The differences between the critical buckling loads observed in
he experiments and those predicted from the theory was also
iscussed. A more generalized model in which the contact zones
re considered as an active part of the solution was suggested, but
he complete solution of this model is left for future study.

The effect of delamination buckling on the energy release rate
as also studied. It was shown that due to buckling the energy

elease rate generally takes values much greater than those for the
ase of perfect contact of the crack faces. The energy release rate
ill become even greater if buckling occurs in the second mode. It

s expected that generally, for relatively tough interfaces, delami-

ig. 9 Comparison of the compliances � between the theory
nd experiments. Dashed and solid line curves represent the
heoretical values for post- and pre-bucklings, respectively. Tri-
ngles and circles represent the experimental results for post-
nd pre-bucklings, respectively.
ation will extend through delamination buckling. Hence, the as-

ournal of Engineering Materials and Technology
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sessment of the strength of the interface of the composite beams
should be made by taking delamination buckling into consider-
ation.
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Appendix A
From the conditions of continuity of deflections and the slopes

at points B, C, and D, we have

�dyAB

dx
�

x=aL

= �dyBC

dx
�

x=0
at B �A1�

yBC�x=d−aL
= y1�x=d−aL

= y2�x=d−aL
at C �A2�

�dyBC

dx
�

x=d−aL

= �dy1

dx
�

x=d−aL

= �dy2

dx
�

x=d−aL

at C �A3�

y1�x=c = y2�x=c, yAB�x=aL
+ y1�x=c = yDF�x=aL+c at D �A4�

�dy1

dx
�

x=c

= �dy2

dx
�

x=c

= �dyDF

dx
�

x=aL+c

at D �A5�

We note that Eqs. �A22�, �A32�, �A41�, and �A51� contain only
Ai and Bi �i=1,2�. Thus we solve Eqs. �A22� and �A33� for A1 and
B1 to express them as functions of A2 and B2. Then substituting
into Eqs. �A41� and �A51� and solving, we have A2 and B2. In this
way we have

A1 = a1 sin � + �a2 − a3�cos �, B1 = a1 cos � − �a2 − a3�sin �

�A6�

A2 = ��1a22 − �2a12�/�, B2 = �− �1a21 + �2a11�/� �A7�
where

� = k1�d − aL�, a1 = A2� + B2/� + �M + FB�d − aL��/Z
�A8�

a2 = �k2/k1��A2� − B2/��, a3 = �P − FB�/k1Z �A9�

a11 = �cos�k1ē� + �k2/k1�sin�k1ē��� − exp�k2c� �A10�

a12 = �cos�k1ē� − �k2/k1�sin�k1ē��/� − exp�− k2c� �A11�

a21 = �sin�k1ē� − �k2/k1�cos�k1ē��� + �k2/k1�exp�k2c�
�A12�

a22 = �sin�k1ē� + �k2/k1�cos�k1ē��/� − �k2/k1�exp�− k2c�
�A13�

�1 = �M + cFB − ēP + ��P − FB�sin�k1ē��/k1 − �M + FB�d

− aL��cos�k1ē��/Z �A14�

�2 = −
M + FB�d − aL�

Z
sin�k1ē� +

�P − FB�
k1Z

�1 − cos�k1ē��

�A15�

� = a11a22 − a12a21 �A16�
with

¯
� = exp�k2�d − aL��, e = aL + c − d
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M = M1 + M2 = FBaL − Zh/2 �A17�
he remaining unknowns may be readily obtained from the rest of

he equations. Thus, s3–s5, �1�, and �2 are given as functions of Z
s follows:

s3 = J1 − �1�FB/Z, s4 = s3 + FBaL
2/�2D�� �A18�

s5 = k1�A1 cos�k1c� − B1 sin�k1c�� + f2 +
− �1�FB + �2P

Z

−
Pd�aL + c�2

2LD�
+

Pd�aL + c�
D�

�A19�

�2 =
Z

P
�J1 + 3s1�d − aL�2 + 2s2�d − aL� − f2

− k1�A1 cos � − B1 sin ���

�2 = 1 − �2 �A20�

�1� = − ZJ2/�FBL�, �1� = 1 − �1� �A21�
here

J1 = �A1 sin � + B1 cos � − M1/Z − f1�/�d − aL� + f2 − s1�d − aL�2

− s2�d − aL� �A22�

J2 =
Pd�aL + c�3

6LD�
−

Pd�aL + c�2

2D�
+ �k1�A1 cos�k1c� − B1 sin�k1c��

+ f2 + �2P/Z − Pd�aL + c�2/�2LD�� + Pd�aL + c�/D��

� �aL + c − L� +
PdL2

3D�
+

FBaL
3

6D�
− �J1 +

FBaL
2

2D�
�aL

− A1 sin�k1c� − B1 cos�k1c� + �M1 − �2Pē�/Z + f1 − f2c

�A23�

ppendix B
The results of the integrals in Eq. �25� and the angles of incli-

ation at the tip of the delamination �Eq. �262�� are given as fol-
ows:

�
d−aL

c

�y1��
2dx = �k1

2�A1
2 + B1

2�/2 + H1
2 + f2

2 + 2f2H1�ē

+ k1�A1B1�cos�2k1c� − cos�2���/2 + �A1
2 − B1

2�

��sin�2k1c� − sin�2���/4� + 2�H1 + f2�

��A1 sin�k1c� + B1 cos�k1c� − A1 sin �

− B1 cos �� �B1�

�
d−aL

c

�y2��
2dx = �H2

2 + f2
2 − 2f2H2 − 2A2B2k2

2�ē + �k2/2�

��A2
2 exp�2k2c� − B2

2 exp�− 2k2c�

− A2
2 exp�2k2�d − aL�� + B2

2 exp�− 2k2�d − aL���

− 2�H2 − f2��A2 exp�k2c� + B2 exp�− k2c�

− A2 exp�k2�d − aL�� − B2 exp�− k2�d − aL���
�B2�

here

H1 = �− �1�FB + �2P�/Z, H2 = �− �1�FB + �2P�/Z �B3�
he explicit expression of the angle of inclination �R is
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�R = − y1��x=c = − k1�A1 cos�k1c� − B1 sin�k1c�� + �1�FB/Z − f2

− �2P/Z �B4�

Appendix C
The constants appearing in Eqs. �30� and �31� are given as

follows:

Ā1 = M̄1/Z, Ā2 = − M̄2/Z �C1�

B̄1 =
FD�F4F5 − F2F3� + M̄�F3F5 − F2F6�

Z�F1F5 + k1F2
2�

�C2�

B̄2 = �B̄1k1 + FD/Z�/k2 �C3�

M̄1 =
FD�k1F2F4 + F1F3� + M̄�k1F2F3 + F1F6�

F1F5 + k1F2
2 , M̄2 = M̄ − M̄1

�C4�
where

F1 = sin�k1c� − �k1/k2�sinh�k2c�, F2 = cos�k1c� − cosh�k2c�
�C5�

F3 = 1 − cosh�k2c�, F4 = �1/k2�sinh�k2c� − c �C6�

F5 = k1 sin�k1c� + k2 sinh�k2c�, F6 = k2 sinh�k2c� �C7�

M̄ = FD�L − aL� − Zh/2 �C8�
The constants appearing in Eqs. �32�–�34� are given as follows:

j1 = j2 − d2P/�2D��, j2 = k1B̄1 + FD� �̄

Z
−

aL
2

2D�
+

aLL

D�
�

�C9�

j3 = − Pd3/�6D�� �C10�

j4 = − �M̄1k1/Z�sin�k1c� + B̄1k1 cos�k1c� +
FD�̄

Z
−

FD

2D�
�aL + c�2

+
dP

D�
�aL + c� �C11�

where

�̄ =
Z

dP
	 FD

6D�
��aL + c�3 + 2aL

3 + 3aR�aL + c�2� +
dP

6D�
�2L2 + d2

− 3aL
2 − 3�aL + c�2 − 6aR�aL + c�� − B̄1�sin�k1c� + k1aL

+ k1aR cos�k1c�� +
M̄1

Z
�1 − cos�k1c� + k1aR sin�k1c��


�C12�
The integrals appearing in the nonlinear equation are given as
follows:

�
0

c

�y1��
2dx =

�M̄1k1�2

2Z2 �c −
sin�2k1c�

2k1
� +

�B̄1k1�2

2
� sin�2k1c�

2k1
+ c�

+ � �̄FD

Z
�2

c +
2B̄1�̄FD

Z
sin�k1c�

+
M̄1k1B̄1

2Z
�cos�2k1c� − 1� +

2M̄1�̄FD

Z2 �cos�k1c� − 1�
�C13�
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�
0

c

�y2��
2dx2 =

�M̄2k2�2

2Z2 � sin�2k2c�
2k2

− c� +
�B̄2k2�2

2
� sinh�2k2c�

2k2

+ c� + �1 − �̄�2c�FD

Z
�2

−
2B̄2�1 − �̄�FD

Z
sinh�k2c�

+
M̄2k2B̄2

2Z
�1 − cosh�2k2c��

+
2�1 − �̄�M̄2FD

Z2 �cosh�k2c� − 1� �C14�
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