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The topology of orientable (2 + 1) space–times can be captured by certain lumps of
nontrivial topology called topological geons. They are the topological analogs of con-
ventional solitons. We give a description of topological geons where the degrees of free-
dom related to topology are separated from the complete theory that contain metric
(dynamical) degrees of freedom. The formalism also allows us to investigate processes
of quantum topology change. They correspond to creation and annihilation of quantum
geons. Selection rules for such processes are derived.

1. Introduction

It is very common to make the reasonable assumption that the topology of space–

time is fixed. We assume that space–time is a manifold of the form Σ×R, and that

for each time t, we have a spacelike surface that is always homeomorphic to a given

Σ. However, when (quantum) gravity is taken into account, the very geometry of

space becomes a degree of freedom, and one can conceive the possibility that Σ

changes in the course of time.1 Such a process is called topology change. Creation

of baby universes, production of topological defects (cosmic strings, domain walls),

and changes in genus (production of wormholes and topological geons) are examples

of topology change. Each of them have received some attention in the literature.

Several authors have investigated topology change within the context of both clas-

sical and quantum gravity.2 It is interesting to notice that in the usual canonical

approach to gravity, only the metric of the spatial manifold Σ appears as a degree

of freedom and receives a quantum treatment. The topology of Σ in its turn is

implicitly treated as a classical entity. There are, of course, other approaches to
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quantum gravity such as string theory7 and Euclidean quantum gravity8 where

topology may appear as an entity of a quantum nature via a sum over topologies.

It would be desirable to have a formalism where topology can in a certain sense

be canonically quantized and if possible separated from degrees of freedom coming

from metric and other fields. In spite of the fact that topology change has been

inspired by quantum gravity, it has been demonstrated in Ref. 9 that it can happen

in ordinary quantum mechanics. In this approach, metric is not dynamical, but

degrees of freedom related to topology are quantized. The notion of a space with a

well-defined topology appears only as a classical limit. (See also Ref. 10 for related

ideas.) The views we would like to present in this paper are similar, to a certain

extent, to the ones in Ref. 9. In our approach, variables related to topology are

separated from other degrees of freedom and then quantized.

The topology of space is well captured by soliton-like excitations of Σ called

topological geons. They can be thought of as lumps of nontrivial topology. For

example, in (2 + 1)d, the topology of an orientable, closed surface Σ is determined

by the number of connected components of Σ and by the number of handles on

each connected component. Each handle corresponds to a topological geon, i.e.

a localized lump of nontrivial topology. It is well known that these solitons have

particle like properties such as spin and statistics. However unlike ordinary particles

they can violate the spin-statistics relation.4,11 It has been suggested11,13,12 that the

standard spin-statistics relation can be recovered if one considers processes where

geons are (possibly pairwise) created and annihilated, but this necessarily implies

a change of the topology of Σ. In other words, one may have to consider topology

change in order to have a spin-statistics theorem for geons.13,12

The Euclidean path integral approach can in some sense be carried out in low

dimensions,14 but it represents a formidable task in the case of a (3 + 1)d theory.

It would be nice to stay closer to a “canonical” quantization, even though topology

change and the canonical approach appear to be incompatible. One may search for

alternative descriptions of topological properties using algebraic tools, very much in

the spirit of quantum invariants of knot theory. The polynomial invariants of knots

can be obtained by both field theoretic and algebraic methods. In the field theo-

retical approach, it is well known that Jones polynomials are obtained by means of

functional integrals of Chern–Simons theory.15 In the algebraic approach, one ob-

tains invariants by representations of the braid group,16,17 or via Hopf algebras.18,19

We will try in this paper to give an algebraic description of quantum geons, rather

than a field theoretical one. We will present a theory of quantized topological geons

where topology change is a quantum transition. We will only analyze the case of

orientable geons in (2 + 1)d were handles are the only possible “particles.” A gen-

eralization to include nonorientable geons will be presented elsewhere.

Let us consider a manifold M and some generic field theory (possibly with

gauge and Higgs fields) interacting with gravity. It is reasonable to expect that if

we could quantize such a complex theory, its observables would give us information
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on the geometry and topology of M . The main point is that one does not need to

consider the full theory to get some topological information. It is possible that, in a

certain low energy (large distance) limit, there would be a certain set of observables

encoding the topological data. We know examples where this is precisely the case.

In general, the low energy (large distance) limit of a field theory is not able to

probe details of the short distance physics, but it can isolate degrees of freedom

related to topology. We may give as an example the low energy limit of N = 2

super Yang–Mills, known as the Seiberg–Witten theory.20 We also have examples

of more drastic reduction where a field theory in the vacuum state becomes purely

topological.21 Inspired by these facts we will identify the degrees of freedom, or the

algebra A(n) of “observables,” capable of describing n topological geons in (2+1)d.

Actually, we will argue later in this paper that the operators in this algebra are not

really observables in the strict sense. Rather, it is what is called6 a field algebra.

We say that A(1) describes a single geon in the same way that the algebra of

angular momentum describes a single spinning particle. In this framework what we

mean by quantizing the system is nothing but finding irreducible representations

of A(1). As in the case of the algebra of angular momentum, different irreducible

representations have to be thought of as different particles. For the moment, we

will not be concerned with dynamical aspects. We would like to concentrate on the

quantization itself and leave the dynamics to be fixed by the particular model one

wants to consider.

An intuitive way of understanding the algebra A(1) for a topological geon comes

from considering a gauge theory with gauge group G in two space dimensions spon-

taneously broken to a discrete group H. For simplicity we will assume that H is

finite. As an immediate consequence it follows that the gauge connection (at far

distances) is locally flat. In other words, homotopic loops γ and γ′ produce the

same parallel transport (holonomy). The set of independent holonomies are there-

fore parametrized by elements [γ] in the fundamental group π1(Σ). It is quite clear

that such quantities are enough to detect the presence of a handle. The phase space

we are interested in contains only topological degrees of freedom. Therefore such

holonomies can be thought of as playing the role of position variables. We also

have to take into account the diffeomorphisms that are able to change [γ]. They

will be somewhat the analogues of translations. It is clear that the connected com-

ponent of the group of diffeomorphisms, the so-called small diffeos, cannot change

the homotopy class of γ. To change the homotopy class of a curve γ one needs to

act with the so-called large diffeomorphisms. Therefore the analogues of transla-

tions have to be parametrized by the large diffeos modulo the small diffeos. This

is exactly the mapping class group MΣ. Also, we must take into account an action

of the group H, changing the holonomies by a conjugation. This action, as we will

discuss later, corresponds physically to “encircling flux sources at infinity.” These

three sets of quantities will comprise our algebra A(1). Contrary to what happens in

field theory or even in quantum mechanics, we find that A(1) is finite-dimensional.

This will be important to avoid technical problems of various kinds. The algebra
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A(1) contains the analogue of positions and translations and can be thought of as a

discrete Weyl algebra. There seems to be no great obstacle to generalize our results

also to the case where H is a Lie group.22

Our algebraic description of geons is analogous to what has been developed for

2d non-Abelian vortices by the Amsterdam group.23 These ideas have been further

developed by some of us and coworkers and applied to rings in (3+1)d. Their results

will not be discussed here since a complete account will be reported in Ref. 24.

The algebra encountered by Ref. 23 was a special type of Hopf algebra, namely

the Drin’feld double of a discrete group.18 In our case, however, the algebra A(1)

is not Hopf, but it has a Drin’feld double as a subalgebra. For a pair of geons

we find that the corresponding algebra A(2) is closely related to the tensor product

A(1)⊗A(1) of single geon algebras. This fact allows us to determine the appropriate

algebra A(n) for an arbitrary number n of geons.

The main result of our analysis is that it gives us some information on topology

change at the quantum level. This is true for geons as well as for particles on the

plane. Our algebra A(1) has to do with large distance observations. In other words,

we can only probe low energy aspects of the theory. We will argue in Sec. 6 that

geons, i.e. handles in the plane, can be created and annihilated in a quantum fashion

as a consequence of the scale of observations. We would like to mention that other

types of topology change, like creation of baby universes, do not fit naturally in our

framework and will not be considered here.

One advantage of the algebraic approach is that we can do this analysis without

going into the details of the “complete” underlying field theory. We can determine

the spectrum Â(1) of the geons, i.e. the set of possible irreducible representations

of A(1), but a particular field theory may restrict the available possibilities in Â(1).

The determination of these possibilities requires the study of particular examples

of the underlying field theories. That may be a very difficult task. In this paper

our intention is to use the simplified algebraic “field” theory and see what it can

teach us. It is remarkable that such a simple framework can reveal important fea-

tures of quantum geons such as a constraint involving spin and statistics as well

as rules for quantum topology change. The former connection is investigated in

another paper.3

An approach similar to ours is explored in Ref. 25. Its author views the geon as a

vortex–antivortex pair, in which case the algebra describing it is a quantum double.

This description does not consider the internal diffeomorphisms of the geon, as it

aims to describe vortices on a two-dimensional surface with handles. Accordingly,

in Ref. 25, the setting is a two-dimensional surface Σg,n of genus g and n punctures,

whereas in this work we consider a two-surface Σg,0 of genus g without punctures.

Our approach is also different inasmuch as we are interested in considering “large

diffeomorphisms,” i.e. elements of the mapping class group of Σg,0. More specifically,

in Ref. 25, the topology of this surface is a passive background where a theory of

pointlike vortices is defined, and its author only deals with diffeomorphisms moving
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particles (punctures) around or through handles. To us, the geons (handles) them-

selves, including their internal structure, are the entities of interest. The diffeo-

morphisms moving these handles are the “large diffeomorphisms” we mentioned

above. As an illustration of the above-mentioned differences, in a typical process

considered in Ref. 25, one can make a test vortex go through or around a handle,

whereas in our case one can conceive of “test geons” going through other handles.

Our procedure allows a natural generalization towards quantum gravity, which is

the issue of another paper.3

We recall the notion of topological geons in Sec. 2. A special emphasis is given

to orientable geons in (2 + 1)d. The field algebra is described in Sec. 3. Section 4

gives the effective description of a geon as seen from a large distance. The relevant

subalgebra D ⊂ A(1) is the same as for a point particle. The representations of D
will play an important role when we discuss topology. Quantization of the system is

given in Sec. 5. In this section we are able to classify the irreducible representations

for a class of algebras Ã that includes our algebra of interest as a particular example.

It is worthwhile to point out that the field algebras for vortices in (2 + 1)d and for

rings in (3 + 1)d considered in Ref. 24 are also examples of Ã. Section 6 describes

how topology can change in this quantum theory, as a consequence of the scale of

observation. We end with some concluding remarks and prospects of future work.

2. Topological Geons

The term geon was used for the first time by J. A. Wheeler26 to designate a lump

of electromagnetic energy held together by its own gravitational field, forming a

spatial region of nonzero curvature, typically very small. In the context of this

paper, however, this term will have a wholly different meaning, namely it will signify

a topological geon, a soliton-like excitation in topology first discussed by Friedman

and Sorkin,5 and whose properties were further elaborated by many authors.27–30

In this section, we review the definition and basic properties of topological geons,

and refer the reader to the literature for further details.

We start with some basic preliminary definitions. Let M1, M2 be connected n-

dimensional topological manifolds, possibly with boundaries. We define their con-

nected sum, M1 #M2, as follows: take n-balls Bni in the interiors of Mi (i = 1, 2)

and remove their interiors. We thereby add spheres Sn−1 to the boundaries of

M1 and M2. Now identify the points of these spheres via a homeomorphism. The

resulting manifold is M1 #M2. If M1 and M2 are oriented, we further require that

this homeomorphism be orientation reversing so that M1 #M2 is also oriented. It

follows trivially from the definition that M #Sn is homeomorphic to M itself. The

connected sum of two tori is shown in Fig. 1.

In this paper we shall be interested in a decomposition of space–time by spacelike

hypersurfaces (spatial manifolds). In dealing with gravity, one is usually interested

in space–time metrics which induce an asymptotically flat (or asymptotically con-

ical, in the (2 + 1)d case) Riemannian metric on each hypersurface. For a certain
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Fig. 1. The connected sum of two tori T2. One first removes a disc from each torus and then
glues them along the new boundaries.

S

Fig. 2. A plane with a finite number of geons (handles) is an example of a manifold with one
asymptotic region. Note that all topological complexity can be localized within a circumference
S, and the geons can be isolated from each other. Outside S, one has simply a flat plane.

“frozen time” t, the hypersurface St should therefore be topologically a manifold

with one asymptotic region, i.e. there exists a compact region Rt ⊂ St whose

complement in St is homeomorphic to Rn\Bn, where (n + 1) is the dimension

of space–time and Bn is the standard n-ball in Rn. In Fig. 2 one can see (2 + 1)d

oriented geons (which are nothing but handles on a plane, see below) on a two-

dimensional spatial slice. This motivates the following definition: an n-manifold is

said to have one asymptotic region iff it is homeomorphic to Rn#M , where M is
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a closed (i.e. compact and boundaryless), connected n-manifold. Typical cases of

interest are two and three manifolds with one asymptotic region, which are to be

thought as spatial slices of (2+1)- and (3+1)-dimensional space–times respectively.

In two and three dimensions it is known31,32 that there exists a class of closed

connected manifolds Pi called prime manifolds. An n-manifoldM is said to be prime

iff M = M1 #M2 implies that one of M1, M2 is an n-sphere. One can prove that

given any compact n-manifold (n = 2, 3) M , there exists a unique decomposition

M = P1 # · · ·#PN , (2.1)

where Pi 6= Sn. Uniqueness means (apart from some technicalities — see Ref. 32)

that given another decomposition P ′1 # · · ·#P ′N ′ , we have N = N ′ and (after pos-

sible reordering) Pi is homeomorphic to P ′i. Each prime component of M is called

a topological geon.

In two dimensions, ignoring S2 from consideration, the only prime manifolds

are T2, which is orientable, and the “cross cap” RP2, which is nonorientable.31

In this paper we will consider only orientable geons, therefore we will have to deal

only with T2. Connected sums with S2 are clearly immaterial. In three dimensions

there are infinitely many prime manifolds, only partially classified. As examples we

can give the three-torus T3 and the “handle” S2 × S1.

From the aforementioned prime decomposition it is clear that any n-manifold

M (n = 2, 3) with an asymptotic region can be decomposed as

M = Rn#P1 # · · ·#PN . (2.2)

Now consider Rn#Pi. One can always find an n − 1 sphere in Rn#Pi whose

interior contains Pi. By a suitable choice of the metric this region can be thought

of to be as small as one pleases, i.e. the topological complexity can be localized

(for details see Ref. 28). In two spatial dimensions this means that one is allowed

to put the handle inside of a circle and suppose the radius of the circle to be very

small. Then one has a very small handle surrounded by a vast flat plane. It is in

this sense that we refer to the geon as “soliton like” at the beginning of this section:

just as a soliton corresponds to a localized excitation of some field, outside of which

one has the vacuum, the geon is a localized excitation of the topology itself, the

“vacuum” in this case being the flat space (see Fig. 3). In general, since Pi is prime,

one may say that it represents an elementary topological excitation. We therefore

say that Rn#Pi is a space with one geon. The manifold Rn#P1 # · · ·#PN is

therefore seen as a space with N geons. These prime manifolds attached to Rn can

be isolated from one another in the same way as we localized one single geon,28

and for many purposes one can think of geons as particles. Again, in two spatial

dimensions one can have many isolated small handles.

The importance of geons to us lies in the fact that, as long as we preserve

connectivity and consider a space manifold with one asymptotic region, topology

change amounts to creation and annihilation of geons. Henceforth we restrain our

attention to the case when the space is two-dimensional, connected and oriented,
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S

Fig. 3. A “solitary” geon can be seen as a localized excitation, or “soliton,” of topology. From a
distance it looks like a point particle.

with one asymptotic region. We assume, furthermore, that connectivity and orient-

ability are preserved during topology change. Although somewhat restrictive, this

case is still of much interest. Our assumptions imply, on the other hand, that the

geons of interest will be those associated to copies of T2, i.e. topology changing

processes will mean creation and annihilation of handles on a plane. As we will see

below, creation and annihilation will have for us a meaning different from the usual

geometrical one. Instead they will be related to what a “distant” observer will be

able to measure from a quantum theoretical standpoint.

3. The Field Algebra for (2 + 1)d Topological Geons

Our aim in this section is to define some “observables” which describe the topologi-

cal character of a geon. However, the term “algebra of observables” to designate the

algebra describing geons would actually be a misnomer, for as we will see shortly,

this algebra includes operators which cannot be observables. To describe geons, we

will use the low-energy limit of a field theory in their presence. In this limit, the

theory becomes topological, and therefore provides us with quantities capable of

probing the topological features of the background, and hence the geons. The kind

of algebra which we will encounter is composed by a part related to the fields, via

their holonomies around noncontractible paths, and to physical operations (some

of them not observable locally) which may change these holonomies. This algebra

is what is known in the literature as a field algebra (for a detailed definition, see for

instance Ref. 6).

We will follow an approach inspired by the work of the Amsterdam group,

which is reported in Ref. 23. In this work, the group investigates the properties

of topological solutions of a (2 + 1)d gauge field theory in Minkowski space–time

where the gauge symmetry of a Lie group G is spontaneously broken to a finite

group H by a nonvanishing expectation value of a Higgs field Φ. We shall briefly
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review their discussion, referring the reader to Ref. 23 for details. The Lagrangian is

given by

L =
1

4
F aµνF

µν
a + Tr[(DµΦ)∗ · (DµΦ)]− V (Φ) , (3.1)

where µ, ν = 0, 1, 2, and a is a Lie algebra index. For simplicity, we assume that G

is connected and simply connected. The fields F aµν are the components of the field

strength of the Yang–Mills potential Aaµ and Dµ denotes the covariant derivative

determined by this potential. The Higgs field Φ is in the adjoint representation and

can be expanded in terms of generators T a of the Lie algebra of G, and V (Φ) is a

G-invariant potential. In this paper we shall be concerned with the low energy, or

equivalently, the long range behavior of this theory, in the temporal gauge Aa0 = 0.

This is obtained by minimizing the three terms in the energy density separately.

Minimizing the term corresponding to the energy density of the Yang–Mills field,

we obtain the condition F aµν = 0, from which we conclude that we are dealing

only with flat connections. The minimum of the potential restricts the values of the

Higgs field to the vacuum manifold, which is invariant by H. Finally, the condition

DΦ = 0, required for minimizing the energy density from the second term, tells us

that the holonomies

τ(γ) = P exp

{∫
γ

Aai Ta ds
i

}
; i ∈ {1, 2} , (3.2)

take values in the finite group H.

Here and in what follows we will fix a base point P for loops, so that all loops

will begin and end at P .

This gauge theory may have topologically nontrivial, static solutions such as

vortices. It is very well known that the core radii of these vortices are inversely

proportional to the mass of the Higgs boson, and therefore they may be viewed as

pointlike in the low-energy regime of the theory. Hence, according to a standard

argument, to describe the N -vortex solutions we may consider solutions for the

vortex equations

F aij = 0 , DiΦ = 0 , V (Φ) = 0 , (3.3)

on a space–time of the form Σ×R, where Σ is the plane with N punctures, playing

the role of the vortices. Now, take a solution (A,Φ) for the vortex equations (3.3).

By fixing a point P ∈ Σ, the holonomy of A around any closed path γ based at P

depends only on its homotopy class, since A is flat. It takes values into a subgroup

H of G, which preserves the vacuum manifold, in view of the equations for Φ.23

Therefore, any solution of the vortex equations determines a homomorphism τ ,

τ : π1(Σ)→ H , (3.4)

between the fundamental group π1(Σ) and the group H. Conversely, given such

a homomorphism τ we can define a solution for Eqs. (3.3) in the following way.

Take the universal covering space Σ̃ of Σ. It is the total space of a principal bundle
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over Σ with structure group π1(Σ). Via the homomorphism τ we can construct

an associated principal H-bundle over Σ, which is a subbundle of the original G-

bundle. Since H is finite, this bundle has a unique flat connection Aai , which can be

viewed as a reducible connection on the G-bundle. We now find a Φ. By fixing some

Φ0 in the vacuum manifold, we have that, since Φ must be covariantly constant,

we define Φ(P ) = Φ0 and its value can be obtained for each x ∈ Σ by parallel

transporting Φ0 along some path from P to x in Σ:

Φ(x) = P exp

{∫ x

P

Aai Ta ds
i

}
Φ0 . (3.5)

The pair (Aai ,Φ) thus constructed is obviously a solution of the vortex equa-

tions. Therefore the space of solutions for the vortex equations (3.3) is essentially

parametrized by homomorphisms τ : π1(Σ) → H. Each such homomorphism is

then a vortex configuration.

Let us take the example of a single pointlike vortex on the plane. The non-

contractible loop γ that encircles the singularity has holonomy τ(γ) equal to the

flux carried by the vortex. In trying to capture only topological information, one is

not concerned with the position of the vortex, but only with its flux, characterized

by some group element h ∈ H. In other words, the “configuration space” T for the

vortex is labeled by elements ofH. Hence, the algebraF(H) of complex-valued func-

tions on H with pointwise multiplication plays the role of “position observables.”

Let us denote by Ph ∈ F(H), the characteristic function supported at h ∈ H. Then

PhPh′ = δhh′Ph . (3.6)

In terms of homomorphism, we have not yet exploited all the degrees of freedom

the system has. Indeed, we have thatH can act by conjugating all holonomies based

at P by an element of H. Hence, a flux σ transforms under H as

σ 7→ hσh−1 , (3.7)

In other words, we have an action ofH by conjugation of the fluxes. We shall simply

refer to this action as the H-transformations. The group elements h ∈ H can be

regarded as operators, also denoted by h, acting on the functions f ∈ F(H) via

(3.7). In other words,

hPσh
−1 = Phσh−1 . (3.8)

The multiplication of two H-transformations is the same as the group multipli-

cation. Therefore the algebra of such operators turns out to be the group alge-

bra C(H).

As for the physical interpretation of the H-transformations we note that the

mathematical action depicted in (3.7) is entirely equivalent, from a physical stand-

point, to what occurs when one makes a vortex of flux σ encircle a source of flux

h at infinity. Since such operation is nonlocal, one must conclude that the H-

transformations cannot be considered local in the theory, i.e. cannot be implemented

by local operators.



May 2, 2000 10:23 WSPC/139-IJMPA 0311

Quantum Topology Change in (2 + 1)d 1639

The field algebra is then the semidirect product D(H) = C(H) n F(H), the

so-called Drin’feld double. It has the structure of a quasitriangular Hopf algebra.

The Hopf structure18 means in particular the existence of a co-product, i.e. a map

∆ : D(H)→ D(H)⊗D(H) ,

which is a homomorphism of algebras (and with further properties to be discussed

in Sec. 4). In Ref. 23 the fluxes are seen as particles in (2 + 1)d and are then

first quantized: the (internal) Hilbert space H is constructed, and the elements

of the algebra D(H) act as operators on this Hilbert space. H decomposes into

irreducible representations of D(H), corresponding to the different particle sectors

of the quantum theory. The existence of a co-product allows one to understand

fusing processes between particles. The quasitriangularity implies the existence of

the R-matrix, R ∈ D(H) ⊗ D(H), responsible for all braiding processes between

particles. For further details see Ref. 23.

How is the topology of Σ taken into account in this approach? First of all, we

have seen that the physically distinct vortex configurations are in one-to-one cor-

respondence to the space of conjugacy classes of homomorphisms of π1(Σ) into H.

Moreover, it is well known that for a finite groupH the latter space is in one-to-one

correspondence with equivalence classes of principal H-bundles over Σ.39 There-

fore the only degree of freedom in this theory is the topology of these bundles.37,38

Second, a configuration for which the holonomy is trivial around some puncture

is indistinguishable, from the standpoint of the low-energy theory, to another in

which that particular puncture is absent. Therefore the low-energy theory some-

how actually allows for “topology fluctuations” of Σ as long as we stay within its

limits, and as far as “creation and annihilation” of punctures is concerned.

In order to determine the field algebra for a topological geon, we will try to follow

a method similar to the one used for vortices in the plane, respecting carefully the

differences between the two systems. We will first try to find the analogues of the

“position observables” for a geon. Now, Σ is the plane with one or more handles,

and for simplicity we shall assume throughout that there are no vortices, i.e. we

work in the zero vortex number sector of the low-energy limit of the theory given

by the Lagrangian in (3.1). This is in contrast with Ref. 25, where vortices are the

central interest. There, the vortices determine the state of a handle, whereas in

the present work all nontrivial configurations will be related solely to holonomies

around and through the handles. In other words, the geons are our main concern,

and the background field theory merely defines their states.

Let us start by taking Σ to be the plane with a handle. On all figures, a geon

will be thought of as a square hole on the plane, with the opposite sides identified.

One can show that π1(Σ) has two generators [γ1] and [γ2], shown by Fig. 4. It can

be shown that

[γ3] = [γ1][γ2][γ1]
−1[γ2]

−1 .



May 2, 2000 10:23 WSPC/139-IJMPA 0311

1640 A. P. Balachandran et al.

P
�


1 
2 
3

Fig. 4. The figure shows the loops γi (1 ≤ i ≤ 3). The homotopy classes [γ1] and [γ2] generate
the fundamental group. The class [γ3] is not independent of [γ1] and [γ2].

Actually, π1(Σ) is freely generated by [γ1] and [γ2]. Let g = W ([γ1], [γ2]) ∈ π1(Σ),

be a word in [γ1], [γ2] and their inverses. Then τ maps g to W (a, b) ∈ H where a =

τ(γ1) and b = τ(γ2). Therefore the map τ : π1(Σ)→ H is completely characterized

by the fluxes τ(γ1) = a and τ(γ2) = b. Since there is no relation between a and b,

the set T of all maps is labeled by H ×H.

Definition. Let H be a finite group and Σ the plane with one geon, i.e. a two-

dimensional manifold given by

M = R2 #T2 .

Let γ1 and γ2 denote representative loops whose classes generate π1(Σ). We define

a classical configuration τ(a,b) ∈ T of a geon as the homomorphism defined by

τ(a,b)(γ1) = a , τ(a,b)(γ2) = b . (3.9)

It is important to bear in mind that T ∼= H × H and therefore that it is a

finite discrete set. For simplicity of notation, a geon configuration will be denoted

simply by a pair (a, b) of fluxes. Note that we are not explicitly identifying those

configurations which differ by an H-transformation. This is because wave functions

need only be “covariant” under the symmetries of the problem, and only its modulus

squared and other observable quantities, like Aharonov–Bohm phases, must be

invariant. In our approach, this will happen naturally, just as in Ref. 23.

With T ∼= H ×H being the configuration space for a geon, the corresponding

algebra of “position observables” is F(T ). Instead of working with the abstract

algebra, we specify a representation. Let V be the (finite-dimensional) complex

vector space generated by the vectors |a, b〉, a, b ∈ H. We will call the representation
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on V , to be defined below, the defining representation. The algebra F(T ) is

generated by projectors on V denoted by Q(a,b). They are defined by

Q(a,b)|c, d〉 = δa,cδb,d|c, d〉 . (3.10)

The operator Q(a,b) represents a “delta function” supported at (a, b), i.e. it gives 1

when evaluated on (a, b), and zero everywhere else. Indeed, from (3.10) one find that

Q(a,b)Q(c,d) = δa,cδb,dQ(c,d) . (3.11)

Besides the projectors Q(a,b), which play the role of position operators in ordi-

nary quantum mechanics, we have also some operators capable of changing (a, b).

They are somewhat analogous to momentum operators. For example, like in the

case of vortices, H-transformations act on the configurations. It turns out that for

a geon there are additional operators besides H-transformations. They correspond

to the action of the group Diff∞(Σ) of diffeomorphisms of Σ that keeps infinity

invariant.

We will start by first examining the H-transformations.

The group H acts on T simply by conjugating both fluxes in (a, b). This will

induce an operator δ̂g for each g ∈ H, acting on the defining representation V by

δ̂g|a, b〉 = |gag−1, gbg−1〉 . (3.12)

From (3.12) one sees that the multiplication of operators δ̂g is given by

δ̂gδ̂h = δ̂gh . (3.13)

The corresponding algebra generated by δg is the group algebra C(H). The relation

between F(H × H) and C(H) can be derived from (3.10) and (3.12). One sees

immediately that

δ̂gQ(a,b)δ̂
−1
g = Q(gag−1,gbg−1) . (3.14)

In other words, the algebra C(H) acts on F(H ×H).

Besides H-transformations, fluxes (a, b) can change under the action of the

group Diff∞(Σ). It is clear that elements belonging to the subgroup Diff∞0 (Σ),

the component connected to identity, act trivially on π1(Σ) a and hence on (a, b).

Therefore what matters is the action of the so-called mapping class group MΣ,33,34

defined as

MΣ =
Diff∞(Σ)

Diff∞0 (Σ)
. (3.15)

For the present case, Σ is the plane with a single geon and the mapping class

group is isomorphic to the central extension of the group SL(2,Z), denoted by

St(2,Z) and called the Steinberg group. This is the same as the mapping class

group of a torus minus one point.28 We denote generators of MΣ = St(2,Z) by

aFor simplicity, we take P to be at infinity. Even if we do not, the holonomies will be invariant
under the action of Diff∞0 (Σ).
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Fig. 5. Dehn twists corresponding to diffeomorphisms of the mapping class group. The annuli
enclose loops, which we have omitted in the figure. Rotations are counterclockwise by convention.

A and B. They correspond to (isotopy classes of) diffeomorphismsb called Dehn

twists. A Dehn twist is realized as follows. Take a loop in Σ. Then draw an annulus

enclosing the loop and introduce radial coordinates r ∈ [0, 1], with r = 0 and r = 1

corresponding to the boundaries of the annulus, see Fig. 5. Then rotate the points

of the annulus in such a way that the angle of rotation θ(r) is zero for r = 0 and

gradually increases, becoming 2π at r = 1. Figure 5 shows how to produce Dehn

twists, and in Fig. 6, we show how the Dehn twist B deforms the loop γ1. There is

also the Dehn twist along a loop enclosing the geon, which can be interpreted as the

2π-rotation of the geon.4,5,28 This Dehn twist will be important when we discuss

the notion of spin of a topological geon. The corresponding annulus is denoted by

C2π in Fig. 5. However, C2π is not independent of A and B. One can show that28

C2π = (AB−1A)4 . (3.16)

The group MΣ is generated by A and B, with the relation that C2π commutes with

A and B. It is useful to think of the elements of MΣ as words W (A,B) in A, B

and their inverses.

The action of A and B on [γi] ∈ π1(Σ) induces an action on (a, b) ∈ T , and

therefore induces operators Â and B̂ in the defining representation acting on V .

Let us take as an example the action of B on γ1, as given by Fig. 6. One sees that

bOne can see from (3.14) that the mapping class group consists of isotopy classes of diffeomor-
phisms. Throughout this paper we shall loosely use a representative in a class as the class itself.
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Fig. 6. Dehn twist B and its action on γ1.

[γ1] → [γ1][γ2], and therefore a → ab. On the other hand, B keeps [γ2] invariant.

One can verify that A and B induce the following operators:

Â|a, b〉 = |a, ba〉 , B̂|a, b〉 = |ab, b〉 . (3.17)

For an arbitrary word W (A,B), the corresponding operator is W (Â, B̂), i.e. the

same word but with A and B replaced by Â and B̂. For example, the Dehn twist

C2π of Fig. 5 is written as (AB−1A)4 and the corresponding operator Ĉ2π can be

immediately computed to be

Ĉ2π |a, b〉 = |c−1ac, c−1bc〉 , (3.18)

where c = aba−1b−1.

It is also possible to perform rotations of the geon by integer multiples of the

angle π
2 using Cπ

2
= AB−1A. The corresponding operator is given by

Ĉπ
2
|a, b〉 = |b−1, bab−1〉 . (3.19)

The group M generated by Â and B̂ defined by (3.17) is the one relevant for

defining the field algebra. Contrary to the mapping class group,M is a finite group.

It turns out that an infinite number of words W (Â, B̂) is equal to the identity

operator and that M can be naturally identified with MΣ divided by a certain

normal subgroup.

Let M0 be a subgroup of St(2,Z) defined as

M0 = {h ∈ St(2,Z)|ĥ |a, b〉 = |a, b〉, ∀a, b ∈ H} .

It is easy to see that M0 is a normal subgroup. In fact, given any wordW ∈ St(2,Z),

such that

W (Â, B̂)|a, b〉 = |a′, b′〉 ,
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we have the relation

W−1(Â, B̂)ĥW (Â, B̂)|a, b〉 = W−1(Â, B̂)ĥ|a′, b′〉

= W−1(Â, B̂)|a′, b′〉 = |a, b〉 .

We define the effective mapping class groupM acting on the defining representation

V as the quotient

M =
St(2,Z)

M0
.

We now show that M is finite. Let n be the order of H and ai, i = 1 · · ·n its

elements. We construct a basis for V as

B = {|ai, aj〉, i, j = 1 · · ·n} .

The group M acts as a subgroup of the permutation group of the elements in

B, thus the order ofM is at most equal to n2!.

The algebra generated by the operators Â and B̂ is the group algebra C(M).

Together with C(H) and F(H × H) it gives us the total field algebra A(1) for a

single topological geon. From the definitions (3.10), (3.12) and (3.17) one sees that

δ̂gÂ = Âδ̂g , δ̂gB̂ = B̂δ̂g ,

δ̂gQ(a,b)δ̂
−1
g = Q(gag−1,gbg−1) ,

Ĉ2πÂ = ÂĈ2π , Ĉ2πB̂ = B̂Ĉ2π ,

ÂQ(a,b)Â
−1 = Q(a,ba) , B̂Q(a,b)B̂

−1 = Q(ab,b) .

(3.20)

Therefore, both algebras C(H) and C(M) act on F(H×H). The action of a generic

word W (Â, B̂) on Q(a,b) will be denoted by

W (Â, B̂)Q(a,b)W
−1(Â, B̂) = Q(w(a),w(b)) , (3.21)

where
(
w(a), w(b)

)
is a pair of words in a and b and their inverses, representing the

action of W (A,B) on (a, b).

There are two equivalent ways of presenting A(1). One is by using the defining

representation of (3.10), (3.12) and (3.17). Another way is to define A(1) as the

algebra generated by Q(a,b), δ̂g, Â and B̂ with the relations (3.20). In any case, we

have that

A(1) = C(H ×M)n F(H ×H) . (3.22)

We shall now introduce the field algebra for two topological geons following

exactly the same ideas as for a single topological geon. We recall that for a single

geon, A(1) consists of three sub-algebras, namely the “position observables” F(T ),

the H-transformations C(H), and the “translations,” i.e. a realization M of the

mapping class group MΣ. The algebra A(2) for two geons will consist of the same

three distinct parts, with T = H ×H ×H ×H ≡ H4 and Σ replaced by a plane

with two handles.
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Fig. 7. The homotopy classes [γi] (1 ≤ i ≤ 4) relative to the loops shown in the figure generate
the fundamental group of plane with two geons.

We shall start by examining the fundamental group

π1(Σ) = π1(R
2 #T2 #T2) .

Let γi, i = 1, 2, 3, 4 be the loops shown by Fig. 7. One can show that π1(Σ) is the

free group generated by [γi]. A “configuration” τ of two topological geons is given

by a homomorphism τ : π1(Σ)→ H. Therefore τ is completely characterized by the

holonomies τ(γi) ∈ H along the loops γi. Since there are no relations among [γi]’s,

the holonomies τ(γ1), τ(γ2), τ(γ3) and τ(γ4) are four arbitrary elements of H. In

other words, the set T (2) of configurations τ can be identified with T (1) × T (1) =

(H ×H) × (H ×H), where T (1) is the configuration space for a single geon. The

corresponding algebra F(H4) is thus the direct product of the algebra of single

geons, i.e.

F(H4) ∼= F(H ×H)⊗F(H ×H) .

It is natural to work with the defining representation on V ⊗ V spanned by

vectors of the form

|a1, b1〉 ⊗ |a2, b2〉 ,

where the subscripts denote the respective geons. The “position observables” are

generated by projectors Q(a1,b1) ⊗Q(a2,b2) acting on V ⊗ V in the obvious way, i.e.

Q(a1,b1) ⊗Q(a2,b2)

∣∣a′1, b′1〉⊗ ∣∣a′2, b′2〉 = δa1,a′1
δb1,b′1δa2,a′2

δb2,b′2 |a1, b1〉 ⊗ |a2, b2〉 .
(3.23)

Therefore, the “position” operators belong to A(1) ⊗A(1).

The action of H-transformation g ∈ H on the fluxes (a1, b1, a2, b2) is by a global

conjugation. This induces the action

|a1, b1〉 ⊗ |a2, b2〉 → |ga1g
−1, gb1g

−1〉 ⊗ |ga2g
−1, gb2g

−1〉 (3.24)
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on V ⊗V . The corresponding operator is obviously identified with δ̂g⊗ δ̂g ∈ C(H)⊗
C(H), since

δ̂g ⊗ δ̂g|a1, b1〉 ⊗ |a2, b2〉 = |ga1g
−1, gb1g

−1〉 ⊗ |ga2g
−1, gb2g

−1〉 . (3.25)

Hence, H-transformation operators also belong to A(1) ⊗A(1).

We now start to consider the action of the mapping class group MΣ. For two or

more geons, MΣ is much more complicated than for a single geon.33 The mapping

class group is generated by Dehn twists of the type A and B (see Fig. 5) for each

individual geon together with diffeomorphisms involving pairs of geons.

Let Ai, Bi, i = 1, 2 be the generators of the “internal diffeos” for each individual

geon. The corresponding operators acting on V ⊗ V are clearly given by

Â1 = Â⊗ I , Â2 = I⊗ Â ,
B̂1 = B̂ ⊗ I , B̂2 = I⊗ B̂ ,

(3.26)

where I is the identity operator on V .

There are two additional classes of transformations besides the internal diffeos.

The first one, called exchange, is the analog of the elementary braiding of two

particles. The second, called handle slide, has no analog for particles, since it makes

use of the internal structure of the geon.

So far, all operators in the algebra for A(2) were of the form x ⊗ y ∈ A(1) ⊗
A(1). It turns out that this is not the case for exchanges and handle slides. They

correspond somewhat to interactions and cannot be written strictly in terms of

operators in A(1)⊗A(1). In order to describe interactions between geons, we need to

define a pair of flip automorphisms of V ⊗V . They are necessary in the construction

of the exchange and handle slide operators.

Definition. Given a two geon state

|a1, b1〉 ⊗ |a2, b2〉 ∈ V ⊗ V ,

the flip automorphisms σ and γ are defined by:

σ|a1, b1〉 ⊗ |a2, b2〉 := |a2, b2〉 ⊗ |a1, b1〉 ,

γ|a1, b1〉 ⊗ |a2, b2〉 := |a1, b2〉 ⊗ |a2, b1〉 .

Both are not given geometrically as morphisms of the mapping class group, but

unless one introduces these operators, the algebra of two geons cannot be related

directly to the algebras for a single geon. We will show that the algebra A(2) can

be obtained from the tensor product A(1) ⊗A(1) when we add σ and γ.

In the exchange process, two geons permute their positions. In our convention,

the geon on the right (left) moves counterclockwise to the position of the left (right)

(see Fig. 8). The effect of a geon exchange on the states is of the form

R|a1, b1〉 ⊗ |a2, b2〉 = |c−1
1 a2c1, c

−1
1 b2c1〉 ⊗ |a1, b1〉 , (3.27)
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1 2

Fig. 8. Geon exchange.

where c1 = a1b1a
−1
1 b−1

1 . This operator is equivalent to braiding operators for par-

ticles and also satisfy the Yang–Baxter equation,

(R⊗ I)(I⊗R)(R⊗ I) = (I⊗R)(R⊗ I)(I ⊗R) . (3.28)

One can verify that the exchange operator (3.27) may be written as the product

R = σR , (3.29)

where R ∈ A(1)⊗A(1) is the analog of the universal R matrix for a quasitriangular

Hopf algebra. In our case R is given by

R =
∑
a,b

Q(a,b) ⊗ δ̂−1
aba−1b−1 . (3.30)

The handle slide is shown in Fig. 9. In (a), the geon is viewed as a rectangular

box on the plane. In (b), we have identified two edges of the rectangle and the geon

is represented as two circles on the plane connected by dotted lines. The handle

slide is defined as the operation that performs a double counterclockwise exchange

of the 2nd and 3rd circles followed by a clockwise 2π-rotation of each one of them.

As expected, this Dehn twist acts on the generators [γi] of π1(Σ) given in Fig. 7,

and therefore on the holonomies. Under the action of the transformation indicated

0
U

2π
V

2π0 2π 0

0

2π
V

�

�

�

�

(a) (b)

Fig. 9. The handle slide is interpreted geometrically as the full monodromy of two handles
followed by a rotation of 2π of each handle. The figure shows two equivalent representations for
the handle slide: In (a), the geon is viewed as a rectangular box on the plane. In (b), we have
identified two edges of the rectangle and the geon is represented as two circles on the plane.
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(a) (b)

(c) (d)

Fig. 10. Figure (a) shows the loop γ1 defined on Fig. 7. The transformed loop γ̃1 is indicated in
(b). Figures (c) and (d) are two steps in the deformation of γ̃1.

in Fig. 9, the loops [γi] will be mapped into new loops [γ̃i]. As an example let us

show how the handle slide acts on γ1. The loop γ1 is shown in Fig. 10(a). After

the action of the diffeo, γ1 is mapped to γ̃1, indicated in Fig. 10(b). We need to

express γ̃1 in terms of the generators [γ1]. It is easy to see that γ̃1 can be deformed to

γ1αγ4, where α is the loop enclosing the second geon. The sequence of deformations

is indicated by Figs. 10(b)–10(d). As α measures the total flux a2b2a
−1
2 b−1

2 , it is

easy to see that γ̃1 will measure the flux a1(a2b2a
−1
2 ). One can repeat the same

procedure for the other loops and show that the action on the loops induces an

action on V ⊗ V given by the following handle slide operator S:

S|a1, b1〉 ⊗ |a2, b2〉 = |a1(a2b2a
−1
2 ), (a2b2a

−1
2 )−1b1(a2b2a

−1
2 )〉

⊗ |(a2b2a
−1
2 )−1b1(a2b2a

−1
2 )a2, b2〉 . (3.31)

This is a very complicated action on states, but there is a way to write S as a

product of elements of A(1)⊗A(1) with flip automorphisms in the same way as the

operator R. The result is

S = γ

(
I⊗

∑
g,h

Q(g,h)δ̂g

)
(I⊗ B)γ

×
(
I⊗ Cπ

2

)
γ

(
I⊗

∑
g,h

Q(h,g)δ̂g−1

)
γ

×
(
I⊗ Cπ

2

)
γ(B−1 ⊗ I)γ(I⊗ C−π) . (3.32)
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This completes the description of A(2). The algebra for two geons is generated

by the elements of A(1) ⊗A(1), R and S.

These constructions can be easily generalized to write down the algebra A(n)

for n geons. It is clear that

A(1) ⊗ · · · ⊗ A(1)︸ ︷︷ ︸
n

⊂ A(n) .

The complete algebra A(n) can be obtained by adding the operators Rij and Sij of

exchange and handle slide between the ith and the jth geons. They can be easily

constructed by using operators analogous to (3.29) and (3.32), acting on the ith

and jth entries of V ⊗ · · · ⊗ V .

It is clear that the elements Ai, Bi, Rij and Sij of A(n) generate, under multi-

plication, a groupMn that is homomorphic to the mapping class group MΣ for n

geons. Besides the relations proper to MΣ, however, we will have extra relations so

thatMn becomes effectively finite.

4. The Geon as a Single Particle

We have seen up to now that a geon is a topological object with internal struc-

ture. In quantum theory, it can be described by the algebra A(1). However, for a

large distance observation, we may disregard the operators that probe its internal

structure and describe it by a subalgebra A(1)
L . In this approximation, a topological

geon seems to be no different from a particle on the plane, or a vortex in (2 + 1)d.

We may guess that the large distance field algebra A(1)
L is an algebra equivalent

to D(H), the quantum double introduced in Sec. 3. Actually this is not exactly

true. We will see that A(1)
L for a single geon has extra elements besides the ones

corresponding to D(H).

Long distance observables should not see the internal structure of the geon.

For instance, in performing Aharonov–Bohm-type experiments in this long-distance

scale, one should expect to see only the effects of the total flux, or the holonomy of

the large loop γ3. Therefore, the only detectable projector in this scale is the one

with support at the total flux c of a single geon. It is naturally defined as

Q(1)
c :=

∑
a,b

δaba−1b−1,cQ(a,b) . (4.1)

The index (1) in Q
(1)
c is to remind us that this large distance projector is an element

of A(1), the algebra of a single geon.

The algebra of operators Q
(1)
c can easily be obtained from the algebra (3.11),

resulting in

Q(1)
c1
Q(1)
c2

= δc1,c2Q
(1)
c1
. (4.2)

Hence, the algebra generated by Q
(1)
c is isomorphic to F(H).
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The H-transformation operators δ̂g ∈ C(H) act on Q
(1)
c ∈ F(H). From (3.20)

and (4.1), one can verify that

δ̂gQ
(1)
c δ̂−1

g = Q
(1)
gcg−1 . (4.3)

Therefore δ̂g has to be regarded as a large distance operation. To make the notation

uniform, we define

δ̂(1)
g := δ̂g . (4.4)

The operators Q
(1)
c should commute with local operators in A(1), namely the

diffeos Â and B̂. This must be true since the action of the mapping class group

cannot change [γ3]. That is because one can make γ3 very large, such that the Dehn

twists A and B do not act on γ3. See Figs. 4 and 5. In fact, one can verify that

ÂQ(1)
c Â−1 = B̂Q(1)

c B̂−1 = Q(1)
c . (4.5)

Let us call D(1) ⊂ A(1) the algebra generated by Q
(1)
c and δ̂

(1)
g . It is clear that

D(1) is isomorphic to the Drin’feld quantum double D(H) ∼= F(H) ⊗ C(H). As

a consequence, D(1) has the structure of a quasitriangular Hopf algebra.18 In this

paper we will be interested mostly in two properties of a quasitriangular Hopf

algebra, namely the existence of a co-product and the universal R matrix.

A co-product on D(1) is a linear map

∆ : D(1) → D(1) ⊗D(1) ,

which is co-associative,

(∆⊗ Id) ◦∆ = (Id ⊗∆) ◦∆ ,

and a morphism of algebras,

∆(a · b) = ∆(a) ·∆(b) .

For the quantum double, the co-product has the expressions

∆
(
Q(1)
c

)
=
∑
g

Q(1)
g ⊗Q

(1)
g−1c

(4.6)

and

∆
(
δ̂(1)
g

)
= δ̂(1)

g ⊗ δ̂(1)
g . (4.7)

The quasitriangularity of the quantum double implies the existence of an R-

matrix, which is responsible for the exchange processes. The R matrix for the

quantum double can be written as

R(1) = σ
∑
g∈H

Q(1)
g ⊗ δ̂

(1)
g−1 . (4.8)

We recall that the full algebra A(1) also has an R matrix given by (3.29). One

should ask whether the R matrix (4.8) for the subalgebra D(1) ⊂ A(1) is compatible

with (3.29). It is a simple matter to show that they are actually identical.
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We may think of the R matrix for A(1) as a trivial extension of the R matrix of

D(1). An important question is whether it is also possible to extend the co-product

to the entire algebra A(1). We have reasons to believe that ∆ cannot be extended.

One reason is that the co-product is related to fusion of particles at the quantum

level, which is physically reasonable. However, it is harder to imagine that two

handles put together could be seen as a single handle.

Another large distance element in A
(1)
L is the operator C(1) responsible for the

Dehn twist on a cycle that encloses the entire geon. In other words, C(1) is the

2π-rotation of the geon:

C(1) ≡ C2π . (4.9)

Note that C(1) commutes with all elements of D(1). Since CN2π = I for some N , it

generates a group algebra isomorphic to C(ZN ).

Summarizing, the long distance algebra A(1)
L is isomorphic to D(H) ⊗ C(ZN ).

In other words, on a large distance scale, a geon is equivalent to a particle with a

frame.

Consider next the two-geon configuration and its corresponding algebra A(2).

The associated long distance algebra can be visualized as follows. Let the two geons

shrink to localized objects and at the same time approach each other. At the end

a pointlike object will remain and we should look for the operators that still make

sense in the limit. It is clear that such operators will be (a) the total flux projector

Q
(2)
c of the two geons; (b) the H-transformations and (c) the Dehn twist around a

cycle enclosing both geons.

The projection operator for the total flux of the system is given by

Q(2)
c :=

∑
a,b,a′,b′

δaba−1b−1a′b′a′−1b′−1,cQ(a,b) ⊗Q(a′,b′) . (4.10)

The index (2) indicates that Q
(2)
c is an element ofA(2). One can write this expression

in a more transparent way as follows:

Q(2)
c =

∑
g

Q(1)
g ⊗Q

(1)
g−1c

. (4.11)

Similarly, the H-transformation is given by

δ̂(2)
g := δ̂(1)

g ⊗ δ̂(1)
g . (4.12)

If we compare the last two equations with the definition (4.6)–(4.7), we see that

Q(2)
c = ∆

(
Q(1)
c

)
, (4.13)

δ̂(2)
g = ∆

(
δ̂(1)
g

)
. (4.14)

Let us denote by D(2) the algebra generated by Q
(2)
c and δ̂

(2)
g . From (4.13) and

(4.14) it follows that D(2) is homomorphic to D(1). Actually, it is a simple matter

to verify that they are isomorphic.
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As in the previous case, the long distance algebra A(2)
L has an extra generator

given by the Dehn twist C(2) on a cycle enclosing both geons, with

C(2) = R2 . (4.15)

As one would expect, the algebra A(2)
L is isomorphic to D(H)⊗C(ZN ) and therefore

also describes a particle with a frame.

It is clear now what is the long distance algebra A(n)
L for n geons. It is generated

by the Dehn twist C(n) on a cycle enclosing the n geons, together with elements

Q
(n)
c , δ̂

(n)
g ∈ A(1) ⊗ · · · ⊗ A(1) given by the iterative application of the co-product.

For example, for n = 3,

Q(3)
c = (Id ⊗∆)⊗∆

(
Q(1)
c

)
, (4.16)

δ̂(3)
g = (Id ⊗∆)⊗∆

(
δ̂(1)
g

)
. (4.17)

Notice that because of the co-associativity property, we would have written (∆ ⊗
Id)⊗∆ instead of (Id ⊗∆)⊗∆ in the last two formulae.

5. Quantization

The algebra A(1) describes the topological degrees of freedom for a single geon on

the plane. To quantize the system we need to find an irreducible representation of

A(1) on a Hilbert space H. However, this Hilbert space will branch into irreducible

representations of the field algebra:

H =
⊕
r

Hr , (5.1)

where Hr denotes a particular irreducible representation describing a certain geon

type. The algebra is finite-dimensional, and therefore there will be a finite number

of irreducible representations of A(1). Furthermore, the Hilbert spaces H are all

finite-dimensional. Each representation gives us a possible one-geon sector of the

theory.

In the case of quantum doubles, the irreducible representations are fully classi-

fied. See for instance Ref. 35. For the case of geons, the algebra is more complicated

because of the existence of internal structure. Nevertheless, the representations of

A(1) are quite similar to the ones of the quantum double of a finite group. This is

not totally surprising, since in a certain limit, as discussed in the previous section,

we recover the quantum double D(1) ∼= D(H). Actually, we can define a class of

algebras A that can have its representations classified and that are generic enough

to contain the quantum double and the algebra A(1) as particular cases. In the

spirit of Ref. 35, one can then get all representations of A.

Definition. Let X be a finite set and G a finite group acting on X. In other words,

there is a map αg : X → X for each g ∈ G. As usual, we denote by F(X) the algebra
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of functions on X and by C(G) the group algebra of G. We define the algebra A as

the vector space

A := F(X)⊗ C(G)

with basis elements denoted by (Qx, g), Qx ∈ F(X) and g ∈ C(G), and the multi-

plication

(Qx, g) · (Qy, h) := (QxQαg(y), gh) . (5.2)

Here, Qx is the characteristic function supported at x ∈ X. Let x0 be an element

of X. We denote by Kx0 ⊂ G the stability subgroup with respect to x0, i.e.

Kx0 = {g ∈ G |αg(x0) = x0} . (5.3)

The stability subgroup Kx0 divides the group G into equivalence classes of left

cosets. LetN be the number of equivalence classes and let us choose a representative

ξi ∈ G, i = 1 · · ·N for each class, with the convention that ξ1 = e. We can write

the following partition of G into left cosets:

G = ξ1Kx0 ∪ ξ2Kx0 ∪ · · · ∪ ξNKx0 . (5.4)

Let us point out that C(G) seen as a vector space carries a left representation of

G, the action of G being by left product. All irreducible representations ofG can be

obtained by reducing this representation. In particular, any vector space carrying

an irreducible representation (IRR) of Kx0 can be viewed as subspace of C(G).

Note that F(X) plays a dual role: it is an algebra, but it is itself a vector

space which is acted upon by the group G, according to gQx := Qαg(x). This can

be extended to an action of C(G) in the obvious way. Also, it acts upon itself by

left (pointwise) product. In what follows we shall denote the elements Qx by |x〉
whenever we want to view it as a vector belonging to the representation of C(G)

on F(X) just defined. In this “passive” role it is acted upon, instead of acting on

some representation of the algebra of functions.

We can now state the following result.

Theorem. Let |j〉ρ, j = 1 · · ·n be a basis of a subspace Vρ of C(G) carrying an IRR

ρ of Kx0. Then, for (a fixed) x0 ∈ X, elements ξi ∈ G, i = 1 · · ·N and |j〉ρ ∈ C(G),

j = 1 · · ·n as stated above, the vectors

ξi|x0〉 ⊗ |j〉ρ := |αξi(x0)〉 ⊗ |j〉ρ ,

form a basis for an IRR of the algebra A, given by

(Qx, g)|αξi(x0)〉 ⊗ |j〉ρ := δx,αξ
i′ (x0)|αξi′ (x0)〉 ⊗ Γ(ρ)(β)kj |k〉ρ ,

where ξi′ and β are uniquely determined by the equation

gξi = ξi′β ,

and Γ(ρ) is the matrix for the representation ρ.
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This result follows from a standard construction in induced representation

theory (cf. discussion of the Poincaré group in Ref. 36).

The quantum double D(H) and the algebra A(1) are particular cases of A.

The quantum double is obtained by taking X = H, G = H, with the action

αg(h) = ghg−1. As for the algebra of a single geon, one takes

X = H ×H
and for the group G the product H ×M. The actions of δ̂g ∈ H and W ∈ M
commute and are given by

αg(a, b) = (gag−1, gbg−1) , g ∈ H
and

αW (a, b) =
(
w(a), w(b)

)
, W ∈ M ,

where we have used the notation of (3.21). The IRR’s for the algebra (3.22) can be

constructed given an element (a, b) ∈ H×H. The stability subgroupK(a,b) ⊂ H×H
is defined by

K(a,b) =
{
(g,W ) ∈ H ×M|αgαW (a, b) :=

(
gw(a)g−1, gw(b)g−1

)
= (a, b)

}
. (5.5)

Then, after choosing representatives ξ1, . . . , ξN for the cosets, the partition ofH×M
can be written as

H ×M = ξ1K(a,b) ∪ ξ2K(a,b) ∪ · · · ∪ ξNK(a,b) . (5.6)

Let |1〉, . . . , |n〉 ∈ C(H ×M) be a basis of an IRR of K(a,b). Then, according to the

theorem, the vectors

|αξi(a, b)〉 ⊗ |j〉ρ , (5.7)

with i = 1 · · ·N , j = 1 · · ·n, form a basis of an IRR of the algebra A(1).

Let us express the representations of A(1) in a more compact notation. The

action of H ×M on X = H × H divides X into orbits. We denote by [a, b] the

orbit containing the element (a, b) ∈ H×H. We will collectively call ρ the quantum

numbers labeling the IRR’s of K(a,b). One can see from (5.7) that an IRR r is

characterized by a pair r = ([a, b], ρ). A basis for an IRR r of A(1) will therefore be

written as vectors |i, j〉(a,b)r , i = 1, . . . , N ; j = 1, . . . , n defined by

|i, j〉(a,b)r := ξi|a, b〉 ⊗ |j〉ρ , (5.8)

where |a, b〉 is a state in the defining representation, ξi are the same as in (5.6) and

|j〉ρ are base elements in the irreducible representations ρ of K(a,b). Of course, the

set of vectors thus defined depend on the pair (a, b) we choose. We fix an a and a

b, and henceforth omit the superscript.

The action of Q(a′,b′) is given by

Q(a′,b′)|i, j〉r = Q(a′,b′)ξi|a, b〉 ⊗ |j〉ρ
= Q(a′,b′)|ai, bi〉 ⊗ |j〉ρ
= δa′,aiδb′,bi |i, j〉r . (5.9)
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Let δ̂gW be a generic element of H ×M. The equation

δ̂gWξi = ξi′β (5.10)

defines uniquely a new class ξi′ , together with an element of the stability group

β ∈ K(a,b). The action of δ̂gW ∈ A(1) on |i, j〉r is determined by (5.10) and it reads

δ̂gW |i, j〉r = ξi′ |a, b〉 ⊗ β|j〉ρ =
∑
k

Γ(ρ)(β)kj |i′, k〉r , (5.11)

where Γ(ρ) is the matrix representation of K(a,b).

Each IRR r = ([a, b], ρ) describes a distinct quantum geon. The corresponding

vector spaces Hr generated by states |i, j〉r, are all finite-dimensional. Therefore we

can easily make it into a Hilbert space by introducing the scalar product

〈i′, j′|i, j〉r = δii′δjj′ . (5.12)

Since the algebras A(1) are not the same for different choices of the discrete

group H, we cannot say in general what is the spectrum of a geon. First, we need

to fix a group H and then compute the spectrum for the corresponding A(1).

Consider now two geons described by representations r1 and r2. The associated

Hilbert space of states is simply

H(12) := Hr1 ⊗Hr2 . (5.13)

As explained in Sec. 3, the field algebra consists of A(1)⊗A(1) together with R and

S. The elements of A(1) ⊗A(1) act naturally on (5.13). It remains to be said what

is the action of R and S on states in Hr1 ⊗Hr2 .
The action R is completely determined by the formula (3.29):

R = σ
∑
a,b

Q(a,b) ⊗ δ̂−1
aba−1b−1 .

In other words

R|i, j〉r1 ⊗ |k, l〉r2 =
∑
a,b

δ̂−1
aba−1b−1 |k, l〉r2 ⊗Q(a,b)|i, j〉r1 . (5.14)

The generalization for n geons is straightforward.

We may think of R and S as scattering matrices for a pair of geons. The R-

matrix represents an “elastic” interaction in the sense that two incoming geons

of quantum numbers r1 and r2 are scattered into two objects carrying the same

quantum numbers r1 and r2. The handle slide S on the contrary is a nontrivial

scattering, each one of the two outgoing geons being a superposition of many geons

in the spectrum.
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6. Quantum Topology Change

In this paper we have considered (2 + 1)d manifolds such that any spatial slice

consists of a plane with a certain number n of handles. In other words, for each

fixed time, the configuration consists of n geons. If the number of geons is not fixed,

we say that topology can change. Creation of baby universes is also a topology-

changing process, but we will not consider it here for reasons that should become

clear in what follows.

Our system is described by a certain field algebra A(n), and its quantization is

given by a representation of A(n). A change in the number of geons means neces-

sarily a change in the field algebra. Let us see how that can be accomplished. Let us

suppose that a geon, represented by a square with opposite sides identified, has a

typical size l that can vary with time. Intuitively, a geon can disappear if l becomes

too small. In this case, a geon will resemble a pointlike object. Let us consider the

limiting case l → 0. It is clear that the holonomies associated with loops γ1 and

γ2 of Fig. 4 do not make sense in this limit. The only flux observable available in

this limit is the holonomy of γ3, responsible for measuring the total flux. The alge-

bra describing the limiting situation is the one-particle approximation A(1)
L ⊂ A(1)

introduced in Sec. 4. Actually, we do not need to consider the limit l→ 0, since our

description is supposed to be an effective theory that is not valid beyond a certain

scale of energy (distance). We may say that after the geon has become very small,

the operators associated with individual fluxes no longer belong to the low energy

(large distance) description.

The structure of the field algebra tells us that geon can turn into a pointlike

object, but it cannot disappear. However, this is only a semiclassical description.

The quantum theory is described by states belonging to an IRR r of A(1). From

the inclusion

i(1) : A(1)
L ↪→ A(1) , (6.1)

it follows that r is also a (in general reducible) representation of A(1)
L . Let Hr be

the vector space carrying the representation r. In general, Hr is decomposable as

a direct sum

Hr =
⊕
σ

Nr
σVσ , Nr

σ ∈ N , (6.2)

where Vσ carries the IRR σ of A(1)
L . The long distance observer does not see oper-

ators mixing different IRR’s.

Therefore, a long distance observer interprets (6.2) as saying that a geon carrying

a representation r can decay into different particles carrying representations σ. It

could happen that the trivial representation σ = 0 of A(1)
L occurs in (6.2). In this

case, for an observer working only with A(1)
L , there will be a nonzero probability of

seeing the vacuum.

As an example, let us next characterize the vacuum representation and discuss

vacuum decay.
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The IRR’s of A(1)
L are classified in a similar way as for A(1). The trivial IRR on

V0 in the decomposition (6.2) is generated by any state |VAC〉 ∈ Hr satisfying

Q(1)
c |VAC〉 = δe,c|VAC〉 , (6.3)

δ̂(1)
g |VAC〉 = |VAC〉 , (6.4)

C(1)|VAC〉 = |VAC〉 . (6.5)

We will call such state vacuum. It is not difficult to show that a representation

r = ([a, b], ρ) contains states satisfying (6.3) if and only if aba−1b−1 is the identity.

Furthermore, under the condition

aba−1b−1 = e ,

all states of Hr, r = ([a, b], ρ), fulfill Eq. (6.3). We are thus left with the conditions

(6.4) and (6.5) for defining the vacuum state. They simply mean that |VAC〉 is an

identity representation of the group H×ZN , where ZN is generated by C(1) = Ĉ2π .

Note that vacuum decay occurs naturally, for example, in all IRR’s of A(1) of

the form r = ([a, b], ε), where a and b are in the center of H and ε is the trivial

representation of the stability subgroup of (a, b), which in this case is the whole of

H×M. The vectors in this representation clearly satisfy all conditions and therefore

will decay into vacuum states.

The vector space Hr may contain more than one copy of the identity represen-

tation of H × ZN . We will denote the set of corresponding orthonormal vectors by

|VAC; l〉 , l = 1, 2, . . . , Nr
0 .

Finding all |VAC; l〉 in a given decomposition of each Hr is a group theoretical

problem that can be solved for specific choices of the discrete group H. We shall

not attempt this here.

The probability P (ψ) of a normalized state |ψ〉 ∈ Hr to decay into the vacuum

is then given by

P (ψ) =


∑
l

|〈VAC; l|ψ〉|2 6= 0 if Nr
0 6= 0 ,

= 0 if Nr
0 = 0 .

(6.6)

If Nr
0 = 0, a single geon described by r cannot decay into the vacuum. However,

two geons colored by r and r′ may annihilate each other. The two geons can shrink

to localized objects and at the same time approach each other. The process can

also be interpreted as a change in the scale of observations to long distances. At

the end a pointlike object will remain and should be described by the algebra A(2)
L

introduced in Sec. 4. From the inclusion

i(2) : A(2)
L ↪→ A(2) (6.7)
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follows that the space of states Hr⊗Hr′ of the two geons is a (reducible) represen-

tation of A(2)
L . Let σ denote as before the IRR’s of A(2)

L , with corresponding vector

spaces Vσ. Then

Hr ⊗Hr′ =
⊕
σ

N (r,r′)
σ Vσ , N (r,r′)

σ ∈ N . (6.8)

Therefore, the operators of A(2)
L can see the vacuum if N

(r,r′)
0 is not zero. The

vacuum representation and the vacuum probability decay are given by formulae

analogous to (6.3)–(6.6).

It is clear now how to describe the decay into the vacuum of an arbitrary number

of geons. Consider n geons described by representations r1, . . . , rn. The space of

states Hr1 ⊗ · · · ⊗Hr2 is a representation of the long distance algebra A(n)
L ⊂ A(n)

described in Sec. 4. The system may decay into the vacuum if this representation

contains the trivial representation of A(n)
L .

7. Concluding Remarks

In this work we have developed an algebraic model for topological geons which

describes topology change as a purely quantum phenomenon rather than the usual

classical sense of cobordisms between two nonhomeomorphic spatial manifolds Σ

and Σ′. Instead, our formalism revealed what an observer, probing the topology of

space by using only quantum operators and quantum states, would be able to see.

The key point was that in resorting to a field theory to infer the underlying

spatial topology, one could only take into account those operators which were com-

patible with the scale of observations, since no other operator would have sensible

physical meaning in the theory. The passage from a larger scale of observations to

a smaller one was represented, on a more technical level, by selecting a subalgebra

of the original algebra describing the system in the quantum theory. The quantum

states of the system, which in the case of geons give a direct information on the

spatial topology, could now decay into the vacuum, leading the would-be observer

to conclude that a topology change has occurred.

There is another, perhaps more intuitive view of the sort of topology change we

have envisaged in this paper. As pointed out in Sec. 3 for the case of vortices, those

classical configurations for which holonomies are trivial around some “topological

blob,” be it a vortex or a geon, are indistinguishable from those in which this “blob”

is absent, or “vacuum” configurations. If we view quantum states as wave functions,

it is clear that their role is to assign a probability to each classical configuration.

A quantum transition to states which are very sharply peaked, or localized at the

aforementioned “vacuum” configurations will be interpreted by an observer as a

quantum topology change. Such states correspond to the vacuum states of Sec. 6.

We have restricted ourselves to a simple theory, where complications arising

from local degrees of freedom were absent (the theory we considered is topological

in the limit of very low energies), and we could concentrate on the topological

aspects more unobtrusively.
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Of independent value is the algebra describing the topological geons. The finite

group H can be generalized to a Lie group G. Of special interest is the case G =

SO(2, 1), which describes geons in the presence of gravity. A suitable generalization

of our formalism promptly discloses a whole spectrum of geon types in quantum

gravity, and many interesting properties of these entities can be explored, as for

instance spin-statistics connection. Although this issue has been extensively studied

in the literature, our formalism may shed new light on some points. This subject

will be investigated in a forthcoming paper.3
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