
An Algorithm to Reduce the Communication

Traffic for Multi-Word Searches in a Distributed

Hash Table

Yuichi Sei1, Kazutaka Matsuzaki2, and Shinichi Honiden3

1 The University of Tokyo Information Science and Technology Computer Science
Department, Tokyo, Japan sei@nii.ac.jp

2 The University of Tokyo Information Science and Technology Computer Science
Department, Tokyo, Japan matsuzaki@nii.ac.jp

3 National Institute of Informatics, Tokyo, Japan honiden@nii.ac.jp

Abstract. In distributed hash tables, much communication traffic
comes from multi-word searches. The aim of this work is to reduce
the amount of traffic by using a bloom filter, which is a space-efficient
probabilistic data structure used to test whether or not an element is a
member of a set. However, bloom filters have a limited role if several sets
have different numbers of elements. In the proposed method, extra data
storage is generated when contents’ keys are registered in a distributed
hash table system. Accordingly, we propose a “divided bloom filter” to
solve the problem of a normal bloom filter. Using the divided bloom
filter, we aim to reduce both the amount of communication traffic and
the amount of data storage.

1 Introduction

Peer-to-peer systems are distributed networks that can share contents or ser-
vices without the need for a central server. The first peer-to-peer systems, such
as Napster [5] and Gnutella [1], lacked scalability. Distributed hash table (DHT)
systems such as Chord [19], CAN [15], and Pastry [17] aim to overcome this
challenge.

The DHT provides storage and retrieval by using a hash function. When
a node participates in the DHT system, it is given a range of hash values for
which it is responsible. Then the node finds the hash value of the key1 of the
content it has. It then sends [h(key), the content ID, its address] to any node
participating in the DHT. The message is forwarded from node to node until it
gets to the node responsible for h(key). Once this has been done, the contents
can be found by any user; the user needs only to again hash a key to h(key)
and ask any node to find the data corresponding with h(key).

In full-text searching, each node stores the posting list for the word(s) it is
responsible for. A query involving multiple words requires that the postings for

1 We call the hash value of x “h(x)”.

116 Y. Sei, K. Matsuzaki, and S. Honiden

one or more of the words be sent over the network. For simplicity, this discussion
will assume a two-word query. Sending the smaller of the two postings to the
node holding the larger posting list is cheaper; the latter node then performs
the intersection and ranking and returns the few highest-ranking document
identifiers.

According to [13], analysis of 81,000 queries made to a search engine for
mit.edu [4] shows that the average query would move 300,000 bytes of postings
across the network. Of the queries analyzed, 40% involved just one word, 35%
two, and 25% three or more. Google indexes more than 3 billion Web documents
[2], and mit.edu has 1.7 million Web pages; scaling to the size of the Web (3
billion pages) suggests that the average query might require 530 MB. If the
Internet bandwidth of users is 1 Gbps, and users want to get a reply to their
query within 0.5 seconds, for example, the amount of traffic must be less than
0.5 Gb (12.1% of 530 MB).

The normal process of searching for multi-word text in a DHT system is
shown schematically in Figure 1 and Table 1-SA. We call this method simple
algorithm (SA). The example in the figure and table represents the case of
searching for two words, “W1” and “W2”. Usually, the transmission from a
node to a destination node needs other intermediary nodes; however, in this
paper, we omit the intermediary nodes.

In the case of SA, a huge amount of traffic occurs when the node responsible
for h(W1) transmits content IDs to the node responsible for h(W2). To reduce
this traffic, in the related works we will introduce in Section 2, two main types
of measures are taken: using a device for (1) registering contents’ keys, or (2)
transmitting content IDs. We suggest using a divided bloom filter (DBF), as
well as using both devices (1) and (2). First, as regards measure (1), we reduce
the amount of traffic in searching for multi-word contents by using a bloom
filter ([8], [9]) when a node registers its contents’ keys. In addition, as regards
measure (2), we reduce the amount of traffic by transmitting the DBF of content
IDs in place of the content IDs themselves.

2 Related Work

The bloom filter is used in this paper and in related works in an aim to reduce
the amount of traffic in searching for multi-word text in DHT systems. We
describe this filter below.

2.1 Bloom filter

A bloom filter is a space-efficient probabilistic data structure used to test
whether or not an element is a member of a set. A basic description of a bloom
filter and its problem are given in this subsection.

An algorithm to reduce the commmunication traffic in a DHT 117

User

1. I want contents

which contain W1” and “W2”.

3. h(W1), h(W2), user address

4. [All content ids

which include “W1”],

h(W2), user address

6. [All content ids

which include

both “W1” and “W2”.]

2. Calculation of

h(W1), h(W2)

5. Extraction of the

intersection of

the received ids

and the saved ids.

Node

responsible for h(W1)

Node

responsible for h(W2)

Fig. 1. The process of simple algorithm: normal searching for multi-word text (here,
a user want contents which contain the two words “W1” and “W2”) on a DHT

Basic description of Bloom Filter Imagine there are set A and set B. To
get A ∩ B in a simple manner, all the elements of set A are transmitted to the
side of set B, and the elements existing in both set A and set B are extracted.
At this time, the size of the traffic is the sum of the size of each element in
set A. In the method using the bloom filter, set A itself is not transmitted; the
bloom filter created by set A is transmitted. The size of the bloom filter is less
than the whole size of set A, so the amount of traffic is reduced. The side of
set B that received the bloom filter can create sB satisfying sB ⊇ A ∩ B and
sB ⊆ B.

If the test to check whether an element is a member of A∩B or not to sB is
executed, some false positives (an element that is not a member of A∩B being
returned) occur, but false negatives (an element that is a member of A ∩ B
being not returned) cannot occur. The false positive rate declines exponentially
as the size of bloom filter is increased. Set sB created by the side of set B is
transmitted to the side of set A, and A ∩ B is gained.

The execution procedure for the bloom filter is as follows. The idea is to
allocate a vector v of m bits, initially all set to 0, and then choose k independent
hash functions, h1, h2, ..., hk, each with range 1, ..., m. For each element a ∈ A,
the bits at positions h1(a), h2(a), ..., hk(a) in v are set to 1. (A particular bit
might be set to 1 multiple times.) Given a query for b, we check the bits at
positions h1(b), h2(b), ..., hk(b). If any one of them is 0, certainly b is not in set
A. Otherwise, we conjecture that b is in the set, although there is a certain
probability that this is incorrect. This is called a “false positive”. Parameters k
and m should be chosen such that the probability of a false positive (and hence
a false hit) is acceptable.

118 Y. Sei, K. Matsuzaki, and S. Honiden

Extracted IDs
[Finished]

Transmissio
n from
N(W1) to UN

Extraction of the
intersection of
the received ids
and the saved ids

Execution of
N(W1)

The rest is same as
TfBFA

Extracted IDsTransmissio
n from
N(W2) to
N(W1)

Extracted IDs
[Finished]

Transmissio
n from
N(W2) to UN

Extraction of IDs that
have possibilities of
being the constituent
element of the DBF
N(W2) received, from
the IDs registered
with h(W2)

Extraction of IDs that
have possibilities of
being the constituent
element of the fBF
N(W2) received, from
the IDs registered
with h(W2)

Extraction of the
intersection of
the received ids
and the saved ids

Execution of
N(W2)

h(W2), the DBFThe rest is same as
SA

h(W2), the fBFh(W2), saved IDs,
UN address

Transmissio
n from
N(W1) to
N(W2)

Extraction of IDs that
have possibilities of
containing W2 by
using the saved DBFs,
and creation of a DBF
from the extracted
IDs

Extraction of IDs
that have
possibilities of
containing W2 by
using the saved
fBFs

Creation of a fBF
from the saved IDs

Execution of
N(W1)

Same as SASame as SASame as SAh(W1), h(W2),
UN address

Transmissio
n from UN to
N(W1)

Same as SASame as SASame as SACalculation of the
DHT hash values
h(W1) and h(W2)

Execution of
UN

Tuple of [h(Wi),
content ID, node
address, DBF]

Tuple of [h(Wi),
content ID, node
address, fBF]

Same as SATuple of [h(Wi),
content ID, node
address]

The contents
data N(Wi)
contains

Saving and
transmittion divided
bloom filter algorithm
(STDBFA)

Saving fixed-size
bloom filter
algorithm
(SfBFA)

Transmission fixed-
size bloom filter
algorithm
(TfBFA)

Simple algorithm
(SA)

Extracted IDs
[Finished]

Transmissio
n from
N(W1) to UN

Extraction of the
intersection of
the received ids
and the saved ids

Execution of
N(W1)

The rest is same as
TfBFA

Extracted IDsTransmissio
n from
N(W2) to
N(W1)

Extracted IDs
[Finished]

Transmissio
n from
N(W2) to UN

Extraction of IDs that
have possibilities of
being the constituent
element of the DBF
N(W2) received, from
the IDs registered
with h(W2)

Extraction of IDs that
have possibilities of
being the constituent
element of the fBF
N(W2) received, from
the IDs registered
with h(W2)

Extraction of the
intersection of
the received ids
and the saved ids

Execution of
N(W2)

h(W2), the DBFThe rest is same as
SA

h(W2), the fBFh(W2), saved IDs,
UN address

Transmissio
n from
N(W1) to
N(W2)

Extraction of IDs that
have possibilities of
containing W2 by
using the saved DBFs,
and creation of a DBF
from the extracted
IDs

Extraction of IDs
that have
possibilities of
containing W2 by
using the saved
fBFs

Creation of a fBF
from the saved IDs

Execution of
N(W1)

Same as SASame as SASame as SAh(W1), h(W2),
UN address

Transmissio
n from UN to
N(W1)

Same as SASame as SASame as SACalculation of the
DHT hash values
h(W1) and h(W2)

Execution of
UN

Tuple of [h(Wi),
content ID, node
address, DBF]

Tuple of [h(Wi),
content ID, node
address, fBF]

Same as SATuple of [h(Wi),
content ID, node
address]

The contents
data N(Wi)
contains

Saving and
transmittion divided
bloom filter algorithm
(STDBFA)

Saving fixed-size
bloom filter
algorithm
(SfBFA)

Transmission fixed-
size bloom filter
algorithm
(TfBFA)

Simple algorithm
(SA)

UN : user node N(Wi) : a node responsible for h(Wi)

Table 1. The sequence of searching for multi-word text (here, a user want contents
which contain the two words “W1” and “W2”)

The false positive rate (FPR) is a function of k, m, and n, expressed as
follows [9].

An algorithm to reduce the commmunication traffic in a DHT 119

FPR = (1 − (1 − 1/m)kn)k (1)

≈ (1 − e−kn/m)k. (2)

When k = ln 2 × m/n, Equation (2) has a minimum value. At that time, FPR
is (1/2)k. If the target FPR is set to FPRtarget, k = blog

1/2
FPRtargetc . Thus,

m = bblog
1/2

FPRtargetc × n/ ln 2c. (3)

The salient feature of bloom filters is that there is a clear tradeoff between m
and the FPR.

Problem with the Bloom Filter If n (the number of elements of a set) and
FPRtarget are given, the filter bit size m can be minimized by setting parameter
k to optimum value. This m value should be shared at the system level. This is
because if m is different for different filters, the hash functions differ for checking
whether or not a given element is a member of the constituent element of the
filter. It is thus necessary to re-calculate the hash value of each element per
query. We call the bloom filters for which the sizes are the same “fixed-size
bloom filters (fBFs)”, and we call the bloom filters for which the sizes are
different “variable-size bloom filters (vBFs)”. We should use fixed-size BFs in
order to avoid to calculate many hash values.

However, if the numbers of sets are different, it is a problem that the filter
bit size of fBFs is bigger than that of vBFs on average [18]. This is because
the FPR increases exponentially as the number of elements of the set increases
under the condition that the filter bit size does not change.

In summary, if we use fixed-size BFs, FPR is higher for the same size of
variable-size BF on average. If we use variable-size BFs, calculating hash values
takes much time. This comparison is further described in 3.2.

2.2 Reducing the amount of traffic in searching for multi-word in
DHT

Several studies have been done to reduce the communication traffic in searching
for multi-word text in DHT. Two main developments have come from this
research. The first development is a device for registering content keys; the
second is a device for transmitting content IDs.

In the first approach, in [11], the set of keywords included in the content
was also regarded as a DHT key. The authors created combinations with three
words or less, and registered the combinations as well as each word in the DHT.
However, the number of combinations increases exponentially as the number of
words increases.

In [10], the target for search is a Resource Description Framework [7] (RDF).
A system that saves “RDF triples” dispersed in DHT was developed. In this sys-
tem, the RDF triple itself as well as each element of the RDF triple is registered.
Because each RDF triple has only three elements, this method prevented much

120 Y. Sei, K. Matsuzaki, and S. Honiden

extra data storage. However, the method cannot apply to full text searching
because the contents have many elements and the extra amount of data storage
becomes massive2.

In [20], a summary of content is registered as DHT keys. Because doing so
reduces the number of keys, the amount of traffic in searching for multi-word
text was reduced. However, the amount of information was also reduced by
summing up content, so this approach cannot apply to the full-text searching
we are addressing.

As a second approach, described in [21], [16], and [13], the fixed-size bloom
filter is used for transmitting content IDs in searching for multi-word text. By
doing so, the amount of traffic was able to reduced without generating any
AndSearchData. From here on, we call this method a “transmission fixed-size
bloom filter algorithm” (TfBFA).

The specific process using TfBFA is shown in Table 1-TfBFA. In this pro-
cess, node N(W2), received by the fixed-size bloom filter from node N(W1),
transmits the content IDs it extracted to node N(W1) so as to cut off content
IDs accidentally included owing to false-positive results.

The advantage of the method using a bloom filter for transmitting content
IDs is that there is no AndSearchData; however, a disadvantage of the method
is that the reduction rate of the communication traffic is smaller than that in
the first approach.

3 Proposed Technique

The related works used a bloom filter for transmitting content IDs, but we also
use it for registering the keywords of content. In this section, the problem of
the bloom filter and its solution are also described.

3.1 Saving fixed-size bloom filter algorithm (SfBFA)

We developed a device for registering contents’ keys. When a node registers its
content, it creates a fixed-size bloom filter from all words of the content. Then
it registers the filter as well as the hash value of the word to be registered, the
content ID, and its address. The specific process for registering contents is as
follows.

1. The node calculates the hash values of all words of the content except for
word “W1” to be registered.

2. The node creates a fixed-size bloom filter from all hash values it calculated
in step (1).

3. The node registers the tuple of h(W1), the content ID, the node address,
and the fixed-size bloom filter it created in (2) in the node assigned h(W1).

We call this method a “saving fixed-size bloom filter algorithm” (SfBFA). The
process for searching for two-words is shown in Table1-SfBFA.

2 We call the extra data storage for reducing the amount of traffic “AndSearchData”.

An algorithm to reduce the commmunication traffic in a DHT 121

Problem of SfBFA As described in subsection 2.1, the optimum filter bit
size depends on the number of elements in the set. In this study, the number of
elements in the set is the number of words in the content. Because the numbers
of words in the content are different, setting the optimum filter bit size becomes
a problem.

The k hash functions used in creating the filter should be shared on the DHT
system level, so the size of the filter should also be shared on the system level.
The filter bit size can be set to be big enough, but the amount of AndSearchData
and traffic will be increased. On the contrary, if the filter bit size is set too small,
because of the ascension of FPR, the amount of traffic will also be increased.

We do not use variable-size bloom filters because douing so would mean
taking too much time to calculate hash values.

3.2 Divided bloom filter (DBF)

We propose divided bloom filters to overcome the problem of bloom filters.
Each filter bit size can thus be maintained by dividing the set into several

sets that have the same number of elements and by creating filters from each
set. We call filters created by dividing the original set “divided bloom filters”
(DBFs). According to Equation 3, m is proportional to n. For this reason, if the
FPR of the bloom filter from original set is α, the FPR of each filter of DBFs
is also α.

However, the following problem occurs. When an element b is checked as to
whether or not it is a constituent element of the DBF, if it is checked through
every divided filter and the number of divided filters is GN ,

FPR = 1 − (1 − α)GN . (4)

If α is sufficiently small, α to the power of more than two can be ignored, so

FPR ; GN × α. (5)

According to this equation, FPR increases as the number of divisions increases.
The solution needs to identify only one filter that can include element b.

By this, FPR is equal to α in total. The only filter that can include element
b can be identified by using a DHT hash function without creating extra data
storage.

When the node divides the set of words in the content, the node calcu-
lates the DHT hash value of each word of the content and divides words into
groups according to the DHT hash value. In doing so, the system determines
the following parameters in advance.

– MN : average number of words each group can include
– Filter bit size and hash functions used to create filters

The specific process to divide the words of content C is as follows. The value
that the DHT hash function can return is 1, 2, ..., DN − 1.

122 Y. Sei, K. Matsuzaki, and S. Honiden

Fig. 2. Average FPR of 1,000 sets (number of elements is from 1 to 1,000)

1. The node calculates the number of groups GN = bWN/MN +0.5c depend-
ing on WN, i.e., the number of the words of content C.

2. The node gives each group Gi(i = 1, ..., GN) the assigned range of value
R(Gi) = [(DN/GN) × (i − 1), (DN/GN) × i).

3. The node extracts a word of content C, considers it as w, and calculates
the DHT hash value h(w).

4. If R(Gj) includes h(w), the w is grouped in Gj .
5. The node repeats steps (3) to (4) for all words of content C.

In this method, it is not guaranteed that that each group has the same number
of words. However, if the hash function is collision-free, it is assumed that each
group has almost the same number of words.

Whether a word b is a member of the words of the content C is determined
as follows.

1. The node that received DBF calculates each assigned range of the value
R(Gi) of each group Gi according to the number of filters it received.

2. The node calculates the DHT hash value h(b) of word b.
3. The node determines R(Gj) including h(b). At this time, b can be a member

of only group Gj .
4. The node judges whether word b can be a constituent element of the filter

created by group Gj .

Comparison of fBF, vBF, and DBF Let us compare the following features
of fixed-size BFs, variable-size BFs, and DBFs:

1. average FPR in creating filters from several sets that have different number
of elements and

2. time complexity where an element is checked as to whether it is a member
of the filter.

@

An algorithm to reduce the commmunication traffic in a DHT 123

Fig. 3. Required time for checking whether an element is a member of each filter
(number of filters is 1,000,000)

1: Figure 2 shows the average FPR of 1,000 sets in each filter method (fixed-
size BF, variable-size BF, and DBF). The number of elements of the contents
of the sets is from 1 to 1,000. The filter size was determined by FPRtarget

3. We
changed FPRtarget from 1/2 to 1/219. MN for the DBFs was set to 100. As
FPRtarget becomes small, we found, the actual FPR of fixed-size BFs becomes
much larger than FPRtarget and that of the DBFs becomes slightly larger than
FPRtarget.

2: Figure 3 shows the simulation result of the required time to check whether
an element is a member of a set. We created 1,000,000 filters respectively (fixed-
size BF, variable-size BF, and DBF) where the number of elements is 100,
and we set FPRtarget = 0.1, 0.01, 0.001, and0.0001. We created an element b
randomly and measured the required time to determine whether b was a member
of each filter. In regards to fixed-size BFs and DBFs, according to Figure 3, the
required times do not vary with change in FPRtarget. In regards to variable-size
BF, we recalculated k hash values for each filter. Hence, the required time was
very long. In regards to DBFs, the required time was much less than that of
variable-size BFs and close to that of fixed-size BFs.

3.3 Saving divided bloom filter algorithm (SDBFA)

We call the method where the node registers a DBF as well as its content ID, its
address, and the hash value of the key a “saving divided bloom filter algorithm”
(SDBFA).

If this SDBFA is used, the approximate minimum length of the filter satis-
fying the target FPR can be obtained even if different contents have different
numbers of words.

3 That is, we set the filter size to the size of variable-size BFs whose FPR is
FPRtarget.

124 Y. Sei, K. Matsuzaki, and S. Honiden

3.4 Saving and transmission divided bloom filter algorithm
(STDBFA)

An SDBFA can adopt the method using DBF for transmitting content IDs. Do-
ing so realizes the same amount of AndSearchData while decreasing FPR. We
call the algorithm-synthesized SDBFA and the method using DBF for trans-
mitting content IDs a “saving and transmission divided bloom filter algorithm”
(STDBFA). The process of searching for multi-word text is shown in Table
1-STDBFA.

4 Experiment and Evaluation

Experiments with “simple algorithm” (SA), “transmission fixed-size bloom fil-
ter algorithm” (TfBFA), “saving fixed-size bloom filter algorithm” (SfBFA),
“saving divided bloom filter algorithm” (SDBFA), and “saving and transmis-
sion divided bloom filter algorithm” (STDBFA) were performed. SA does not
take any actions for reducing amount of traffic, TfBFA was used in our previ-
ous work, and SfBFA, SDBFA, and STDBFA are new methods proposed in this
paper.

We measured the average amount of traffic in the five algorithms mentioned
above. In addition, we compared the amount of AndSearchData needed for each
algorithm.

4.1 Experimental setup

As we described in Section I, the aim of the experiment is to limit the amount
of traffic in searching for multi-word text (i.e., 12.1% of SA; 64 MB data from
530 MB data). We prepared 10,000 published papers as contents for the exper-
iment. When we extracted the words of the content, we used the database of
vocabulary WordNet [6] and extracted the nouns, verbs, and adjectives included
in the content. The virtual user selected two words and searched for contents
containing the two words. The general hash function SHA-1 [12] was used as
the DHT hash function. Because SHA-1 returns a bit value of 160, the content
ID has 160 bits.

The calculation of the amount of traffic generated by TfBFA and STDBFA
that use a fixed-size bloom filter or DBF in transmitting content IDs is as
follows. In Table 1, in the case of TfBFA and STDBFA, the total amount of
traffic is the sum of the amount of traffic node N(W1) transmits to node N(W2)
and the amount of traffic node N(W2) transmits to node N(W1). On the other
hand, in the case of SA, SfBFA and SDBFA, the amount of traffic is the only
amount of traffic node N(W1) transmits to node N(W2).

In this experiment, the average amount of traffic over 1000 trials with simple
algorithm was 2.97 KB.

An algorithm to reduce the commmunication traffic in a DHT 125

0

0.05

0.1

0.15

0.2

0.25

0.3

FPR_ids

A
m

o
u

n
t

o
f

tr
a

ff
ic

c
o

m
p

a
re

d
 w

it
h

 S
A

0.4 0.2 0.1 0.01 0.001

Fig. 4. Average amount of traffic using TfBFA compared with that using SA

4.2 Experimental results

The searches were repeated 1000 times. From here on, we call the FPRtarget

of filters created from content IDs ”FPRids” and call the FPRtarget of filters
created from words included in the contents ”FPRwords”.

In the experiment on TfBFA, we set FPRids to 0.4, 0.2, 0.1, 0.01, and
0.001. Figure 4 shows the result. The amount of traffic for each of the FPRids,
respectively, was 0.26, 0.17, 0.16, 0.19, and 0.24 compared with that of SA.
If the FPRids is small, the filter bit size that node N(W1) transmits to node
N(W2) in Table 1-TfBFA becomes bigger. To the contrary, if the filter bit size
is large, the number of content IDs that node N(W2) transmits to node N(W1)
becomes larger.

In regards to SfBFA, we set FPRwords to 0.4, 0.2, 0.1, 0.01, and 0.001
(Figure 5-Left on the extreme right point and Figure 5-Right on the extreme
right point). Figure 5-Left shows the amount of traffic involved in searching for
multi-word text, and Figure 5-Right shows the amount of AndSearchData in
registering one content to the nodes.

In regards to SDBFA, FPRwords was set to the same value as in the exper-
iments with SfBFA, and MN was set to 10, 20, 50, and 100 (Figure 5 except
for each extreme right point.) In Figure 5-Left, SDBFA (which uses DBF) can
be seen to have reduced the amount of traffic more than SfBFA (which uses a
normal bloom filter). As shown in Figure 5-Right, the amount of AndSearch-
Data with the method using a normal bloom filter is not so different from that
with the method using DBF. When FPRwords = 0.1, the goal of 12.1% traf-
fic compared with SA was realized by using DBF. Figure 5-Right shows that
the average amount of AndSearchData per content was the same as that with
SfBFA. The amount of AndSearchData is the same as that of SDBFA.

In regards to STDBFA, FPRwords was set to 0.1 and MN to 10 for reg-
istering contents’ keys, and FPRids was set to 0.1 and MN to 2, 5, 10, 20,
and 50 for transmission of content IDs (Figure 6.) In Figure 6, the condition
MN = 20 can be seen to have reduced the amount of traffic the most.

126 Y. Sei, K. Matsuzaki, and S. Honiden

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5

MN

A
m

o
u
n
t
o
f
tr

a
ff
ic

c
o
m

p
a
re

d
 w

it
h
 S

A

10 20 50 100 NotDivided

(SDBFA) (SfBFA)

MN

FPR_words=0.4
FPR_words=0.2
FPR_words=0.1
FPR_words=0.01
FPR_words=0.001

0

200

400

600

800

1000

1200

A
m

o
u
n
t

o
f

A
n
d
S

e
a
rc

h
 d

a
ta

p
e
r

c
o
n
te

n
t[

K
B

]

10 20 50 100 NotDivided

MN

(SDBFA) (SfBFA)

Fig. 5. Left: Average amounts of traffic using SfBFA and SDBFA; Right: Amounts
of AndSearchData using SfBFA, SDBFA, and STDBFA

0

0.01

0.02

0.03

0.04

MN

A
m

o
u

n
t
o

f
tr

a
ff
ic

c
o

m
p

a
re

d
 w

it
h

 S
A

2 5 10 20 50

Fig. 6. Amount of traffic using STDBFA

We also examined the effect of changing the number of contents from 1,000
to 10,000 (Figure 7). In regards to TfBFA, the amount of traffic had significant
changes. In regards to SDBFA and STDBFA, however, the amount of change in
traffic was stably small. Furthermore, the amount of AndSearchData was less
than that of SfBFA.

Table 2 is a compilation of the results for all algorithms. The values are the
average amount with change in the number of contents from 1,000 to 10,000.
In the case of searching for multi-word text, TfBFA used in conventional re-
search used needed 23.7% of the traffic of SA. However, SfBFA (which uses the
method of registering fixed-size bloom filters created by all words of the con-
tent) reduces the amount of traffic more than TfBFA. In addition, compared
to SfBFA, SDBFA and STDBFA (which use the proposed DBF rather than a
normal bloom filter) reduce both the amount of traffic and the amount of data
storage.

4.3 Discussion

In this work, we set the target as text documents, but we believe that the
proposed techniques (SDBFA and STDBFA) can apply to multimedia contents

An algorithm to reduce the commmunication traffic in a DHT 127

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 2 3 4 5 6 7 8 9 10

Number of contents [×1000]

A
m

o
u

n
t

o
f

tr
a

ff
ic

c
o

m
p

a
re

d
 w

it
h

 S
A

TfBFA

SfBFA(FPR_words=0.001)

SDBFA(FPR_words=0.01)

STDBFA(FPR_words=0.01)

Fig. 7. Amount of traffic with change in the number of contents

7300.059STDBFA

7300.072SDBFA

0.121Desired Value

10950.144SfBFA

0.237TfBFA

Amount of data

storage per

content [KB]

Amount of traffic

compared with

SA

7300.059STDBFA

7300.072SDBFA

0.121Desired Value

10950.144SfBFA

0.237TfBFA

Amount of data

storage per

content [KB]

Amount of traffic

compared with

SA

Table 2. Comparison of the results for all algorithms

like movies or music. At this time, the keys for DHT are the texts inserted in
multimedia contents by languages that describe metadata (like MPEG7 [3]).
If mounting metadata into multimedia contents could be done automatically,
contents would have much metadata. If a DHT system for these multimedia con-
tents were constructed, the amount of traffic generated in searching for multi-
word text would grow larger. However, we believe that our proposed method
would also be able to reduce the amount of traffic in such a system.

Some DHT algorithms taking mobility and wireless environments into ac-
count have been developed (e.g., M-CAN [14] and Warp [22]). Compared to
traditional P2P, characteristics of MP2P include unreliable connection, limited
bandwidth, and the constraints of mobile devices. Hence, we believe that our
proposed method can better apply to these DHTs.

Note that in the experiments in this work, the virtual user queried random
words. However, we should perform experiments by creating a user model from
real DHT systems or histories of real search engines.

128 Y. Sei, K. Matsuzaki, and S. Honiden

Furthemore, we only evaluated two-word multiple searching. Three-word
multiple searching should be conducted as follows. Let the three words be “W1”,
“W2”, and “W3”, and the node responsible for h(W1) be N(W1). In regards
to SDBFA and STDBFA, node N(W1) extracts only the content IDs that can
include W3 as well as W2; therefore, in these cases, we predict that the amount
of traffic would be decreased compared to that of two-word multiple searching.

5 Conclusion

We aimed to reduce the amount of traffic for multi-word searches in DHTs.
First, as a device for registering contents’ keys, we used a bloom filter created
from all words of the content. In this method, some amount of extra data storage
for reducing the amount of traffic occurred. We proposed a divided bloom filter
(DBF) so as to overcome the limitations of the role of the bloom filter if several
sets have different numbers of elements. We used the DBF to reduce the amount
of extra data storage as well as the amount of traffic. Second, as a device for
transmitting the content IDs, a method by which the node transmits not content
IDs themselves, but DBFs of them, was effective in reducing the amount of
traffic.

In regards to the saving divided bloom filter algorithm (SDBFA) and the
saving and transmission divided bloom filter algorithm (STDBFA) proposed in
this paper, we were able to get favorable results for the amount of traffic in
searching for multi-word text as well as data storage.

References

1. Gnutella, http://gnutella.wego.com/.
2. Google, http://google.com/.
3. ISO/IEC TR 15938-8:2002: Information technology. multimedia content descrip-

tion interface. part8: Extraction and use of mpeg-7 descriptionscISO/IEC/JTC
1/SC 29, 2002.

4. Massachusetts institute of technology, http://mit.edu/.
5. Napster, http://www.napster.com/.
6. Wordnet, http://wordnet.princeton.edu/.
7. World-wide web consortium: Resource description framework,

http://www.w3.org/rdf.
8. Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.

Commun. ACM, 13(7):422–426, 1970.
9. A. Broder and M. Mitzenmacher. Network applications of bloom filters: A survey.

In Proceedings of 40th Annual Allerton Conference on Communication, Control,

and Computing, pages 636–646, 2002.
10. Min Cai and Martin Frank. Rdfpeers: a scalable distributed rdf repository based

on a structured peer-to-peer network. In WWW ’04: Proceedings of the 13th

international conference on World Wide Web, pages 650–657, New York, NY,
USA, 2004. ACM Press.

An algorithm to reduce the commmunication traffic in a DHT 129

11. Austin T. Clements, Dan R. K. Ports, and David R. Karger. Arpeggio: Metadata
searching and content sharing with chord.

12. D. Eastlake 3rd and P. Jones. US Secure Hash Algorithm 1 (SHA1). RFC 3174,
September 2001.

13. J. LI, B. LOO, J. HELLERSTEIN, F. KAASHOEK, D. KARGER, and R. MOR-
RIS. the feasibility of peer-to-peer web indexing and search, 2003.

14. Gang Peng, Shanping Li, Hairong Jin, and Tianchi Ma. M-can: a lookup protocol
for mobile peer-to-peer environment. In ISPAN, pages 544–550, 2004.

15. Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Schenker. A scalable content-addressable network. In Proceedings of the ACM

Conference on Applications, Technologies, Architectures, and Protocols for Com-

puter Communications, pages 161–172, August 2001.
16. Patrick Reynolds and Amin Vahdat. Efficient peer-to-peer keyword searching. In

Middleware, pages 21–40, 2003.
17. Antony I. T. Rowstron and Peter Druschel. Storage management and caching

in PAST, a large-scale, persistent peer-to-peer storage utility. In Symposium on

Operating Systems Principles, pages 188–201, 2001.
18. Michael A. Shepherd, William J. Phillips, and C.-K. Chu. A fixed-size bloom

filter for searching textual documents. Comput. J., 32(3):212–219, 1989.
19. Ion Stoica, Robert, David Karger, Frans Kaashoek, and Hari Balakrishnan.

Chord: A scalable Peer-To-Peer lookup service for internet applications. In Pro-

ceedings of the 2001 ACM SIGCOMM Conference, pages 149–160, 2001.
20. Chunqiang Tang, Zhichen Xu, and Sandhya Dwarkadas. Peer-to-peer information

retrieval using self-organizing semantic overlay networks. In SIGCOMM, pages
175–186, 2003.

21. Jiangong Zhang and Torsten Suel. Efficient query evaluation on large textual
collections in a peer-to-peer environment. In Peer-to-Peer Computing, pages 225–
233, 2005.

22. Ben Y. Zhao, Ling Huang, Anthony D. Joseph, and John Kubiatowicz. Rapid
mobility via type indirection. In IPTPS, pages 64–74, 2004.

