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Abstract 
 

Triglyceride hydrolysis using lipase has been proposed as a novel method to produce raw materials in food and 
cosmetic industries such as diacylglycerol, monoacylglycerol, glycerol and fatty acid.  In order to design a reactor for 
utilizing this reaction on industrial scale, constructing a kinetic model is important.  Since the substrates are oil and 
water, the hydrolysis takes place at oil-water interface.  Furthermore, the triglyceride has three ester bonds, so that the 
hydrolysis stepwise proceeds.  Thus, the reaction mechanism is very complicated. The difference between the 
interfacial and bulk concentrations of the enzyme, substrates and products, and the interfacial enzymatic reaction 
mechanism should be considered in the model. 
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1. Introduction 
 
Triglyceride, the main component of natural oil or fat, is 
stepwise converted into diacylglycerol, monoacylglycerol 
and glycerol by hydrolysis accompanied with the 
liberation of a fatty acid at each step [1].  Glycerol and 
fatty acid are widely used as raw materials, and 
monoacylglycerol is used as an emulsifying agent in the 
food, cosmetic and pharmaceutical industries [2].  
Recently, diacylglycerol has received much attention as 
a healthy cooking oil because it has a biological activity 
to prevent the accumulation of body fat and to lower the 
level of cholesterol in the blood [3-8]. 
 
At present, the Colgate-Emery method has been 
industrially used for the hydrolysis of triglycerides [9].  
This process utilizes steam of high-temperature (523 K) 
and high-pressure (5.00×106 Pa), resulting in high 
energy consumption and thermal damage of the 
products.  Recently, a hydrolysis method using lipase 
has been proposed instead of the Colgate-Emery method 
[10,11].  The enzymatic hydrolysis is conducted under 
mild condition (at room temperature and atmospheric 
pressure).  Therefore, the above problems can be 
overcome by this method.  Furthermore, the enzymes 
have substrate and positional specificities [12-17], so 
that the side reactions such as saponification, 
polymerization and oxidation are prevented to enhance 
the yield of the desired product. 

In the triglyceride hydrolysis using lipase, the substrates 
are oil and water, and the hydrolysis takes place at the 
oil-water interface.  In order to industrially utilize this 
reaction, it is important to elucidate the following 
subjects. 
1) Screening lipases having a high activity.   
2) Selecting solvents never lowering the enzyme 

activity.   
3) Investigating effects of various operating factors on 

the hydrolysis behavior.   
4) Constructing kinetic model for enzymatic 

hydrolysis.  
 
2. Present Status of the Kinetic Model 
 
A large number of studies have been made on the 
enzymatic hydrolysis of triglycerides.  Biochemical 
studies on screening lipases from various origins were 
sufficiently conducted, so that their characteristics such 
as hydrolysis activity and substrate/positional specificity 
have been clearly understood [12-23].  Several organic 
solvents never lowering the enzyme activity have been 
also reported [20-24].  The effects of the operating 
factors such as temperature, pH and concentrations of 
enzyme and substrate on the hydrolysis behavior have 
been experimentally investigated [18-49].  Many kinetic 
models have been proposed [50-71], but those 
simplified models were still not enough to describe the 
complicated mechanism of the enzymatic triglyceride 
hydrolysis under wide range of operating conditions.  
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This is because differences between the interfacial and 
bulk concentrations of the enzyme, substrates and 
products and the interfacial enzymatic reaction 
mechanism were not rigorously considered in the 
models.   
 
3.  Differences between the interfacial and 

bulk concentrations 
 
In order to describe the differences between the 
interfacial and bulk concentrations of the enzyme, 
substrates and products, linear/nonlinear relationship 
were incorporated.  The enzyme concentration at the 
interface was initially assumed to be proportional to that 
in the bulk phase [59-67]. However, this assumption 
was not applicable to a high enzyme concentration [68].  
Saturated enzyme concentration was reported to be 
reached at high enzyme concentration [39,62,64]. Thus, 
a nonlinear relation, such as the Langmuir adsorption 
model, should be introduced. On the other hand, for the 
substrates and/or products, the linear relationships 
between the interfacial and bulk concentrations were 
usually incorporated [63-68]. This is because the 
molecular sizes of the substrates and products are much 
smaller than that of the enzyme, so that the interfacial 
concentrations do not reach saturation. 
 
4. Interfacial Reaction Mechanism 
 
In order to describe the interfacial enzymatic reaction, 
reaction mechanisms such as first order, Michaelist-
Menten and Ping Pong Bi Bi mechanism were 
proposed.  In the triglyceride hydrolysis, one mole 
triglyceride (T) reacts with three moles water (W) to 
produce one mole glycerol (G) and three moles fatty 
acids (P) as shown by Eq. (1). 

 
 
 
            (1) 
 
 
 

 
 
In more detail, the triglyceride is stepwise hydrolyzed 
by the enzyme to be diglyceride (D), monoglycereide 
(M) and glycerol (G) while the fatty acid is released at 
each reaction step.  The enzyme-substrate complexes 
are formed at the respective steps.  In the simplest 
model, however, the formation of the enzyme-substrate 
complexes was neglected, and the irreversible first order 
reaction mechanism as shown by Eq. (2) was considered 
[21,50]. 
 
 

 

 
 
Figure 1. Schematic diagram of Ping Pong Bi Bi 

mechanism 
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In the models considering the formation of the enzyme-
substrate complexes, Michaelis-Menten mechanism as 
shown by Eq. (3) was incorporated51)- 68). 
 
     (3) 
 
 
The substrate, S, reacts with the enzyme, E, to form 
enzyme-substrate complex, ES.  Then, product, P, is 
released.  Since one substrate and one product are 
considered in this mechanism, one fatty acid residue of 
triglyceride and free fatty acid were simply assumed to 
be a substrate and a product, respectively. 
 
Recently, there were a few models69)-71) incorporating 
Ping Pong Bi Bi mechanism with two substrates and 
two products as schematically shown in Fig.1.  The 
reaction proceeds from left to right side as shown by 
horizontal arrow. The free enzyme, E, reacts with first 
substrate, S1, to form the first complex, ES1.  The first 
product, P1, is then released from ES1 to form the 
second complex, F.  This complex reacts with second 
substrate, S2, to form the third complex, FS2.  Finally, 
the second product, P2, is released and the free enzyme 
is reformed.  In case of triglyceride hydrolysis, the first 
and second substrates were assumed to be one fatty acid 
residue of triglyceride and water, respectively, while the 
first and second products were one alcohol residue of 
triglyceride and free fatty acid, respectively.  
Triglyceride is stepwise hydrolyzed by the enzyme to be 
diglyceride, monoglycereide and glycerol, and three 
ester bonds of triglyceride are not evenly catalyzed by 
lipase.  Although some researchers reported the 
produced fatty acid inhibited the hydrolysis [20,72,73] 
the inhibition by fatty acid has never been incorporated 
in the models considering Ping Pong Bi Bi mechanism. 
 
5. Summary of the Kinetic Model 
 
The proposed models are categorized based on the 
assumptions for the interfacial reaction mechanism and 
the differences between the interfacial and bulk 
concentrations as shown in Figure 2. 
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Figure 2.  Summary of the kinetic models for enzymatic 

triglyceride hydrolysis 
 
The assumptions listed as abscissa are first order, 
Michaelis-Menten (MM) and Ping Pong Bi Bi (PPBB) 
mechanisms with/without stepwise reaction and/or 
inhibition by fatty acid and they become more 
complicated far to the right.  The assumptions listed as 
ordinate are no consideration for the relationship 
between interfacial and bulk concentration, the linear 
relationship for substrate/product concentration and the 
linear/nonlinear relationship for the enzyme 
concentration and the combination of those relationships 
also become more complicated upward.  In the models 
without considering the differences between the 
interfacial and bulk concentrations, the complicated 
PPBB mechanism has been incorporated by Garcia et al. 
[69] and Rice et al.[70]. In the models considering the 
differences between the interfacial and bulk 
concentrations for not only the enzyme concentration 
but also the substrate/product concentration, however, 
only the simple MM mechanism was found to be 
incorporated.  In order to construct a rigorous kinetic 
model to describe the complicated enzymatic hydrolysis 
of triglyceride under wide range of operating conditions, 
therefore, the complicated PPBB mechanism should be 
considered in addition to the relationships between the 
interfacial and bulk concentrations used in the Al-
Zuhair’s model [68].  Furthermore, it is important that 
the stepwise reaction and the inhibition by fatty acid are 
taken into consideration in the PPBB mechanism. 
 
The most rigorous kinetic model considering the 
difference between the interfacial and bulk 
concentrations of the enzyme, substrates and products, 
and the interfacial enzymatic reaction mechanism was 
proposed in this model [71]. The model describing the 
stepwise hydrolysis of triglyceride by nonspecific lipase 
in the biphasic oil-water system was formulated on the 
basis of the following assumptions: 

1. Nonlinear relationship between the interfacial and 
bulk concentrations of the enzyme 

2. Linear relationship between the interfacial and 
bulk concentrations of the substrates and products 

3. Stepwise hydrolysis proceeds via a Ping Pong Bi 
Bi mechanism 

4. The inhibition by oleic acid follows the 
competitive inhibition mechanism 

5. The non specific lipase evenly cleave the ester 
bonds at the edge and the center of the glycerol 
backbone of the substrates (tri-, di- or 
monoglyceride) 

The model well described the hydrolysis behavior under 
wide range of operating conditions using Candida 
rugosa lipase, a nonspecific lipase. 
 
6. Conclusion 
 
In order to construct a rigorous kinetic model to 
describe the complicated enzymatic hydrolysis of 
triglyceride under wide range of operating conditions, 
the difference between the interfacial and bulk 
concentrations of the enzyme, substrates and products, 
and the interfacial enzymatic reaction mechanism 
should be considered in the model. 
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