
2012 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
New Orleans Louisiana, USA v5 n2225

©2012 EDSIG (Education Special Interest Group of the AITP) Page 1
www.aitp-edsig.org

Vicinities for Spatial Data Processing:

a Statistical Approach to Algorithm Design

Peter Y. Wu
wu@rmu.edu

Department of Computer and Information Systems

Sushil Acharya

acharya@rmu.edu
Department of Engineering

Robert Morris University

Pittsburgh, PA 15108, USA

Abstract

Spatial data processing is often the core function in many information system applications. Algorithm
design for these applications generally aims at being worst case optimal for processing efficiency. We
propose a different approach applying the notion of vicinity. We partition the object space into grid

cells of size adapted to the statistical dimensions of the input data objects for processing, and consider

only those data objects sharing the same common grid cells. We describe the processing steps of the
algorithm in our approach and analyze the performance. We also experimented with different data
patterns in our implementation. We believe that our approach can be efficient and practicable for the
computation of geometric intersection and spatial interference detection. These are essentially the
core functions in geographic information systems, computer graphics and computer aided design
systems as well. We also briefly discuss our understanding of how the grid cell size may affect the

performance with regard to varying patterns of the input data objects.

Keywords: vicinity, spatial data processing, algorithm design, algorithm analysis.

1. INTRODUCTION

Information systems quite often need to deal

with spatial data. This can be map data in
geographic information systems, or architectural
blueprint or circuit schematic in computer aided
design systems, or graphic objects in robotics
simulation and computer vision systems. These
applications need as a core function spatial data

processing that is efficient for the system to be
practicable (Sutherland, Sproul & Schumacker,
1972; Foley, van Dam, Feiner, Hughes & Phillips,
1994).

Algorithm design for these applications by
practitioners in computer science traditionally

depends on the analysis techniques based on a

worst case optimal strategy. Developed from
the analysis of sorting algorithms (Knuth 1972),
the optimal performance when dealing with
problem size of N is well established to be of the
order N*log(N) (Aho, Hopcroft & Ullman, 1974).
When handling multiple data sets in spatial data

processing, such as interference detection of
geometric objects in robotics, or map overlay in
geographic information systems, the optimal
algorithm to compare two data sets of sizes M
and N is of order M*log(M)+N*log(N)+K where
K is the number of intersection or interference

mailto:wu@rmu.edu
mailto:acharya@rmu.edu

2012 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
New Orleans Louisiana, USA v5 n2225

©2012 EDSIG (Education Special Interest Group of the AITP) Page 2
www.aitp-edsig.org

points (Nievergelt & Preparata, 1982). We note
that the complexity analysis is almost always

done for the worst case scenario. While these
research results often reveal much about the
nature of the problem, they fall short being
practicable and applicable from an information
system standpoint (Preparata & Shamos, 1986).

We propose a different approach in this paper.

Instead of complexity analysis for the worst case
scenario, we apply the notion of vicinity in the
algorithm design. In our approach, we create
vicinities around the data objects and observe
that interference between these objects must
occur in the same vicinity. Therefore, we only
need to process those objects sharing in the

same vicinity. The idea was first applied to
solve the polyline intersection problem using
adaptive grids (Franklin, 1983), and to spatial
interference detection between geometric
objects in computer graphics and computer
aided design (Franklin, Chandrasekhar,

Kankanhalli, Akman & Wu, 1990). It was also
extended to compute intersection between line
segments in geographic information system for
map overlay (Wu & Franklin, 1990; Wu, 2005).
This paper presents the approach in a more
generalized setting of spatial data processing for
discussion.

Sections 2 and 3 will describe how we create a

structure to apply the notion of vicinity to the
processing of spatial data. Section 4 presents
the algorithm in processing steps and analyzes
the time complexity of each step to assess the
overall performance. Section 5 will then discuss

an interesting parameter – grid cell size for the
spatial structure to foster the notion of vicinity.
The parameter affects efficiency but we may find
a value range for which system performance is
reasonably stable. Section 6 gives a summary
in conclusion.

2. THE NOTION OF VICINITY

The notion of vicinity refers to our understanding

that when objects interfere with one another,
they are in the same vicinity. These objects
may be simple line segments, such as in the

case of map overlay in geographic information
systems; these are fundamental units making up
the polyline. In the case of spatial interference
in robotics, the objects may be fundamental 3D
surface patches. To apply the notion to spatial
data processing, we impose a cellular partition
onto the object space into grid cells. A simple

preprocessing step can identify the grid cells an
object occupies. If two objects do not share any

common grid cell, we know that the two objects
do not intersect with each other. Therefore, we

need to only examine possible spatial
interference between the occupants in each grid
cell.

How can we create these grid cells? The grid
cells must support the simple preprocessing step
in such a way that the step can be completed in

linear time. By examining each object once, we
must be able to identify all the grid cells it
occupies by direct computation. We have hence
chosen to use rectangular grid cells of regular
orientation, imposed onto the object space to
foster the notion of vicinity.

Since the grid cells are regular and rectangular,

the preprocessing step is simple computation:
for each object, we can determine and report
the grid cells it occupies in time linear to the
number of grid cells occupied, for 2D as well as
3D cases (Foley & van Dam, 1994). (In fact, the

approach also works for higher dimension data

sets.) Figure 1 illustrates how the rectangular
grid cells isolate the two intersecting line
segments in determining the intersection
between two polylines in 2D, applying the notion
of vicinity.

With the grid cells pattern superimposed over
the object space, we apply the notion of vicinity:

we only need to look into those grid cells which
contain edge segments from both polylines.
Each of these grids therefore identifies for us the

Figure 1. The grid isolates intersection
between two polylines to the constituent

line segments in the same vicinity.

2012 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
New Orleans Louisiana, USA v5 n2225

©2012 EDSIG (Education Special Interest Group of the AITP) Page 3
www.aitp-edsig.org

potentially intersecting edge segments to be
considered. Compared to the naïve method of

checking each edge segment from one polyline
against those of the other polyline, the number
of potentially intersecting edge segments
identified by the grid cells can be much reduced.

What then should be the appropriate dimensions
for these grid cells? Intuitively, smaller grid

cells will be able to better isolate each case of
intersection, but the total number of grid cells,
and thus the overhead cost of processing will
then be higher. Section 5 will study the issue,
but in the next section, we will discuss the data
structure design to control the overhead cost.

3. GRID CELLS STRUCTURE DESIGN

To preprocess the data, we need to examine
each object to determine the grid cells occupied.
Given the data object, it takes constant time to
compute whether or not it occupies a specific

grid cell (Preparata & Shamos, 1986). The time
for the preprocessing step is therefore linear to
the total number of (object, grid cell) pairs.
However, we have to be more careful with the
structure design to handle the information for
the (object, grid cell) pairs.

For regular grid cells in a rectangular pattern, in
2D, 3D or higher dimensions, we can effectively

index through each grid cell by its subscripts as
coordinates. Thus, we can calculate the grid cell
index subscripts from its geometry – its location
and dimensions, and vice versa. It allows us to
implement a hash coding function to search into

the data structure for the grid cells, fetching the
data objects occupying each cell (Knuth, 1972,
pp.506-542). Hence, when preprocessing the
data objects, we can treat each grid cell as a
bucket to receive the identity of the object if the
object occupies that grid cell. More, we will be

able to allow empty grid cells to be non-existent
in the data structure, taking up no storage on
the one hand, but also requiring no time to
examine them on the other. This type of

associative storage scheme is in use in many
existing software systems, such as the cache in
M Programming (Walters, 1997), and in Prolog

facts storage and many deductive databases
(Clocksin & Mellish, 2003; Krikelis & Weems,
1997; Colomb, 1998).

4. THE ALGORITHM AND ITS ANALYSIS

With the grid cells structure design in place, we

now go on to describe the processing steps of
the algorithm below. For detection of general

spatial interference in one set of objects, the
algorithm goes through the following steps.

1. Set up the grid cells structure.

2. Determine for each data object the grid

cells it occupies.

3. For each non-empty grid cell, determine

spatial interference between objects in

that cell.

Step 1 sets up the grid cell structure. There is
an interesting issue about the appropriate grid
cell dimensions. We will discuss that in the next
section. But in this step, we first evaluate the

statistical measures of our input data objects.
Our general approach is to take the dimensions

of the bounding rectangle for each object, and
use that to find the average size as appropriate
for our grid cells (2D as well as 3D).

This statistics evaluation should be a constant
time computation for each object, as we may

understanding from computational geometry
(Preparata & Shamos, 1986). The total time
complexity therefore should be linear to the
number of data objects, noted as order(N), N
being the number of objects.

Step 2 is the preprocessing step of determining

the grid cells each object occupies, referred to in

Section 2. With the dimensions of the bounding
rectangle, we can directly derive the grid cells
occupied. Using the content associative scheme
of storage structure (Krikelis & Weems, 1997),
the index to each grid cell also serves as the
access point to collect the (object, grid cell)

pairs information in the storage structure.

This preprocessing step requires us to examine
each data object, but for each object, we also
need to report and collect information for each
grid cell it occupies. The time complexity will be

of order(N*M), N being the number of objects
and M the number of grid cells the object
occupies. Note that M is related to grid cell size

used in Step 1, but M is independent of N. If
object sizes are relatively the same, M generally
stays constant.

Step 3 is the interference detection step. Since
the complexity to determine interference
between two fundamental objects is a constant
measure, we will have to count the number of
times we compare objects one to another. With
what we have constructed in Step 2, we now
only need to iterate through each non-empty

grid cell. If the cell contains more than one data

2012 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
New Orleans Louisiana, USA v5 n2225

©2012 EDSIG (Education Special Interest Group of the AITP) Page 4
www.aitp-edsig.org

object, we will examine one against another for
spatial interference. There are a few points to

note. First, we expect the number of objects to
have been reduced when the objects under
consideration do not share vicinities in common.
Second, we may still apply a sophisticated
sorting algorithm to avoid naively doing pairwise
comparison between the objects. We avoid the
complexity of order(N2), but apply that of order

N*log(N), for N being the number of data
objects in the cell (Lee & Preparata, 1984).
Third, objects which interfere each other may
occupy more than one common grid cell. We
can keep a record of the pairs we have
processed already to avoid re-doing the pairs we
have already processed.

Granted that we can set up our system to do the
processing intelligently, we still achieve the time
complexity of the chosen algorithm for spatial
interference detection, which is still of order
N*log(N) in the worst case. But if the input data

happens to allow the grid cells pattern to sort
out the non-interfering cases when the objects
under consideration do not share vicinities in
common, we have greatly improved the overall
efficiency of the system.

5. GRID CELL SIZE

To set up the grid cells structure, we need to

determine an appropriate size for the grid cells.
Since the grid is intended to isolate cases of
spatial interference between objects, it may
seem desirable to use smaller grid cells so that
two different objects may not occupy a common

grid cell unless they interfere with each other.
On the other hand, small grid cells result in a
grid with more cells, and a larger M in Step 2.

Let T1 be the time for Step 1 to set up the grid.
T1 is proportional to the size of input data set,

and therefore constant for any given data set.
Let T2 be the time needed for Step 2, the
preprocessing step, and T3 the time for Step 3,
the interference detecting step. If A is the

measure of the size of a grid cell, it is therefore
inversely proportional to the number of cells in
the grid for a given input data set. Then we

have

T2 = Order of (1/A).

T3 = Order of (A2).

Since T2 is generally monotonically decreasing
and concave downwards while T3 is generally
monotonically increasing and concave upwards,
the total time T=T1+T2+T3 would generally

attain minimum at A’ for which T2= T3. Around
A=A’, the total time T also shows a region of

minimal curvature. T will be relatively stable for
variations of A. We illustrate this in Figure 2.

For Step 1, when we survey the statistical
characteristics of the input data, and have opted
to apply the average object size to be the grid

cell size for A, we find the total computation
time T attains minimum and remains relatively
stable to changes in A. In other words, we have
already arrived at A=A’. But when the variance
in the object sizes of the input data is large –
while the average grid cell size remains
unchanged, the total time T becomes much

more sensitive to changes in A. Our intuitive
understanding is the following: when the grid

cell size is about the same as the object sizes,
our approach captures well the notion of vicinity
in processing, thus attaining the minimal T
there. But when the object sizes vary as
indicated by a larger value of the variance, the

grid does not work so well to capture the vicinity
of the data objects, resulting in the degradation
of its performance, and a larger value for T.

6. SUMMARY

We presented an approach to algorithm design
for spatial data processing which is different for
the traditional way by practitioners in computer

science. Instead of seeking to be worst case
optimal, we apply an intuitive understanding
from the notion of vicinity. We impose a grid
pattern over the object space and use the grid
cells occupied by each data object as a measure

Figure 2. Different Grid Cell sizes result in

changes in time performance of the algorithm.

2012 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508
New Orleans Louisiana, USA v5 n2225

©2012 EDSIG (Education Special Interest Group of the AITP) Page 5
www.aitp-edsig.org

of its vicinity. We observe that when two objects
interfere with each other, they must occupy

some common grid cell. Therefore, only the grid
cells occupied by two or more potentially
interfering objects need to be examined.
Applying the same interference detection
algorithm only to the cases in each such grid
cell, we solve the same spatial interference
detection problem, possibly more efficiently. We

also argue that at worst, it would be the same
complexity as the interference detection
algorithm employed. An interesting issue in the
whole approach is the appropriate grid cell size
to set up the grid. In our discussion, we suggest
that the average dimension of the objects would
be an appropriate measure for the grid cell size,

and that the performance is not particularly
sensitive to the choice around that proposed
value.

7. REFERENCES

Aho, A.V., J. Hopcroft & J.D. Ullman. (1974).
The Design and Analysis of Computer
Algorithms, Addison-Wesley.

Clocksin, W.F. & C.S. Mellish. (2003).

Programming in Prolog: Using the ISO
Standard, 5th edition, Springer.

Colomb, R.M. (1998). Deductive Databases and

Their Applications, Taylor and Francis.

Franklin, W.R. (1983). Adaptive Grids for

Geometric Operations, 6th International
Symposium on Automated Cartography,

(AUTO-CARTO 6), Vol.2, pp.230-239.

Franklin, W.R., N. Chandrasekhar, M.

Kankanhalli, V. Akman & P.Y. Wu. (1990).
Efficient Geometry Operations for CAD,
Geometric Modeling for Product Engineering,

Wozny, Turner & Preiss (eds), Elsevier
Science B.V. (North-Holland), pp.485-498.

Foley, J.D., A. van Dam, S.K. Feiner, J.F. Hughes

& R.L. Phillips. (1994). Fundamentals of
Computer Graphics, Addison-Wesley.

Goodrich, M.T. & R. Tamassia. (2006). Data

Structures and Algorithms in Java (4th ed)
Wiley.

Krikelis, A. & C.C. Weems. (1997). Associative

Processing and Processors, IEEE Computer
Science Press.

Knuth, D.E. (1972). Sorting and Searching, The
Art of Computer Programming, Vol.3,
Addison-Wesley.

Lee, D.T. & F.P. Preparata. (1984).

Computational Geometry – A Survey, IEEE
Transactions on Computers, C-33(12),

pp.1072-1101.

Nievergelt, J. & F.P. Preparata. (1982). Plane-

Sweep Algorithms for Intersecting Geometric
Figures, Communications of ACM, 25(10),
pp.739-747.

Preparata, F.P. & M.I. Shamos. (1986).

Computational Geometry: an Introduction,
Springer-Verlag.

Sutherland, I.E., R.F. Sproul & R.A. Schumacher.

(1974). A Characterization of Ten Hidden-

Surface Algorithms, ACM Computing
Surveys, 6(1), pp.1-55.

Walters, R.F. (1997). M Programming: A

Comprehensive Guide, Elsevier, Oxford, U.K.

Wu, P.Y. & W.R. Franklin. (1990). A Logic

Programming Approach to Cartographic Map
Overlay, Computational Intelligence Journal,
6(2), National Research Council of Canada,
May 1990, pp.61-70.

Wu, P.Y. (2005). A Distributed Approach to Fast

Polygon Overlay, 6th Annual Central
Appalachian Geo-Spatial Conference,
California University of Pennsylvania.

