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Abstract  

 
Spatial data processing is often the core function in many information system applications.  Algorithm 
design for these applications generally aims at being worst case optimal for processing efficiency.  We 
propose a different approach applying the notion of vicinity.  We partition the object space into grid 

cells of size adapted to the statistical dimensions of the input data objects for processing, and consider 

only those data objects sharing the same common grid cells.  We describe the processing steps of the 
algorithm in our approach and analyze the performance.  We also experimented with different data 
patterns in our implementation. We believe that our approach can be efficient and practicable for the 
computation of geometric intersection and spatial interference detection.  These are essentially the 
core functions in geographic information systems, computer graphics and computer aided design 
systems as well.  We also briefly discuss our understanding of how the grid cell size may affect the 

performance with regard to varying patterns of the input data objects. 
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1.  INTRODUCTION 
 

Information systems quite often need to deal 

with spatial data.  This can be map data in 
geographic information systems, or architectural 
blueprint or circuit schematic in computer aided 
design systems, or graphic objects in robotics 
simulation and computer vision systems.  These 
applications need as a core function spatial data 

processing that is efficient for the system to be 
practicable (Sutherland, Sproul & Schumacker, 
1972; Foley, van Dam, Feiner, Hughes & Phillips, 
1994). 
 

Algorithm design for these applications by 
practitioners in computer science traditionally 

depends on the analysis techniques based on a 

worst case optimal strategy.  Developed from 
the analysis of sorting algorithms (Knuth 1972), 
the optimal performance when dealing with 
problem size of N is well established to be of the 
order N*log(N) (Aho, Hopcroft & Ullman, 1974).  
When handling multiple data sets in spatial data 

processing, such as interference detection of 
geometric objects in robotics, or map overlay in 
geographic information systems, the optimal 
algorithm to compare two data sets of sizes M 
and N is of order M*log(M)+N*log(N)+K where 
K is the number of intersection or interference 
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points (Nievergelt & Preparata, 1982).  We note 
that the complexity analysis is almost always 

done for the worst case scenario.  While these 
research results often reveal much about the 
nature of the problem, they fall short being 
practicable and applicable from an information 
system standpoint (Preparata & Shamos, 1986). 
 
We propose a different approach in this paper.  

Instead of complexity analysis for the worst case 
scenario, we apply the notion of vicinity in the 
algorithm design.  In our approach, we create 
vicinities around the data objects and observe 
that interference between these objects must 
occur in the same vicinity.   Therefore, we only 
need to process those objects sharing in the 

same vicinity.  The idea was first applied to 
solve the polyline intersection problem using 
adaptive grids (Franklin, 1983), and to spatial 
interference detection between geometric 
objects in computer graphics and computer 
aided design (Franklin, Chandrasekhar, 

Kankanhalli, Akman & Wu, 1990).  It was also 
extended to compute intersection between line 
segments in geographic information system for 
map overlay (Wu & Franklin, 1990; Wu, 2005).  
This paper presents the approach in a more 
generalized setting of spatial data processing for 
discussion.  

 
Sections 2 and 3 will describe how we create a 

structure to apply the notion of vicinity to the 
processing of spatial data.  Section 4 presents 
the algorithm in processing steps and analyzes 
the time complexity of each step to assess the 
overall performance.  Section 5 will then discuss 

an interesting parameter – grid cell size for the 
spatial structure to foster the notion of vicinity.  
The parameter affects efficiency but we may find 
a value range for which system performance is 
reasonably stable.  Section 6 gives a summary 
in conclusion. 

 
2.  THE NOTION OF VICINITY 

 
The notion of vicinity refers to our understanding 

that when objects interfere with one another, 
they are in the same vicinity.  These objects 
may be simple line segments, such as in the 

case of map overlay in geographic information 
systems; these are fundamental units making up 
the polyline.  In the case of spatial interference 
in robotics, the objects may be fundamental 3D 
surface patches.   To apply the notion to spatial 
data processing, we impose a cellular partition 
onto the object space into grid cells.  A simple 

preprocessing step can identify the grid cells an 
object occupies.  If two objects do not share any 

common grid cell, we know that the two objects 
do not intersect with each other.  Therefore, we 

need to only examine possible spatial 
interference between the occupants in each grid 
cell.  
 
How can we create these grid cells?  The grid 
cells must support the simple preprocessing step 
in such a way that the step can be completed in 

linear time.  By examining each object once, we 
must be able to identify all the grid cells it 
occupies by direct computation.   We have hence 
chosen to use rectangular grid cells of regular 
orientation, imposed onto the object space to 
foster the notion of vicinity. 
 

 
Since the grid cells are regular and rectangular, 

the preprocessing step is simple computation: 
for each object, we can determine and report 
the grid cells it occupies in time linear to the 
number of grid cells occupied, for 2D as well as 
3D cases (Foley & van Dam, 1994).  (In fact, the 

approach also works for higher dimension data 

sets.)  Figure 1 illustrates how the rectangular 
grid cells isolate the two intersecting line 
segments in determining the intersection 
between two polylines in 2D, applying the notion 
of vicinity. 
 

 

With the grid cells pattern superimposed over 
the object space, we apply the notion of vicinity: 

we only need to look into those grid cells which 
contain edge segments from both polylines.  
Each of these grids therefore identifies for us the 

Figure 1. The grid isolates intersection 
between two polylines to the constituent 

line segments in the same vicinity. 
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potentially intersecting edge segments to be 
considered.  Compared to the naïve method of 

checking each edge segment from one polyline 
against those of the other polyline, the number 
of potentially intersecting edge segments 
identified by the grid cells can be much reduced. 
 
What then should be the appropriate dimensions 
for these grid cells?  Intuitively, smaller grid 

cells will be able to better isolate each case of 
intersection, but the total number of grid cells, 
and thus the overhead cost of processing will 
then be higher.  Section 5 will study the issue, 
but in the next section, we will discuss the data 
structure design to control the overhead cost. 
  

3.  GRID CELLS STRUCTURE DESIGN 
 
To preprocess the data, we need to examine 
each object to determine the grid cells occupied. 
Given the data object, it takes constant time to 
compute whether or not it occupies a specific 

grid cell (Preparata & Shamos, 1986).  The time 
for the preprocessing step is therefore linear to 
the total number of (object, grid cell) pairs. 
However, we have to be more careful with the 
structure design to handle the information for 
the (object, grid cell) pairs. 
 

For regular grid cells in a rectangular pattern, in 
2D, 3D or higher dimensions, we can effectively 

index through each grid cell by its subscripts as 
coordinates.  Thus, we can calculate the grid cell 
index subscripts from its geometry – its location 
and dimensions, and vice versa.  It allows us to 
implement a hash coding function to search into 

the data structure for the grid cells, fetching the 
data objects occupying each cell (Knuth, 1972, 
pp.506-542).  Hence, when preprocessing the 
data objects, we can treat each grid cell as a 
bucket to receive the identity of the object if the 
object occupies that grid cell.  More, we will be 

able to allow empty grid cells to be non-existent 
in the data structure, taking up no storage on 
the one hand, but also requiring no time to 
examine them on the other.  This type of 

associative storage scheme is in use in many 
existing software systems, such as the cache in 
M Programming (Walters, 1997), and in Prolog 

facts storage and many deductive databases 
(Clocksin & Mellish, 2003; Krikelis & Weems, 
1997; Colomb, 1998). 

 
4.  THE ALGORITHM AND ITS ANALYSIS 

 
With the grid cells structure design in place, we 

now go on to describe the processing steps of 
the algorithm below.  For detection of general 

spatial interference in one set of objects, the 
algorithm goes through the following steps. 

 

1. Set up the grid cells structure. 

2. Determine for each data object the grid 

cells it occupies. 

3. For each non-empty grid cell, determine 

spatial interference between objects in 

that cell. 

 
Step 1 sets up the grid cell structure.  There is 
an interesting issue about the appropriate grid 
cell dimensions.  We will discuss that in the next 
section.  But in this step, we first evaluate the 

statistical measures of our input data objects.  
Our general approach is to take the dimensions 

of the bounding rectangle for each object, and 
use that to find the average size as appropriate 
for our grid cells (2D as well as 3D).   
 
This statistics evaluation should be a constant 
time computation for each object, as we may 

understanding from computational geometry 
(Preparata & Shamos, 1986).  The total time 
complexity therefore should be linear to the 
number of data objects, noted as order(N), N 
being the number of objects. 
 
Step 2 is the preprocessing step of determining 

the grid cells each object occupies, referred to in 

Section 2.  With the dimensions of the bounding 
rectangle, we can directly derive the grid cells 
occupied.  Using the content associative scheme 
of storage structure (Krikelis & Weems, 1997), 
the index to each grid cell also serves as the 
access point to collect the (object, grid cell) 

pairs information in the storage structure. 
 
This preprocessing step requires us to examine 
each data object, but for each object, we also 
need to report and collect information for each 
grid cell it occupies.  The time complexity will be 

of order(N*M), N being the number of objects 
and M the number of grid cells the object 
occupies.  Note that M is related to grid cell size 

used in Step 1, but M is independent of N.  If 
object sizes are relatively the same, M generally 
stays constant. 
 

Step 3 is the interference detection step.  Since 
the complexity to determine interference 
between two fundamental objects is a constant 
measure, we will have to count the number of 
times we compare objects one to another.  With 
what we have constructed in Step 2, we now 
only need to iterate through each non-empty 

grid cell.  If the cell contains more than one data 
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object, we will examine one against another for 
spatial interference.  There are a few points to 

note.  First, we expect the number of objects to 
have been reduced when the objects under 
consideration do not share vicinities in common.  
Second, we may still apply a sophisticated 
sorting algorithm to avoid naively doing pairwise 
comparison between the objects.  We avoid the 
complexity of order(N2), but apply that of order 

N*log(N), for N being the number of data 
objects in the cell (Lee & Preparata, 1984). 
Third, objects which interfere each other may 
occupy more than one common grid cell.  We 
can keep a record of the pairs we have 
processed already to avoid re-doing the pairs we 
have already processed. 

 
Granted that we can set up our system to do the 
processing intelligently, we still achieve the time 
complexity of the chosen algorithm for spatial 
interference detection, which is still of order 
N*log(N) in the worst case.  But if the input data 

happens to allow the grid cells pattern to sort 
out the non-interfering cases when the objects 
under consideration do not share vicinities in 
common, we have greatly improved the overall 
efficiency of the system. 

 
5.  GRID CELL SIZE 

 
To set up the grid cells structure, we need to 

determine an appropriate size for the grid cells.  
Since the grid is intended to isolate cases of 
spatial interference between objects, it may 
seem desirable to use smaller grid cells so that 
two different objects may not occupy a common 

grid cell unless they interfere with each other.  
On the other hand, small grid cells result in a 
grid with more cells, and a larger M in Step 2. 
 
Let T1 be the time for Step 1 to set up the grid.  
T1 is proportional to the size of input data set, 

and therefore constant for any given data set.  
Let T2 be the time needed for Step 2, the 
preprocessing step, and T3 the time for Step 3, 
the interference detecting step.  If A is the 

measure of the size of a grid cell, it is therefore 
inversely proportional to the number of cells in 
the grid for a given input data set.  Then we 

have 
 

T2 = Order of (1/A). 
 

T3 = Order of (A2). 
 

Since T2 is generally monotonically decreasing 
and concave downwards while T3 is generally 
monotonically increasing and concave upwards, 
the total time T=T1+T2+T3 would generally 

attain minimum at A’ for which T2= T3.  Around 
A=A’, the total time T also shows a region of 

minimal curvature.  T will be relatively stable for 
variations of A.  We illustrate this in Figure 2. 
 

For Step 1, when we survey the statistical 
characteristics of the input data, and have opted 
to apply the average object size to be the grid 

cell size for A, we find the total computation 
time T attains minimum and remains relatively 
stable to changes in A.  In other words, we have 
already arrived at A=A’.  But when the variance 
in the object sizes of the input data is large – 
while the average grid cell size remains 
unchanged, the total time T becomes much 

more sensitive to changes in A.  Our intuitive 
understanding is the following: when the grid 

cell size is about the same as the object sizes, 
our approach captures well the notion of vicinity 
in processing, thus attaining the minimal T 
there.  But when the object sizes vary as 
indicated by a larger value of the variance, the 

grid does not work so well to capture the vicinity 
of the data objects, resulting in the degradation 
of its performance, and a larger value for T. 

 

6.  SUMMARY 
 
We presented an approach to algorithm design 
for spatial data processing which is different for 
the traditional way by practitioners in computer 

science.  Instead of seeking to be worst case 
optimal, we apply an intuitive understanding 
from the notion of vicinity.  We impose a grid 
pattern over the object space and use the grid 
cells occupied by each data object as a measure 

Figure 2. Different Grid Cell sizes result in 

changes in time performance of the algorithm. 
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of its vicinity. We observe that when two objects 
interfere with each other, they must occupy 

some common grid cell.  Therefore, only the grid 
cells occupied by two or more potentially 
interfering objects need to be examined.  
Applying the same interference detection 
algorithm only to the cases in each such grid 
cell, we solve the same spatial interference 
detection problem, possibly more efficiently.  We 

also argue that at worst, it would be the same 
complexity as the interference detection 
algorithm employed.  An interesting issue in the 
whole approach is the appropriate grid cell size 
to set up the grid.  In our discussion, we suggest 
that the average dimension of the objects would 
be an appropriate measure for the grid cell size, 

and that the performance is not particularly 
sensitive to the choice around that proposed 
value. 
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