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SUMMARY

The abundance of dynamic and disordered regions
in proteins suggests that structural determinants
alone may not be sufficient to describe function. In-
stead, descriptors that account for the dynamic fea-
tures of the energy landscape populated by the pro-
tein ensemble may be required. Here, we show that
the thermodynamics of the dynamical complexity
that imparts biological function can be largely recon-
structed using sequence information alone, allowing
thermodynamic characterization of entire proteomes
without the need for structural analysis. We show
that this tool can be used to analyze conserved ener-
getic signatures within classes of proteins, as well as
to compare the thermodynamic character of different
proteomes.

INTRODUCTION

The paradigm that a stable structure is a prerequisite to protein

function has been challenged by a growing body of evidence

for the importance of flexible and intrinsically disordered (ID) re-

gions in proteins (Xie et al., 2007a, 2007b). The functional roles

for disorder in proteins can be grouped into at least four classes:

(1) molecular recognition, (2) molecular assembly, (3) protein

modification, and (4) entropic chain activities (Dunker et al.,

2002; Radivojac et al., 2007), with a new role as an allosteric reg-

ulator having recently been described (Hilser and Thompson,

2007; Yi et al., 2007). It is critical to note that formation of struc-

ture is no longer considered to be a prerequisite for function

(Uversky, 2002). In fact, dynamical properties can be subjected

to varying selection pressures, as observed in intrinsically

unstructured linker domains of a 70 kDa subunit or replication

protein A (Daughdrill et al., 2007).

Of particular importance is the observation that ID is found in

disproportionately higher amounts in transcription factors (TFs)

(Liu et al., 2006). Because TFs are usually multidomain proteins

whose functions are to integrate complex arrays of binding

events in different functional domains and to translate those

events into a transcription initiation signals (Liu et al., 2006;

McEwan et al., 2007; Ward et al., 2004), the hyper-abundance
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of ID in TFs would suggest an important role in signaling. Indeed,

the apparent conservation of ID to particular regions of the TF

sequence suggests a common purpose, although this purpose

is not yet known.

Recently, it was shown that coupling the folding of ID regions

to the binding of ligands provides a general mechanism for opti-

mizing allosteric communication (Hilser and Thompson, 2007).

The findings suggest that the role of ID may be to facilitate signal-

ing. A more general result of that study, however, was the obser-

vation that the magnitude of the coupling between different sites

in a protein is a function of where the relevant conformational

equilibria are poised prior to the signaling event. In effect, signal-

ing is coupled to the native-to-denatured state energetic bal-

ances in proteins. The importance of this finding is that the

regional differences in stability within a sequence may contain

important functional clues and that methods designed to esti-

mate the stability profile of a protein from sequence could be in-

valuable in efforts to annotate function within entire proteomes.

In this paper, we use an ensemble-based thermodynamic

description of proteins to establish a relationship between the

energy landscapes for a set of proteins and their respective

sequences. We find that the reconstruction of the energetic land-

scape populated by protein ensembles can be achieved using

constraints inherently encoded in the protein sequence. The

success of this reconstruction suggests that variations of posi-

tion-specific thermodynamics within a protein, although deter-

mined by both local and distal interactions, are nonetheless

encoded at the local sequence level. This allows position-

specific stability and dynamic information to be estimated for

entire proteomes, thus providing a vehicle for evaluating proper-

ties of proteins where structural information is currently unavail-

able or, as in the case of ID segments, where direct observation

may not possible.

RESULTS AND DISCUSSION

Sequence-Based Reconstruction of the Energetic
Landscape: The eScape Algorithm
Our goal is to develop a sequence-based algorithm that recon-

structs the protein stability profile for a protein sequence using

thermodynamic information obtained from known structures.

Our strategy to reconstruct protein stability profiles is to first per-

form COREX calculations (Hilser and Freire, 1996; Hilser et al.,

2006) on a data set of nonredundant human proteins between
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Figure 1. Schematic Representation of the COREX Method for Generating Ensembles and Basis for eScape

(A) COREX calculates position-specific stability by using a conformational ensemble of locally unfolded regions generated from a high-resolution structure. The

ensemble of states for each protein (box) is obtained by systematically folding and unfolding all possible small residue segments in the protein. The probability of

each state in the ensemble is calculated by using a surface area–based energy function that subsequently allows for the calculation of the Gibbs free energy of

stability (DG). The apolar (DHap) and polar (DHp) enthalpic as well as entropic (TDS) contributions can also be calculated. COREX provides the foundation in which

(B) eScape extrapolates a relationship between protein sequence and local conformational fluctuation in the native state. The prediction of eScape for a human

cyclophilin A (PDB ID: 2CPL) is plotted (thick line) and compared to stability values calculated by COREX (thin dash line).
50 and 250 residues in length. Briefly, COREX generates an en-

semble of states for each protein by systematically folding and

unfolding small 5-residue segments of the protein structure in

all possible combinations. Use of a surface area–based energy

function allows for the determination of the probability of each

state. Shown in Figure 1A is a schematic representation of

COREX-derived ensemble, as well as the corresponding posi-

tion-specific energetics. Quintessential to the COREX approach

is the determination of the position-specific stability within each

protein. Defined as the position-specific free energy, this param-

eter describes the energy difference between the subensembles

in which a particular residue j is folded and unfolded, as revealed

by the following expression:

½DG�j =
�
DGf ; j

�
�
�
DGnf ; j

�
= � RT ln

�P
Pf; jP
Pnf ; j

�
: (1)

The fact that Equation 1 represents an ensemble-average

property that is reported at each position means that the value

obtained for each residue cannot be interpreted as either (1)

a property of the amino acid at that position, or (2) the contribu-

tion of that residue to the overall stability of the protein. This im-

portant point was demonstrated previously by showing that the

ensemble average energetic values reported at each position

(Larson and Hilser, 2004) correlate with neither the properties

of the amino acids at those positions nor static structural proper-

ties, such as accessible surface area at each position. In short,
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the position-specific free energy predictions obtained from

COREX (Figure 1) are not simply recapitulating local structural

parameters.

The most important aspect of Equation 1, however, is that un-

der the appropriate exchange conditions, the computed values

for each position can be compared to protection factors ob-

tained from hydrogen-deuterium exchange experiments (Hilser

and Freire, 1996). The agreement between the calculated values

from Equation 1 and the free energies obtained from the exper-

imentally measured protection factors from hydrogen exchange

experiments (DGHX = �RT lnPF, where PF is the protection fac-

tor) suggests that the COREX algorithm provides a reasonable

model of the energy landscape of a protein (Hilser and Freire,

1996).

Because the goal of this work is to be able to reconstruct the

energetic profile from sequence information alone (Figure 1B),

a COREX analysis was performed on a database of proteins to

sample the propensities of different amino acids to be in environ-

ments of different stability. From this database of COREX-

derived, position-specific energetics, the information can be

subdivided to account for the influence of neighboring residues

on the stability of a particular position. Examination of the library

of tripeptides reveals that the stability of a position with a partic-

ular amino acid depends on the identity of neighboring residues

and not only the identity of the amino acid itself (Figure 2). For

example, tripeptides containing alanine, arginine, and proline
td All rights reserved
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as the central residue were extracted from the data set to dem-

onstrate that the mean stability is found to vary between each

tripeptide and amino acid type. Interestingly, although the ener-

getic limits for some tripeptide sequences appear to span the

entire range of data, this is not true for the majority of the tripep-

tides. Indeed, the subtle differences evident in the energetic

mean and range will prove to be critical to the successful predic-

tions. From this tripeptide partitioning, a library of energetic limits

(i.e., the observed maximum and minimum values associated

with each sequence pattern) can be obtained for the database

of proteins. It should be noted that the information itself is insuf-

ficient to directly reconstruct the energetic landscape and

requires the aid of an additional machine learning technique.

To reconstruct the energetic landscape, we developed

eScape, shown schematically in Figure 3, which is a multistep

algorithm that uses a trained linear regression model in the final

step to make predictions. Reconstruction is achieved by first

defining the energetic boundaries for each residue type in the

protein sequence. Preliminary energetic boundaries are as-

signed from the library of COREX position-specific stability

values calculated from the nonredundant set of proteins. To do

this, the energetic ranges for the tripeptide that is centered on

the residue in question (as found in the library) are used. The

boundaries (i.e., the minimum and maximum of the range) of

the energetics are then averaged across the sequence, with

a sliding window of 5 residues. This step provides an estimate

of the thermodynamic boundaries for that sequence. It is impor-

tant to note that because the energetic ranges at each position

were derived from ensemble-averaged properties, both global

and local contributions to the residue stability are implicitly con-

sidered. The final prediction of residue stability is made using the

estimated thermodynamic boundaries as input features to

a trained linear model conducted with 10-fold cross-validation

as described in Experimental Procedures.

Results of eScape Model
The average performance values and the results from each

10-fold cross-validation are reported for the database of proteins

(Table 1). The energetic profiles determined for the native

ensembles (Larson and Hilser, 2004; Wrabl et al., 2001, 2002)

can be reconstructed with eScape, resulting in an adjusted R2

Figure 2. Parsing the Energetic Landscape with Higher Order

Patterns

The energetic landscape for a nonredundant set of human proteins calculated

using COREX is inspected for relationships between higher sequence order

and position-specific thermodynamic descriptors. This inspection is important

in the design of the eScape algorithm.

(A) The frequencies of observed tripeptides show that 23.66% of the possible

8800 tripeptides (including terminal end spacers) are not represented with this

data set with some tripeptides having a higher sampling frequency than others.

(B–D) Examples of using higher order sequence information (tripeptides) to

define initial energetic limits that will subsequently be used as input features

for the trained linear regression models are shown for different tripeptides

with (B) alanine, (C) arginine, and (D) proline as the central residue. Each point

represents the mean DG observed for the different tripeptide combination

containing the indicated central residue. Error bars represent one standard

deviation from the mean energetic stability observed for the corresponding

tripeptide pattern in the database.
637, November 12, 2008 ª2008 Elsevier Ltd All rights reserved 1629
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value of 0.70 and a Pearson’s correlation coefficient of 83.63%.

Although eScape predicts residue energetic values at�80% ac-

curacy with an error margin of ± 2 kcal/mol (Figure 4), a potential

weakness of the approach is the reliance on data sampling. As

noted in Figure 2, the sequence space is not fully represented

with this data set, which contains 6283 triplet patterns out

of the possible 8800 combinations (including the ‘‘spacer’’ to

accommodate terminal ends) that are observed in public se-

quence databases. This leaves nearly a quarter (23.66%) of the

sequence space that is otherwise observed in sequence data-

bases unsampled. For example, within the data set, we observe

349, 224, and 214 triplet patterns out of the 440 possible combi-

nations for alanine, arginine, and proline, respectively. A recent

analysis of the Protein Data Bank (PDB)(Berman et al., 2000)

concluded that only �47.7% of the entire sequence space is

covered by a domain with available structural information (Mars-

den et al., 2007), suggesting that the limited sequence coverage

is reflecting the incomplete structural coverage and is not a limi-

tation of our database. Nonetheless, the potential impact of in-

complete data sampling on eScape predictions was addressed

in two ways. First, the correlation between the prediction error

and the sampling frequency of tripeptides was investigated (Fig-

ure 4). Second, the effects of spiking data sequences with

randomly selected positions designated to be unrepresented in

the library (although in actuality the information is available)

were examined (Figure 5). In the former case, we found that

the sampling frequency of tripeptides has no significant impact

on the magnitude of the error. In the latter case, default values

were randomly assigned to positions within the protein se-

quence (instead of using values corresponding to the tripeptide

in the library). Assessment of potential error arising from differ-

Figure 3. Scheme of the eScape Algorithm

A procedural scheme illustrating the underlying

infrastructure of eScape. First, corresponding

tripeptide energetic boundaries are drawn from

the library of COREX calculated thermodynamic

descriptors for each position in the sequence.

The limits of both extremes are then averaged

across the sequence with a sliding window of

5 residues. The smoothed boundary is used as

input features for a trained linear model to give a

final estimate of the contributing thermodynamic

values that describe the energetic contributions

to ensemble stability at the specific position.

ences in sampling frequency was deter-

mined without retraining the eScape

algorithm. The assessment, therefore,

reflected the potential error encountered

for new sequences containing unrepre-

sented tripeptides in the library.

Three strategies for default value as-

signment were used to measure the

potential performance impact resulting

from tripeptides that were not sampled

in the library (Figure 2A). Energetic ranges

for randomly chosen, hypothetically un-

sampled, tripeptides were assigned on

the basis of the values observed for the

(1) position N-terminal to the unrepresented position, (2) ener-

getic range observed for the central amino acid for all tripeptides,

and (3) energetic range observed for all residues. In all cases, our

results indicate that the impact on the predictions is minimal

(mean error % 0.1 kcal/mol) when energetic ranges from the

previous position is repeated, compared with using known ener-

getic ranges for the amino acid of interest or all amino acids. For

all default values, the variance in introduced error is similar until

40% of each sequence contains unsampled tripeptides (Fig-

ure 5). This result indicates that the information is both robustly

encoded in the protein sequences and redundant within the

library of tripeptides.

The effectiveness of the eScape algorithm can be demon-

strated by examining three randomly selected proteins: lithosta-

thine, a-lactalbumin, and immunoglobin receptor FcgRIIIb

(Figure 6). The predicted DG values are compared to those cal-

culated from a COREX analysis of the high-resolution PDB struc-

tures. In general, the results show excellent agreement (quantita-

tive in most cases) between the structure-based description of

the energy landscape from COREX and the sequence-based

reconstruction provided by eScape.

Despite the simplicity of the approach and apparent paucity of

data density, the successful reconstruction of the energy land-

scape with eScape has several noteworthy implications. First,

the results suggest that there is a small set of underlying thermo-

dynamic mechanisms that relate sequence to fold, since the

successful reconstruction must result from the inherent redun-

dancy of these mechanisms in the data set. Second and equally

important, the sequence space that determines whether a resi-

due occupies a certain position is largely coded locally. In fact,

previous work has shown that just eight types of thermodynamic
1630 Structure 16, 1627–1637, November 12, 2008 ª2008 Elsevier Ltd All rights reserved
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environments could serve as elementary energetic building

blocks within an entire database of proteins (Larson and Hilser,

2004). Taken together, these findings suggest that the energetic

landscapes of proteins can be understood in terms of the phys-

icochemical limits of the local environments in which a residue

appears, rather than the direct contribution of that residue to

the regional stability of the protein where it is located. The impor-

tance of this distinction is that it allows us to establish a quantita-

tive relationship between sequences and the energetic land-

scapes of proteins, even in the absence of an understanding of

how a protein uses its energy landscape to conduct its biological

function. Indeed, this approach allows for a high-throughput

study to probe for stability patterns within proteomes, studies

that could help identify energetic signatures of function. It should

be noted, however, that although eScape provides a reasonable

estimate of thermodynamic descriptors using only sequence

information, the ability of cooperativity and long-range commu-

nication to be captured from sequence has not been demon-

strated. As such, COREX analysis of the high-resolution struc-

ture is still required to obtain this information. Whether such

information is ultimately attainable from sequence is currently

under investigation.

eScape to Explore Energetic Landscapes of Proteomes
The successful reconstruction of the energetic landscape

suggests that the energetic ground rules governing amino acid

propensities for different thermodynamic environments (Larson

Table 1. Cross-Validated Results for eScape

Adjusted R2 DG DHap DHp TDS

0.702 0.695 0.652 0.600

0.702 0.698 0.651 0.606

0.701 0.696 0.653 0.606

0.703 0.692 0.652 0.595

0.697 0.695 0.650 0.610

0.705 0.696 0.657 0.607

0.699 0.695 0.656 0.596

0.702 0.696 0.655 0.603

0.702 0.694 0.652 0.596

0.705 0.694 0.657 0.605

AVERAGE 0.702 0.695 0.653 0.602

PEARSON 0.834 0.837 0.821 0.802

0.839 0.821 0.818 0.746

0.843 0.828 0.809 0.756

0.835 0.847 0.815 0.808

0.859 0.834 0.825 0.733

0.811 0.828 0.786 0.748

0.849 0.836 0.795 0.799

0.835 0.826 0.801 0.775

0.836 0.839 0.818 0.807

0.823 0.837 0.791 0.756

AVERAGE 0.836 0.833 0.808 0.773

The 10-fold cross-validated performance results for eScape are reported

for the model trained on natively folded ensembles. Both the adjusted R2

values and Pearson correlation coefficient is reported for each round.
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and Hilser, 2004) are sufficiently represented using energy

information content encoded in tripeptides (and averaged over

a 5-residue sliding window). This leaves open the possibility

that eScape can be used as a general tool to evaluate both global

thermodynamic properties of proteomes, as well as more local

thermodynamic properties within individual proteins, using only

sequence information.

To examine differences between the thermodynamics of dif-

ferent proteomes, eScape was used to reconstruct the energetic

landscapes for Arabidopsis thaliana, Caenorhabditis elegans,

Escherichia coli, Homo sapiens, Methanococcoides burtonii,

Pyrococcus furiosis, and Saccharomyces cerevisiae proteomes

obtained from Integr8 (Kersey et al., 2005). The prediction results

were then parsed on the basis of shared tripeptide distribution

between species (Table 2). Previous comparative analysis be-

tween proteomes showed little difference in amino acid

Figure 4. eScape Performance

(A) Prediction accuracy is calculated for incremental error margins defining

correct predictions. Approximately 80% of the residues in the dataset can

be correctly predicted within an error range of ±2 kcal/mol.

(B) The effect of sampling frequency of tripeptides in the energetic library on

predictions was explored. Findings for various error margins (M100 = ±100

cal/mol) show that the sampling frequency has little impact on the perfor-

mance of the predictor. Error fraction is the fraction of residues where the pre-

dicted value is not within the error margin of the COREX calculated value.
37, November 12, 2008 ª2008 Elsevier Ltd All rights reserved 1631



Structure

eScape: Sequence-Based Energetic Profiles of Proteins
composition between species (Liu and Rost, 2001). Nonethe-

less, as shown in Table 2, there are distinct preferences for

higher order sequence information, and the differences in higher

order information are associated with differences in the energy

landscapes. Although a substantial portion of the sequence

space is shared between all species in Table 2 (i.e., 8270 tripep-

tides overlap), 166 tripeptides were observed only in either A.

thaliana (2) or H. sapiens (164). Interestingly, the observed stabil-

ities for each category show a general destabilizing trend, with

the mean relative stability of the universal set being higher than

those that are preferred by a select species. This analysis reveals

that H. sapiens and A. thaliana proteomes have a larger reper-

toire of unique tripeptides associated with more destabilized re-

gions of the energetic landscape. The observed destabilizing

Figure 5. Impact of Unsampled Sequence Space on Prediction Re-

sults

The effects of unsampled sequence space were addressed by randomly as-

signing positions within the sequence (a range from 1% to 90%) designated

to be unrepresented in the library. Several replacement strategies were used

to assign default values for these randomly selected instances of unrepre-

sented tripeptides by assigning energetic boundaries observed for (1) the po-

sition N-terminal to the unrepresented tripeptide (open circles), (2) the amino

acid of interest in the absence of higher order information (closed triangle),

and (3) that observed for the entire energetic space (open square). The (A) av-

erage error and (B) variance show that constraining energetic boundaries to

those observed for neighboring residues is better than that based on the cen-

tral amino acid.
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trends agree qualitatively with previous reports indicating that

higher organisms contain more intrinsically disordered regions

(Liu and Rost, 2001; Ward et al., 2004).

Understanding changes in the energetic landscape through

sequence-based approaches can help provide new insights

into evolutionary processes, particularly those facilitated by the

presence of disordered and highly flexible regions. The findings

may help clarify previous observations that used structure-

based strategies to understand protein sequence evolution

(Deeds et al., 2003; Shakhnovich et al., 2005). For example,

a structure-based analysis conducted by Shakhnovich and col-

leagues reported that proteins with high contact order are more

robust and therefore tolerant to high mutation rates. However,

Bloom and colleagues reported that the observed increase in

mutation rate is largely attributed to regions that are not densely

packed in the yeast proteome (Bloom et al., 2006). Clearly, func-

tion and evolutionary robustness are linked in complex ways to

the global and local stabilities within each protein and within

the proteome as a whole. The ability to examine energetic differ-

ences within proteins and to explore the conservation of these

differences across proteomes provides a unique opportunity to

explore (1) the relationship between stability and function in

isolated proteins, (2) how mutations affect those relationships,

and (3) how changes in other proteins affect these processes.

A Tool for Calculating Stability Profiles in Proteins
As noted previously, disordered or highly dynamic regions have

been found to be important for many aspects of protein function,

such as catalysis, recognition, and regulation (Eisenmesser

et al., 2005; Xiao and Kaltashov, 2005; Xie et al., 2007b). In the

case of enzymes, for example, this observation can be recon-

ciled by noting that, for a protein to achieve optimal activity, at

least two criteria must be met. First, there must be sufficient pop-

ulation of the active conformation such that it is able to bind its

ligand under physiological conditions. Second, the conforma-

tional transitions necessary to facilitate a protein’s function

must be poised at the correct point in the equilibrium so as to

respond to its physiological ligand. As a consequence of these

demands, proteins have evolved to be marginally stable (De-

Pristo et al., 2005), although little is known about the relationship

between stability and function, or whether different proteins

share common mechanisms. The observed increase in the num-

ber of low stability tripeptides in higher organisms, as demon-

strated in Table 2, leaves open the possibility that eScape can

be used to (1) locate stretches of both low (i.e., ID) and high sta-

bility in proteins and (2) identify thermodynamic signatures that

relate stability to function. To demonstrate that eScape can be

used to identify conserved regional differences in stability in pro-

teins, we examined the stability of three prominent members of

the steroid hormone receptor (SHR) family of TFs. The SHRs

are ligand-activated TFs with a domain structure arrangement

typical of the nuclear hormone receptor (NHR) superfamily (Fig-

ure 7) (Beato, 1989; Evans, 1988; Kumar et al., 1999; Yamamoto,

1985). The ligand-binding domain (LBD) binds the respective

steroid, the DNA-binding domain (DBD) binds to its putative re-

sponse element on the DNA, the hinge region (HR) connects

the LBD with the DBD, and the N-terminal domain (NTD) is

responsible for transcriptional activation. Importantly, these

steroid hormone receptors have been well-established
td All rights reserved
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experimentally to contain significant ID regions in the NTD (Ku-

mar et al., 1999, 2007; McEwan et al., 2007).

Shown in Figure 8 is a comparison of the eScape analysis of

three SHRs to several disorder predictors. As is clear, similar

qualitative trends are observed when predicted values are aver-

aged for each functional domain in estrogen, glucocorticoid, and

progesterone receptors. Unlike other disordered predictors,

however, eScape provides an estimate of the position-specific

stability in energetic terms rather than probabilistic scales and

empirical thresholds that define disordered regions. Interest-

ingly, inspection of the eScape results for the SHR family indi-

cates that the average stability is least for the NTD of each

SHR, followed by the hinge region. Higher average stabilities

are found in the DBDs and LBDs, which are known to be stable,

folded structures (Baumann et al., 1993; Kauppi et al., 2003; Lav-

ery and McEwan, 2005; Luisi et al., 1991). Also of interest is that

these patterns exist even in the absence of sequence conserva-

tion in the hinge and NTD regions.

We note that the comparison of the average stability across

the domain is intended only to provide a simplified metric by

which to compare different domains, and to compare different

metrics of disorder/stability in proteins. Not withstanding this

Figure 6. Performance of eScape on

Randomly Selected Case Examples

(A–C) Three randomly selected proteins are shown

here to provide case examples of eScape perfor-

mance compared to target values. Stability pro-

files reported in DG values are shown for the native

ensemble of (A) immunoglobin receptor FcgRIIIb,

(B) lithostathine, (C) a-lactalbumin (PDB IDs:

1FNL, 1QDD, and 1B9O, respectively). The Pear-

son correlation coefficient (r) is also reported.

Comparisons between COREX calculated values

(dash lines) and eScape predictions (thick lines)

are plotted.

oversimplification, the results do highlight

the ability of eScape to provide an ener-

getic description of a protein sequence,

and such a metric captures known

coarse-grain stability differences. Given

that interdomain allosteric coupling has

been both proposed on theoretical

grounds (Hilser and Thompson, 2007)

and demonstrated experimentally to be

correlated to domain stability in several

proteins (Gekko et al., 2004; Laine et al.,

2008), it is possible that eScape will prove

to be valuable for efforts geared toward

identifying such functions as allostery or

signaling from sequence. A test of this hy-

pothesis, however, will require the analy-

sis of multiple proteins families and is out-

side of the scope of the current study.

Finally, we note that a recent survey of

the PDB showed that only 7% of struc-

tures have no disordered regions, with

25% of the proteins containing structural

information for only 95% of the sequence (Le Gall et al., 2007).

This finding indicates that, rather than being a unique facet of

SHRs or TFs in general, ID is ubiquitous in the proteome. In short,

many proteins have functions involving ID regions, although

exactly how ID is used and whether it is quantitatively related

to functional properties is not known. Clearly, methods that

can quantify these stability differences would provide a valuable

tool in understanding the relationship between stability and

function.

Conclusions
We have shown that the energetic landscapes of proteins can be

reconstructed from sequence information alone and that the

apparent thermodynamic complexities seen in protein folds are

defined by a common set of underlying energetic determinants.

These determinants define the thermodynamic basis of robust-

ness to sequence divergence and allow us to identify conserved

energetic signatures for protein sequences. For example, prelim-

inary analysis of the SHR family of transcription factors reveals

that significant heterogeneity in the stability of the different

domains across the family belies a robustly conserved energetic

hierarchy of stability between the domains. Furthermore, eScape
Structure 16, 1627–1637, November 12, 2008 ª2008 Elsevier Ltd All rights reserved 1633
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Table 2. Comparison of Tripeptide Distribution and eScape

Predictions Between Proteomes

Category Species

No. of

Observances

of Unique

Tripeptide

Average Stability

for Category

(cal/mol)

1 Species (166) A. thaliana 2
�7004.82

±2373.42H. sapiens 164

2 Species (184) A. thaliana 161

�7562.52

±2304.96

C. elegans 21

E. coli 2

H. sapiens 184

3 Species (26) A. thaliana 26

�7476.64

±1988.95

C. elegans 20

E. coli 4

H. sapiens 26

S. cerevisiae 2

4 Species (10) A. thaliana 10

�8928.64

±3108.52

C. elegans 10

E. coli 5

H. sapiens 10

S. cerevisiae 5

5 Species (30) A. thaliana 30

�8627.47

±3695.56

C. elegans 30

E. coli 20

H. sapiens 30

M. burtonii 7

P. furiosus 5

S. cerevisiae 28

6 Species (112) A. thaliana 112

�9117.29

±2876.70

C. elegans 112

E. coli 109

H. sapiens 112

M. burtonii 73

P. furiosus 42

S. cerevisiae 112

7 Species (8270) A. thaliana 8270

�8103.5643

±2018.48213

C. elegans 8270

E. coli 8270

H. sapiens 8270

M. burtonii 8270

P. furiosus 8270

S. cerevisiae 8270

eScape predictions were performed for proteomes of 7 species (A. thali-

ana, C. elegans, E. coli, H. sapiens, M. burtonii, P. furiosis, and S. cerevi-

siae) with representation for all three kingdoms of life. Of the 8800 possible

tripeptides, this set was parsed into 7 categories on the basis of the num-

ber of species in which the tripeptide was observed; 8270 tripeptides were

observed in all seven species where as 166 tripeptides were only ob-

served in A. thaliana (2) and H. sapiens (164). The predicted stability values

were partitioned on the basis of shared tripeptides between species and

averages for each category show an increasingly destabilizing trend from

the universal set to those additionally sampled by higher organisms.
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provides a means of evaluating differences in average thermody-

namic behavior across entire proteomes. Our analysis reveals

that thermodynamic signatures utilizing ID are a property of

higher organisms, a result that is in agreement with numerous

disorder predictors. It is hoped that the ability to look at regional

differences in stability within proteins, as well as changes in

stability across entire proteomes, will provide opportunities to

understand the complex interplay between the response of

individual proteins to selective pressures and the response of

the entire proteome.

EXPERIMENTAL PROCEDURES

eScape Training Data Set

A nonredundant set of human proteins (Larson and Hilser, 2004) was used for

the development of eScape to reconstruct protein stability profiles using only

sequence information. A total of 122 X-ray crystal structures with no missing

residues, terminal ends exempted from this criterion, were used. These struc-

tures are 50�250 residues in length with <2.5 Å resolution and a maximum of

50% sequence identity within the data set.

The COREX Algorithm

The COREX algorithm is a statistical thermodynamic model in which a native

protein is systematically unfolded to depict an ensemble of states rather

than be represented as a single static structure (D’Aquino et al., 1996). The en-

semble comprises the native protein, ranging from the fully folded to denatured

conformational states. The energetics of each of the 122 proteins in the

eScape training data set was calculated using the COREX algorithm. For pro-

teins larger than 80 residues, Monte Carlo sampling (50,000 states/partition)

was used to generate ensembles for consideration of computational demands,

followed by full COREX enumeration. For proteins less than 80 residues, all

states in the ensemble were fully enumerated.

We briefly describe the COREX algorithm and ask readers to refer to refer-

ences (Hilser and Freire, 1996; Hilser et al., 2006) for more details. Under equi-

librium conditions, the probability of any given conformational microstate, i, in

the ensemble is given by the following equation:

Pi =
Ki

PNstates

i = 1

Ki

=
Ki

Q
; (2)

where Ki = e(�DGi/RT) is the statistical weight of each microstate, and R is the

gas constant, for a given absolute temperature T. The summation in the de-

nominator is the partition function, Q, for the system. The Gibbs free energy

for each microstate, DGi, is calculated as:

DGi = DHi;solvation � TðDSi;solvation + WDSi;conformationalÞ; (3)

where W is an entropy-weighting factor used to control the contributions of the

natively folded state. This entropy-weighting factor enables us to perturb the

ensemble to favor denature or natively folded states, thus allowing us to inves-

tigate thermodynamic properties under natively folded or denaturing condi-

tions. During the calculation of position stability, an entropy-weighting factor

of W = 0.5 is used to increase natively folded states in the population and

consider, for the most part, contributions to local stability from the native

conformation of the protein.

The equilibrium of the natively folded and unfolded states of proteins can be

evaluated for each residue using a statistical descriptor defined as the residue

stability constant, kf,j (D’Aquino et al., 1996). This quantity is the ratio of the

summed probability of all states in the ensemble in which a particular residue

j is in a folded conformation (SPf,j) to the summed probability of all states in

which j is in an unfolded conformation (SPnf,j):

kf ; j =

P
Pf ; jP
Pnf ; j

: (4)

From the stability constant, the position-specific free energy expressed in

units of cal/mol can be written as:
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½DG�j = �RT,ln

P
Pf;jP
Pnf;j

=
�
DGf ; j

�
�
�
DGnf ; j

�
: (5)

The importance of the stability constant and its good agreement with exper-

imental data had been shown before with hydrogen deuterium exchange

comparisons (Hilser and Freire, 1996).

Position-Specific Thermodynamic Descriptors

Position-specific thermodynamic descriptors were calculated by taking the

difference in folded and unfolded subensemble quantities.

½DH�pol; j = < DHpol; f ; j >� < DHpol; nf ; j > (6)

½DH�apol; j = < DHapol; f ; j >� < DHapol; nf ; j > (7)

½DS�conf ; j = < DSconf ; f ; j >� < DSconf ; nf ; j > (8)

Quantities in folded and unfolded subensembles were calculated (Wrabl

et al., 2002) as:

hDHi=
XNstates

i = 1

Pi � DHi =
XNstates

i = 1

Ki � DHi

Q
; (9)

hDSi=
XNstates

i = 1

Pi � DSi =
XNstates

i = 1

Ki � DSi

Q
: (10)

Development of eScape

Analysis of higher order sequence association with COREX calculated posi-

tion-specific stability showed that the energetic landscape can be partitioned

on the basis of tripeptide patterns. This suggested that the heuristic informa-

tion could be leveraged in the reconstruction of protein stability profiles using

only sequence information. Several different input features and regression

strategies were explored in the pursuit of a sequence-based energetic predic-

tor. The ultimate strategy adopted in eScape leverages the concept that the

range of stability values in which residues are found in the energetic landscape

is limited. The procedure in which the predictions are made is illustrated in

Figure 3 and here described in detail.

Predictions are made by first drawing energetic boundaries for each position

of the sequence from the library of COREX calculated energetic values for the

nonredundant set of proteins. Energetic boundaries (i.e., the minimum and

maximum values) observed for the corresponding tripeptide at the position

are then respectively averaged across the sequence with a sliding window

size of 5. The final averaged values are used as input features for a trained

linear regression model, the core of eScape, to make predictions about the

position-specific thermodynamic descriptors that have been modeled with

COREX. The trained linear regression model which best fit the training data

for each of the four position-specific thermodynamic descriptors are:

DG = ½ð0:8195 �mini; DGÞ+ ð0:7492 �maxi; DGÞ�+ 4696;

DHap = ½ð0:7665 �mini; DHapÞ+ ð0:7632 �maxi; DHapÞ� � 5068;

DHp = ½ð0:7791 �mini; DHpÞ+ ð0:7524 �maxi; DHpÞ�+ 6195;

TDS = ½ð0:7047 �mini; TDSÞ+ ð0:7507 �maxi; TDSÞ�+ 1998;

where mini, x and maxi, x corresponds to the minimum and maximum observed

range of the thermodynamic descriptor for the corresponding tripeptide at the

given position. eScape was conducted with 10-fold cross-validation with per-

formance reported at an average adjusted R2 value of 0.70 and an average

Pearson’s correlation coefficient of 83.63% (Table 1). Training using the

cross-validation strategy ensures that the subset of the training set (10%)

used to test the performance of the predictor was not included in the training

set. Therefore, predicted values are not based on data to which it was trained.

Finally, we note that because only the energetic boundaries (i.e., extrema)

were used to select position-specific stability values, not all values in the library

are used.

Proteomic Analysis

Entire proteomes of A. thaliana, C. elegans, E. coli, H. sapiens, M. burtonii,

P. furiosis, and S. cerevisiae, were obtained from Integr8 (http://www.ebi.ac.

uk/integr8) (Kersey et al., 2005). Position-specific stabilities were predicted us-

ing eScape method described here. To accommodate unsampled tripeptides

that are not represented in the eScape library, input values used for the previ-

ous position (N-terminal to the position of interest) were used for subsequent

reconstruction of energetic profiles. Proteomes were partitioned into tripeptide

fragments to examine the sampling coverage between different species and

associated position-specific stability values.

Steroid Hormone Receptor Case Study

The estrogen, glucocorticoid, and progesterone steroid hormone receptors

were used as a case study to demonstrate the applicability of eScape in iden-

tifying energetic profiles within multidomain proteins. The accession numbers

for sequences retrieved from NCBI used in this study are gi544257, gi121069,

and gi90110048. Alignments to calculate sequence identities between do-

mains were performed using ProbCons (Do et al., 2005).
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