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ABSTRACT Estimating the catfish aquaculture production losses that can be attributed to double-crested
cormorants (Phalacrocorax auritus) has proved problematic because knowledge of the distribution of cormor-
ants on catfish aquaculture is lacking. We evaluated use versus availability of various production pond types
and landscape-scale factors affecting the distribution of cormorants on channel catfish (Ictalurus punctatus)
aquaculture facilities in Mississippi, USA. Cormorant distribution on aquaculture pond types indicated
selection against brood-fish ponds, neutral selection on fingerling ponds, and selection for food-fish ponds
(n ¼ 29, Chesson’s a ¼ 0.19, 0.36, and 0.45, respectively). Modeled and validated correct classification rate
(CCR) of general linear mixed models of cormorant occupancy of clusters of catfish ponds indicated
seasonality of use and roost distance from aquaculture ponds was predictive (CCR ¼ 81% and 71%,
respectively). Modeled and validated ordinal models of levels of use (low, moderate, high) were less predictive
(CCR ¼ 67% and 59%, respectively). However, predictability within use levels for the validation data set was
mixed, ranging from 0.19 to 0.86. Odds ratios indicate both higher risk of occupancy and levels of use over the
period February–April relative to October. Management efforts targeted during this time frame will have the
greatest impact in reducing depredation losses. The majority of cormorants occurred on food-fish ponds.
Consequently estimates of economic loss should be revisited and refined based on distributional information
provided in this study. Published 2012. This article is a U.S. Government work and is in the public domain in
the USA.
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The double-crested cormorant (Phalacrocorax auritus; here-
after, cormorant) is considered the primary depredating
bird species on commercially produced channel catfish
(Ictalurus punctatus; hereafter, catfish) in Mississippi, USA
(Wywialowski 1999, Glahn et al. 2002, Dorr et al. 2008). In
the past 30 yr, cormorant abundance has increased dramati-
cally in the United States (Hatch and Weseloh 1999) and
specifically within the catfish aquaculture-producing regions
of Mississippi. Past research on cormorant predation of
commercially raised catfish focused on food habits, bioener-
getics modeling, night-roost surveys, and extrapolation of
these data to estimate potential economic losses (Stickley
et al. 1992, Glahn and Brugger 1995, Glahn and Stickley
1995, Glahn et al. 1996). These estimates of economic loss
due to cormorants have largely been valued at replacement
cost of catfish fingerlings because distributional information

on where predation was occurring was unknown. These loss
estimates can vary widely dependent on whether predation
impacts are valued to gross (i.e., at-harvest) catfish produc-
tion rather than fingerling replacement costs (Glahn and
Dorr 2002, Glahn et al. 2002).
Research has identified and refined the range of production

losses that can be attributed to cormorants and how cormo-
rant predation can affect production and net returns per pond
(Glahn and Dorr 2002, Glahn et al. 2002). Most of the
catfish consumed by cormorants are within the range of sizes
commonly stocked and present in both fingerling and food-
fish production ponds (Glahn et al. 1995, 2002). Cormorants
are, therefore, capable of consuming catfish from the major-
ity of catfish ponds in production. However, the impacts on
economic loss of cormorant predation on fingerling as op-
posed to food-fish ponds differ widely. Glahn et al. (2002)
and Glahn and Dorr (2002) estimated that losses at harvest
may be as much as 5 times greater than simple replacement
cost if losses occur on food-fish ponds compared with
fingerling ponds. Further Glahn et al. (1995) found that
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cormorant diet differed significantly depending on where
cormorants were night roosting within the Yazoo Basin.
Thus, economic impacts to the aquaculture industry cannot
be accurately assessed and monitored without estimates of
how cormorants are distributed geographically within the
aquaculture-producing regions of Mississippi and on aqua-
culture facilities. In addition, management efforts to alleviate
impacts cannot be effectively evaluated without understand-
ing influences of cormorant distribution on aquaculture. The
objective of this study was to evaluate factors affecting use
and selectivity of various production catfish pond types on
aquaculture ponds in Mississippi using aerial surveys in a

random stratified single-stage cluster sampling design (Levy
and Lemeshow 1999, Dorr et al. 2008).

STUDY AREA

We sampled at randomly selected clusters of catfish ponds in
approximately 258,000 ha of the primary catfish aquacul-
ture-producing area of the 18,000-km2 Mississippi alluvial
plain area of the Yazoo River Basin of northwestern
Mississippi (Yazoo Basin; Fig. 1). The Yazoo River proper
began at the confluence of the Tallahatchie and Yalobusha
rivers near Greenwood, Mississippi. The Yazoo River then
flowed southwest for 315 km to join with the Mississippi

Figure 1. Map of the Yazoo Basin ofMississippi, USA. Black shapes represent known extent of catfish aquaculture ponds and centered circles represent known
double-crested cormorant (Phalacrocorax auritus) night-roost locations surveyed during the winters (Oct–Apr) 2000–2001 and 2003–2004.
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River near Vicksburg, Mississippi. The region was primarily
level farmland, with alluvial soils consisting of clay and
fine sand (Shields et al. 2008). Clusters were determined
by overlaying U.S. Geological Survey land-survey section
polygons (1993, 7.5-Min Quadrangle) over geographic in-
formation system coverage of ponds in the Yazoo Basin
(Landsat L7, Enhanced Thematic Mapper, orthorectified,
terrain-corrected, �15-m resolution) provided by Ducks
Unlimited, Inc. (Memphis, TN). A pond was considered
within a cluster if >50% of the pond was within the section.
Glahn et al. (1995) reported that cormorants that roosted

on or near the Mississippi River had a lower percentage of
catfish in the diet than cormorants that roosted in the interior

of the Yazoo Basin. Glahn et al. (1995) attributed these
results to several factors, including a lower density of catfish
ponds and greater available natural foraging habitat. Owing
to these findings, and to evaluate whether detectable differ-
ences in use of clusters existed, we stratified the cluster
sampling by river and interior regions of the Yazoo Basin
(Fig. 2). All clusters west of longitude 90.858W were con-
sidered to be in the river region, while clusters east of this to
the Loess Bluffs (Shelford 1963) were considered to be in the
interior region (Mott et al. 1998, Tobin et al. 2002, Dorr
et al. 2008). Twenty percent of identified clusters (sampling
units) from each region were randomly selected from the
geographic information system coverage of these ponds in

Figure 2. Study area for estimating distribution and abundance of double-crested cormorants (Phalacrocorax auritus) in the primary aquaculture-producing area
of the Yazoo Basin ofMississippi, USA. Bounded areas represent river and interior regions; shaded areas represent clusters of catfish aquaculture ponds sampled
in winter (Oct–Apr). Vertical bars represent clusters sampled inwinter 2000–2001; horizontal bars represent clusters sampled inwinter 2003–2004; crosshatched
areas represent clusters sampled in both winters.
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the Yazoo Basin. Regions were separated spatially by mean
foraging distance as reported by King (1996) to maximize
independence of cormorant counts between regions.

METHODS

Aerial Surveys
We flew aerial surveys 2 days/month using a Cessna
(Wichita, KS) 172 fixed-wing aircraft, except for October
2000, during which an additional initial survey was flown to
insure the sample area could be fully surveyed given con-
straints on flight duration. We flew surveys from October
2000 to April 2001, and from October 2003 through April
2004. This period encompasses most cormorant winter
movements through the Yazoo Basin (Dorr et al. 2008).
Each flight took approximately 8 hr to complete. Due to
logistical constraints and to minimize double-counting of
cormorants within the survey area, we limited flights to
<8 hr to complete counts in a single day. Each survey began
at approximately 0800 hours, weather permitting, and was
shifted 1 hr for daylight savings time. We alternated the
starting point at random between interior and river regions to
reduce potential bias resulting from diurnal patterns of cor-
morant feeding behavior (Dorr et al. 2008). For each survey,
the pilot circled clusters at an altitude of 100–150 m, and all
cormorants observed on each pond within each cluster were
counted by a single observer. We adjusted counts of cormor-
ants on ponds for a visibility correction factor specific to
cormorants on catfish ponds (from Dorr et al. 2008). There
are other factors that may affect detection in aerial surveys
(e.g., distance, behavior). We did not adjust for detection
probabilities for these factors because cormorants typically
respond to the aircraft with alert behavior (Dorr et al. 2008)
and catfish ponds are a relatively small (on average, 205 m2)
and homogenous habitat with few, if any, visual obstructions.
We ground-truthed all ponds within selected clusters by
production type; brood-fish, food-fish, or fingerling ponds.
We categorized fingerling ponds as those ponds with fish of
3–20 cm, and 1–27 kg/1,000 fingerlings. Food-fish ponds
were made up of fish of marketable size, typically �25 cm
and up to 1.4 kg/fish, and brood-fish ponds were ponds
containing sexually mature catfish used for reproduction,
which were typically as large as or larger than food-fish
(U.S. Department of Agriculture [USDA] 2003a, b, parts
I and II).
Our aerial pond surveys were coordinated with USDA

Wildlife Services-Mississippi (WS-MS) aerial surveys of
cormorant night roosts; surveys were flown within 24 hr
of each other weather permitting. The WS-MS night-roost
surveys followed the procedures of Glahn et al. (1996) and
were conducted within the first 3 hr after sunrise and before
sunset. The pilot flew over all known night-roost locations
(N ¼ 80) in the delta region, circling active roosts at an
altitude of 150–200 m, while an observer counted all cor-
morants in the roost. Night-roost counts provided informa-
tion on the distribution of cormorants relative to active night
roosts and a total count of cormorants for the entire Yazoo
Basin. Pond counts provided descriptive statistics of percent-

age use versus availability for each pond type within and
between years.

Statistical Analyses

We used the Manly–Chesson selectivity index as a measure
of selection for pond types (Chesson 1978, 1983; Eisenhower
and Parrish 2009). Use versus availability was based on pond
area rather than number because food-fish ponds are, on
average, larger than fingerling ponds (Steeby and Avery
2002). We arcsine–square-root transformed proportion
(i.e., percentage) data prior to evaluation of selectivity
(Steel and Torrie 1980). The selectivity index alpha
(a) ¼ (ri/ni)/[S(ri/ni)], equaled 1 summed across pond types
(Eisenhower and Parrish 2009), where ri was the proportion
of ponds of type i on which cormorants were observed, and
ni, was the proportion of ponds of type i surveyed. We
calculated 95% confidence interval estimates around a for
all surveys combined. We considered that there was no
selection for a pond type if the 95% confidence interval
for a overlapped 1/m, where m equals the area of pond types
available (i.e., 1/m ¼ 0.33; Eisenhower and Parrish 2009,
Carter et al. 2010).
We developed an a priori global model to explain presence

or absence and ordinal level of use by cormorants of aqua-
culture ponds. Three sources of variation were incorporated
into the models: month, region, and a landscape-scale metric
(N-AVAIL) estimating numbers of cormorants available to a
given cluster on a given survey date. The metric N-AVAIL
was developed because multiple active roost sites could po-
tentially contribute birds to any given cluster on any given
survey date. We determined the metric by pairing aerial
surveys of numbers of cormorants observed on catfish ponds
with WS-MS aerial night-roost counts for the Yazoo Basin
for a given time period. The metric N-AVAIL incorporated
distance from night roost to a given cluster, and number of
cormorants counted in a given night roost, adjusted for the
observed foraging distances of very high frequency-marked
birds as reported by Tobin et al. (2002:48 [Table 2]). We
made this adjustment by multiplying the observed cumula-
tive percentage frequency distribution of cormorant move-
ments from night roosts to next-day foraging locations for a
given 10-km distance category (Fig. 3) by the numbers of
cormorants counted for a given roost on a given aerial survey
date. The sum of the number of cormorants adjusted for
observed distance and number counted provided a unique
cumulative total of cormorants available to each cluster for
each survey period.
We evaluated effects of metrics on presence or absence and

level of use of cormorants on clusters using SAS (version 9.1)
PROC GLMMIX (SAS Institute 2005). We analyzed the
binary data by fitting a general linear mixed model with logit
link and binomial error distribution. Ordinal response cate-
gories were developed to associate a level of use (i.e., preda-
tion risk) with predictive factors. We analyzed ordinal
response models estimating number of cormorants on clus-
ters by fitting a general linear mixed model with log link and
multinomial error distribution (SAS Institute 2005). In
binary and ordinal models, we modeled month, region,
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and N-AVAIL as fixed effects and cluster and year were
modeled as random effects. Because SAS version 9.1 PROC
GLMMIXED uses pseudo-likelihood estimation methods
for models with random effects, information theoretic meth-
ods of model selection are not comparable among models
(SAS Institute 2005). Due to this constraint, we evaluated
independent variables based on individual Type III F tests.
Independent variables significantly (P < 0.10) related to the
response variable were retained in the reduced model (Pope
andWebster 1972).We built global and reduced models on a
randomly selected subset of 75% of the total number of
observations. All resulting models were validated on a ran-
domly selected subset of 25% of the observed data.
We evaluated predictive capability of binary models by

developing a classification table of sensitivity (no. of cormor-
ants present that were correctly classified as present) and
specificity (no. of cormorants absent that were correctly
classified as absent) of modeled versus observed presence
or absence on the validation data set. The a priori cutpoint
for determining classification category was 0.50 (Affifi and
Clark 1990). The combined totals for specificity and sensi-
tivity are a measure of the proportion correctly classified or
correct classification rate (CCR; Hosmer and Lemeshow
2000).
Ordinal responses were associated with observed levels of

predation significant with respect to economic loss estimates.
We developed three ordinal response categories of low (�1/
cormorant/cluster), moderate (>1 to �22/cormorants/clus-
ter), and high levels (>22/cormorants/cluster) of cormorant
use (modeled levels 1, 2, and 3) based on economic consid-
erations of cormorant use of catfish aquaculture ponds
(Glahn et al. 2002). Glahn et al. (2002) found that produc-
tion and associated losses in profits occur when predation
reaches approximately 500 cormorant-days of predation/ha/
yr. For an average 4.5-ha food-fish pond (USDA 2003b, part
II) this equates to an average of approximately 11 cormor-
ants/pond during the wintering period October–April. The
maximum value for moderate use was 22 cormorants because,
on average, 2 ponds/cluster were utilized by cormorants. We
determined ordinal response categories by calculating the

marginal probabilities (Norusis 2005) of occurrence of
each response level, with the largest probability determining
the response value (e.g., if P level 1 > P level 2 and P level
1 > P level 3, then level ¼ low). The descending option in
the GLIMMIX procedure was used to model the probabili-
ties of levels of the response variable having higher ordered
values (i.e., the least value is the reference). We evaluated
model fit and predictive capability of ordinal response models
of cormorant use based on within-level and overall CCR
against the validation data set.
We interpreted parameters of interest for selected models

by description of their associated odds ratios (OR; Keating
and Cherry 2004). The OR is a measure of association that
estimates how much more or less likely is a given outcome
(Affifi and Clark 1990, Hosmer and Lemeshow 2000). The
relationship for a logistic model with a dichotomous inde-
pendent variable (i.e., interior or river regions) is OR ¼ ebi ,
where ebi is the inverse natural log of parameter estimate bi. A
value for change in x may be a value other than 1 (i.e., N-
AVAIL). In this case, the log OR for a change in c units in x
is obtained from the logit difference g(x þ c) � g(x) ¼ cb
(Hosmer and Lemeshow 2000:63). For the variable N-
AVAIL, we based the value of c on the average number
of cormorants available over both years by the associated
slope parameter estimate. All tests of significance were con-
ducted at P ¼ 0.05. Data are presented as means � standard
error.

RESULTS

We flew 29 aerial surveys over the 2-yr study period.We flew
15 from 10 October 2000 to 17 April 2001 and 14 from 15
October 2003 to 20 April 2004. In 2000–2001 (yr 1), we
sampled 66 clusters (58 from the interior and 8 from the river
region). One cluster in the interior region was dropped
because ponds were out of production. In 2003–2004 (yr
2), we sampled 65 clusters (58 from the interior and 7 from
the river region). One cluster each in the interior and river
regions were dropped from aerial surveys because ponds were
out of production. Twenty total aerial night-roost surveys
were flown by WS-MS, 10 in each year.
The percentage of pond types available by area averaged

over each survey period for both years was: brood-fish ponds,
2.0%; fingerling ponds, 17.2%; and food-fish ponds, 80.8%.
The percentage of pond types used by cormorants averaged
over each survey period for both years was: brood-fish ponds,
1.1%; fingerling ponds, 14.5%; and food-fish ponds, 84.4%.
Chesson’s a indicated selection against brood-fish ponds,
neutral selection for fingerling ponds, and selection for food-
fish ponds (Fig. 4). The 95% confidence intervals for
Chesson’s a overlapped between food-fish and fingerling
ponds.
The metric N-AVAIL and month explained statistically

significant portions of occurrence of cormorants on catfish
aquaculture ponds (n ¼ 983, F1,845 ¼ 7.2, P > F ¼ 0.008
and F6,845 ¼ 17.2, P > F < 0.001, respectively). Region
was not significant in explaining variation in occurrence of
cormorants on clusters. Within-model sensitivity for both
the global and reduced models was 83%, specificity was 79%,
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Figure 3. Cumulative percentage frequency distribution of double-crested
cormorant (Phalacrocorax auritus) movements from night roosts to next-day
foraging locations in the Yazoo Basin ofMississippi, USA, for a given 10-km
distance category, 15 January–10 March 1997 (data source: Tobin et al.
2002:48).
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and the CCR was 81%. When applied to the randomly
selected validation data set, both global and reduced
model sensitivity was 72%, specificity was 69%, and the
CCR was 71%. Odds ratios indicated that a given cluster
is 7.2 times more likely to have cormorants in March than
October and 1.4 times more likely at the mean N-AVAIL of
8,082 compared with the minimum N-AVAIL of 100
(Table 1).
The metric N-AVAIL and month explained statistically

significant portions of occurrence of cormorants on
catfish aquaculture ponds for the ordinal model (n ¼ 983,
F1,844 ¼ 7.8, P > F ¼ 0.006 and F6,844 ¼ 18.1, P >
F < 0.001, respectively). Within-model overall CCR for
both the global and reduced models was 67% (Table 2).
When applied to the randomly selected validation data
set, overall correct classification for both the global and
reduced models was 59%. Within-model sensitivity (positive
classification rate) was 91% for low (n ¼ 517), 26% for
moderate (n ¼ 247), and 54% for high (n ¼ 219) use levels
for both global and reduced models. Validation model sen-
sitivity was 86% for low (n ¼ 159), 19% for moderate
(n ¼ 95), and 53% for high (n ¼ 73) use levels for both

global and reduced models. Odds ratios indicated that pa-
rameter N-AVAIL is positively related to greater use levels.
The months February–April relative to October are posi-
tively related to moderate and high aquaculture pond use
levels compared with low use levels. Clusters are 5.8 times
more likely to have high use by cormorants in March than in
October and 1.3 times more likely to have high use at the
mean N-AVAIL of 8,082 compared with the minimum N-
AVAIL of 100 (Table 2).

DISCUSSION

This study demonstrated seasonality of use of catfish aqua-
culture ponds and that cormorants were selecting against
brood-fish ponds, neutral to fingerling ponds, and selecting
for food-fish ponds relative to availability of pond types
sampled. Food-fish ponds composed most (81%) of the
ponds surveyed by area and most (84%) of the cormorants
were found on food-fish ponds. Combined, 98% of cormor-
ants were found on food-fish and fingerling ponds. Although
selectivity was shown for food-fish ponds and against brood-
fish ponds, selection was weak, averaging about 3.6% for food
fish ponds and 0.9% against brood-fish ponds. Regardless,
these data indicate that cormorant distributions on various
catfish aquaculture pond types are at least proportional to
availability of catfish pond types. This distribution of cor-
morants on catfish pond types differs from earlier research,
which suggested cormorants may prefer fingerling ponds due
to their higher stocking densities of catfish and, presumably,
more readily consumable size classes (Glahn et al. 1995).
However, previous research focused on cormorant foraging
on individual ponds and did not assess use versus availability
at regional scales.
Our finding on cormorant distribution on catfish aquacul-

ture facilities has important implications with respect to
economic loss estimates of cormorant predation on catfish
aquaculture. Glahn et al. (2002) suggested that predation of
fingerlings from food-fish ponds and consequent economic
loss at harvest would correspond to a 5-fold increase over
simple replacement cost of fingerling catfish. However,
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ponds aerially surveyed in the Yazoo Basin of Mississippi, USA, winters
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Table 1. Reduced model parameter estimates, standard errors (SE), prob-
ability of a greater t-value (P > t) and odds ratios (OR) predictive of presence
or absence (1 or 0) of double-crested cormorants on aquaculture ponds in the
Yazoo Basin of Mississippi, USA, winters (Oct–Apr) 2000–2001 and 2003–
2004.

Parameter df Estimate SE P > t OR

N-AVAILa 845 4.0�05 1.5�05 0.008 1.40
Octb 0
Nov 845 �0.47 0.34 0.17 0.63
Dec 845 �0.54 0.34 0.11 0.58
Jan 845 �0.27 0.28 0.34 0.77
Feb 845 1.19 0.30 �0.001 3.28
Mar 845 1.98 0.33 �0.001 7.22
Apr 845 1.10 0.30 �0.001 3.00

a Reference N-AVAIL is the difference between the min. and mean no.
of double-crested cormorants counted (min. ¼ 100, mean ¼ 8,082,
n ¼ 1,310, SE ¼ 241).

b Oct is the reference month set to ¼ 0.

Table 2. Reduced model parameter estimates, standard errors (SE), prob-
ability of a greater t-value (P > t) and odds ratios (OR) predictive of levels of
use (low ¼ 1, moderate ¼ 2, high ¼ 3) by double-crested cormorants on
aquaculture ponds in the Yazoo Basin of Mississippi, USA, winters (Oct–
Apr) 2000–2001 and 2003–2004. The odds ratios represent the relative
probability of having higher ordered values (moderate or high use) relative
to low use.

Parameter df Estimate SE P > t OR

N-AVAILa 844 3.4�05 1.2�05 0.006 1.30
Octb 0
Nov 844 �0.28 0.34 0.41 0.76
Dec 844 �0.53 0.34 0.12 0.59
Jan 844 �0.15 0.28 0.59 0.86
Feb 844 1.32 0.28 �0.001 3.73
Mar 844 1.75 0.29 �0.001 5.75
Apr 844 1.12 0.28 �0.001 3.08

a Reference N-AVAIL is the difference between the min. and mean no.
of double-crested cormorants counted (min. ¼ 100, mean ¼ 8,082,
n ¼ 1,310, SE ¼ 241).

b Oct is the reference month set to ¼ 0.
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previous studies have assumed simple replacement-cost esti-
mates of loss to catfish aquaculture due to cormorant preda-
tion (Glahn and Brugger 1995) or have relied on producer
surveys to estimate loss (Wywialowski 1999), primarily due
to a lack of information on cormorant distribution on aqua-
culture facilities.
Most food-size catfish are produced in multibatch produc-

tion systems where multiple age and length classes of catfish
are present in a food-fish pond (Tucker et al. 2004).
Although this system has production benefits to producers
and processors, it has created a wider distribution of con-
sumable-size fish available to cormorants (Glahn et al. 2002).
This multibatch production system may facilitate the distri-
bution of cormorants on food-fish catfish aquaculture pond
types. Further, it may be energetically favorable for cormor-
ants to consume fewer larger catfish from food-fish ponds
than many smaller catfish from fingerling ponds. Given the
multibatch production method and the increased losses as-
sociated with predation on food-fish ponds (Glahn et al.
2002), alternative culture practices such as ‘‘modular produc-
tion’’ (Hanson et al. 2007) may be a viable option, particularly
in areas of high cormorant use.
Modeling of occupancy of pond clusters by cormorants was

predictive within the sample frame. Within-model and vali-
dation data indicate seasonality of use and a metric incorpo-
rating distance to active night roosts, number of cormorants
in an active night roost, and observed foraging distances of
cormorants, were predictive of their presence or absence on
aquaculture ponds. Odds ratios indicate that cormorants are
7.2, 3.7, and 3.1 times more likely to occur on aquaculture
ponds in March, February, and April, respectively relative to
October. Interestingly, in October–January, parameter esti-
mates and associated OR did not differ significantly, but
were significantly less than in February–April (Table 1). This
finding is consistent with previous studies indicating that
numbers of cormorants counted from night roosts peaks
from January to March (Glahn and Stickley 1995, Glahn
et al. 2000). However, the presumed increased use of aqua-
culture ponds described in previous studies was not derived
from actual observation on ponds but was assumed from
night-roost counts or anecdotal reports of predation. Glahn
et al. (1999) reported that cormorants migrating through
aquaculture-producing regions had higher omental fat
reserves than cormorants that migrated outside of aquacul-
ture-producing regions. Glahn et al. (1999) hypothesized
that cormorant use of aquaculture ponds during the spring
may improve condition of birds during spring migration and
possibly result in improved condition on their arrival on the
breeding grounds. This study documents the seasonality of
cormorant use of catfish aquaculture ponds in the Yazoo
Basin of Mississippi and an increase in use of aquaculture
ponds during spring migration consistent with Glahn et al.’s
(1999) hypothesis.
The river and interior regions were not a significant pre-

dictor of cormorant use. Current management strategies are
focused on moving cormorants from night roosts in high-
density aquaculture regions in the interior Yazoo Basin to
lesser density aquaculture regions and regions with greater

natural foraging habitat nearer the Mississippi River (Mott
et al. 1998, Dorr et al. 2008). The fact that the likelihood of
cormorant occupancy of aquaculture ponds between regions
is not different suggests that aquaculture producers near the
river face similar (but not greater) predation risk as those in
the interior. This study was conducted concurrent with
harassment programs, so it is not possible to determine
whether or how much this predation risk would change if
the harassment program were not in place. Furthermore the
acreage devoted to catfish aquaculture has steadily declined
since 2004. This change in the industry may affect how
cormorants are distributed within the region or the intensity
of pond use and, consequently, methods used to mitigate
losses and their effectiveness.
Although pond counts and night-roost counts were corre-

lated (r � 0.58), models of the level of risk (i.e., low, mod-
erate, and high) were only marginally predictive. Low and
high levels of use were classified reasonably accurately, but
sensitivity for moderate levels of use was poor. However, the
ordinal model overall was reasonably predictive both for the
model and validation data set. Thus, although the risk of
occurrence can be modeled, the level of that risk is more
difficult to determine, at least for the variables evaluated.
Given this caveat, greater levels of use (moderate and high)
were associated positively with N-AVAIL, and for the
months of February–April compared to October. For all
models OR were greater for seasonal patterns relative to
numbers of cormorants available to a given cluster. We think
it is unlikely that production practice influences this season-
ality because the multiple-batch production process makes
consumable-size catfish available throughout the year. We
suggest that physiological demand during prebreeding spring
migration, socially facilitated responses (e.g., presence of
conspecifics) and pond- or farm-level characteristics (e.g.,
presence of disease in catfish) are influencing pond use at a
seasonal level.
Werner andDorr (2006) suggest that night-roost dynamics

and pond-specific impacts of cormorants on catfish produc-
tion are of primary research importance in estimating eco-
nomic losses to aquaculture. Research and more detailed
description of factors affecting use of aquaculture ponds
by cormorants at the pond or farm level could provide
insights that could be scaled to larger landscape levels and
provide greater predictive capability of regional models re-
garding level of use and potential impacts to aquaculture.

MANAGEMENT IMPLICATIONS

The distribution and abundance of cormorants on aquacul-
ture facilities in the Yazoo Basin have not been studied at
scales larger than a few farms. This study shows that cor-
morants are distributed on catfish aquaculture ponds at least
in proportion to availability of pond types and that occupancy
and levels of use are greatest during February–April.
Management efforts targeted during this time frame at
pond and farm level and regionally will have the greatest
impact in reducing predation losses. Lastly, we suggest that
economic loss estimates be revisited and refined based on the

76 Wildlife Society Bulletin � 36(1)



information on cormorant distribution on aquaculture ponds
provided in this study.
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