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Optimum maintenance policy with Markov processes
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Abstract

This paper presents a method to find the optimum maintenance policy for a component. Random failures and failures due to deterioration are
considered. Using Markov processes, the state probabilities are calculated and the optimal value of the mean time to preventive maintenance is
determined by maximizing the availability of single component with respect to mean time to minimal preventive maintenance. Using the state
probabilities, the problem is set up as Markov decision processes and an optimum maintenance policy using the policy iteration algorithm is
determined. An example is used to illustrate the method. Maple V and Matlab software have been used to solve the equations.
© 2005 Elsevier B.V. All rights reserved.
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. Introduction

In principle, improving system reliability and reducing oper-
tions and maintenance (O&M) costs are top priorities of electric
tilities. In an increasingly competitive power delivery envi-
onment, electric utilities are forced to apply more proactive
ethods of utility asset management. One of the main elements
f electric power delivery asset management is the capital bud-
et and O&M of existing facilities. Since in many cases the
ost of construction and equipment purchases are fixed, O&M
xpenditures are the primary candidate of potential savings. As
ystem equipments continue to age and gradually deteriorate,
he probability of service interruption due to component failure
ncreases.

Electric utilities are confronted with many challenges in this
ew era of competition: rising O&M costs, growing demand on
ystems, maintaining high levels of reliability and power quality,
nd managing equipment aging. Therefore, the health of equip-
ent is of utmost importance to the industry because revenues
re affected by the condition of equipment when demand is high,
nd when equipment is in working order, substantial revenues

will, and eventual loss of customers. An effective mainten
strategy is essential in delivering safe and reliable electric p
to customers economically.

In general, maintenance is either planned or unplanned
rective maintenance is a reactive strategy which is unpla
and is carried out after failure has occurred. The intention
restore an item to a state that can perform its required func
Planned maintenance strategies are proactive in nature a
be divided into two groups: preventive and predictive. Pre
tive maintenance (PM) which is sometimes called schedul
a maintenance carried out at regular intervals. The purpo
PM is to eliminate the need for radical treatment sometim
the future (which is almost always much more expensive).
by its very nature, can be scheduled and controlled for a m
mum cost. Clearly, too little maintenance may have very co
consequences but on the other hand, it may not be econom
perform it too frequently[1]. Predictive maintenance (PdM) i
maintenance carried out when it is deemed necessary, ba
periodic inspections, diagnostic tests or other means of con
monitoring.

Quantitative analysis of a maintenance scheme is us

an be realized. On the contrary, unhealthy equipment can result
n service interruption, customer dissatisfaction, loss of good

∗

based on the deterministic assumption that the consequences
of the maintenance actions are non-random. For example, after
an overhaul, the future trend of operating cost is known and the
random failures of the equipment have no bearing on the mainte-
nance frequency. In reality, however, the equipment failure may
r ctivity
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may be either postponed or canceled, thus the maintenance inter-
val may become random in nature. A maintenance policy which
is based on the probabilistic principles would not only better
reflect the random nature of the equipment operating times, but
could also lead to substantial savings in maintenance costs.

The problem of replacement or overhaul of equipment, which
deteriorates with usage, is one of the standard applications of
Markov processes[2]. Continuous operation, or daily start–stop
operation, without failure requires a comprehensive plant pre-
ventive maintenance policy and diagnostic system for each
equipment and component. In[3], multi-state system models for
reliability evaluation have been proposed. Models and appropri-
ate methods for parameter estimation of degradation data have
been developed[4]. These models incorporate catastrophic fail-
ure as well as degradation failure. Literature related to optimal
maintenance policies for repairable components are given in
[5]. Such policies which require to make choices among actions
(such as “repair”, “overhaul”, or “do nothing”) can be formulated
as a Markov decision process[6]. The goal is to find an optimal
maintenance policy which maximizes the expected benefits.

2. Markov processes

To date, in the power systems context, continuous parame-
ter Markov chains have been applied most extensively to model
power system reliability and maintenance problems. Each equip-
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Fig. 1. Maintenance model with deterioration and full repair after random
failure.

represents the random failures that can occur at any time but
not while maintenance is performed on the component. Repair
following random failure is completed at a rate ofµ0, and then
return to stateD1. The state space diagram of the maintenance
model is shown inFig. 1.

The state transition matrix for the model has the form

A =




−Σ1 kλ1 0 λm 0 0 λ0 0

0 −Σ2 kλ1 0 λm 0 λ0 0

0 0 −Σ3 0 0 λm λ0 kλm

µm 0 0 −µm 0 0 0 0

µm 0 0 0 −µm 0 0 0

0 µm 0 0 0 −µm 0 0

µ0 0 0 0 0 0 −µ0 0

µ1 0 0 0 0 0 0 −µ1




(1)

where�i = the negative of the sum of all the remaining elements
in row i. The set of steady state equations can be solved by[1]
as:

PAT = 0 (2)

8∑
i=1

Pi = 1.0 (3)

w a-
b al
m

ecur-
s e
p ice
i

A

w t is
i

, the
o (
ent is assumed to be repairable. The time to repair depen
he type of failure. Periodically, the component is removed f
peration for minimal preventive maintenance. Minimal prev

ive maintenance is a preventive maintenance activity of lim
ffort and effect. If deterioration is modeled as occurring

imited number of discrete steps, then minimal preventive m
enance sets back the process by one step. This improv
omponent from stagei to stagei − 1 of deterioration. If th
omponent is in stage one of deterioration, it remains in
tage on completion of minimal preventative maintenanc
s assumed that the duration of each stage of deteriorati
ell as times for repairing a failed equipment are exponent
istributed.

In this model[7], both random failure and failure due to de
ioration can occur. Deterioration of the equipment is mod
s occurring ink discrete steps. The time spent in each s
f deterioration are exponentially distributed with an ide
al mean of 1/kλ1. Therefore, the time to deterioration failu

s represented by an Erlangian distribution. An applicatio
evice-of-stages technique to electric power distribution

ems have been proposed[8]. Two types of stage configuratio
re described and models parameters are estimated. M
ance is assumed to improve the component’s condition, b

o as-good-as-new state. Maintenance is modeled as a P
rocess with a parameterλm. Maintenance times are expon

ially distributed with a mean of 1/µm. Repair is an activity tha
eturns a failed component to working condition (e.g. overh
ssumption is made that repairs after failure due to deterior
ill always produce as-good-as-new conditions with a mea
/µ1, whereas repairs of random failures may or may not ach

his. Note that this assumption could be easily relaxed. StaF0
-

e-
t
on

f

hereP = [P1 P2 P3 P4 P5 P6 P7 P8]. Pi = steady state prob
ility that the component is in statei and not undergoing minim
aintenance,i = 1, 2,. . ., k, F0, F1.
The solution to these equations is obtained by using a r

ive approach[9] with Maple V and Matlab software. Th
robabilityA(λm) (availability) that the component is in serv

s given by

(λm) = P1 + P2 + P3 (4)

hereP1, P2, andP3 are the probabilities that the componen
n service.

Once the state probabilities of the model are calculated
ptimal value of the mean time to preventive maintenanceλm)
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is calculated by taking the derivative ofA(λm) with respect to
λm and then equating it to zero.

3. Markov decision processes

Using the state probabilities found in the previous section,
the optimal stationary policy of the model can be determined by
setting up the problem as a Markov decision process (MDP). In
general an MDP is a 4-tuple (S, K, R, T) whereS = a set of system
states (assumed to be finite);K = a set of available actions;R = a
set of state- and action-dependent immediate rewards or costs;
T = a set of state- and action-dependent transition probabilities.

A decision rule,dn, is a scheme for assigning actions inK to
states inS. A policy is a sequence of decision rules for a specified
time horizon which can be finite or infinite. A “stationary policy”
is a policy over a specified time horizon where the decision rules
for each period are identical. Ifp(j|i, k) represents the transition
probability of statei to statej as a result of actionk, andr(i, k,
j) represent returns that result from a transition from statei to j
as a result of actionk, then expected return from taking actionk
while in statei is given by

r(i, k) =
∑
j ∈ S

p(j|i, k)r(i, k, j) (5)

In order to find the optimal stationary policy for the model, the
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Fig. 2. The effect of mean time to minimal maintenance on availability.

once in 500 days and that the repair lasts 7 days. If the unit is
not maintained, it would fail from deterioration every 1000 days
(on average). Also, the mean repair time is 14 days and the min-
imal maintenance would take an average of half a day. Assume
that all times are exponentially distributed and the number of
stages of deterioration of the unit is 3. In this case,k = 3,λ−1

0 =
500 days,λ−1

1 = 1000 days,µ−1
0 = 7 days,µ−1

1 = 14 days, and
µ−1

m = 0.5 days. By maximizingA(λm) with respect toλm, the
optimal value of the mean time to minimal maintenance can be
determined[9]. Fig. 2 illustrates the effect of the mean time to
minimal preventive maintenance on the availability of the com-
ponent.Table 1provides the state probabilities of the component
(in percent). The availability of the model is calculated as 0.9808.

The optimal value of the mean time to minimal preventive
maintenance for the model is 203 days for a mean time to Pois-
son failure of 500 days. The availability decreases slowly as
the mean time to minimal preventive maintenance exceeds its
optimal value; the decrease is faster if the mean time to preven-
tive maintenance is less than the optimal value. As the value of
λ0 increases from 500, to 1000, to 10,000, the optimal value
decreases from 203 to 163 days and then to 136 days. The
availability of the component increases asλ0 increases. This
is because the value ofλm depends on the values ofλ0.

In order to find the optimal policy, the best action in each
state must be selected. There are two actions to be taken. Action I
r e”.
T s
t

T
S

P
P
P
P
P
P
P
P

nichain policy iteration algorithm is used. A system wit
ingle set of recurrent states and possibly some transient
s said to be unichain. In order to be able to use the unic
olicy iteration algorithm, the MDP model should be chec

o determine whether it is unichain. The result of this verifica
ndicates that indeed this model is unichain. The unichain p
teration algorithm involves the following steps[6]:

tep 1. Setn = 0 and select an arbitrary decision ruledn ∈ D
heren = iteration count;D = set of decision rules.

tep 2. (Policy evaluation) obtain a scalargn and anhn ∈ V by
olving:

dn − ge + (Pdn − I)h = 0 (6)

herevi(n) = ngi + hi = expected total earnings in the nextn tran-
itions if the system is now in statei; Pd = Markov reward proces
ith transition matrixpd; I = identity matrix.

tep 3. (Policy improvement) choosedn + 1 = dn to satisfy:

n+1 ∈ arg max


rd +

N∑
j=1

Pdhn


 (7)

hereN is the number of states in the system, settingdn + 1 = dn

f possible.

tep 4. If dn + 1 = dn for all states, stop and setd* = dn. Other-
ise incrementn by 1 and return to step 2.

. Example

The following example illustrates the implementation of
odel. Consider that the average random failure of a unit o
 s

efers to “do nothing” while action II refers to “do maintenanc
here are 2× 2× 2× 1× 1× 1× 1× 1 = 8 stationary policie

o choose from. Actions I and II can be chosen from statesD1,

able 1
tate probabilities

1 67.03

2 23.84

3 7.21

M1 0.165

M2 0.059

M3 0.018

F1 1.373

F0 0.303
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Fig. 3. State diagram.

Table 2
Reward and transition probabilities

Reward Transition probabilities Reward Transition probabilities

r(D1, I, F0) =−500 P(F0|D1, I) = 0.1349 r(M1, I, D1) = 1000 P(D1|M1, I) = 0.9983
r(D1, I, D2) = 900 P(D2|D1, I) = 0.1978 r(M1, I, M1) =−100 P(M1|M1, I) = 0.0017
r(D1, I, D1) = 1000 P(D1|D1, I) = 0.6703 r(M2, I, D1) = 1000 P(D1|M2, I) = 0.9994
r(D1, II, M1) =−100 P(M1|D1, II) = 1.0 r(M2, I, M2) =−100 P(M2|M2, I) = 0.0006
r(D2, I, D3) = 800 P(D3|D2, I) = 0.4570 r(M3, I, D2) = 900 P(D2|M3, I) = 0.9998
r(D2, I, F0) =−500 P(F0|D2, I) = 0.3046 r(M3, I, M3) =−100 P(M3|M3, I) = 0.0002
r(D2, I, D2) = 900 P(D2|D2, I) = 0.2384 r(F0, I, F0) =−500 P(F0|F0, I) = 0.0030
r(D2, II, M2) =−100 P(M2|D2, II) = 1.0 r(F0, I, D1) = 1000 P(D1|F0, I) = 0.9970
r(D3, I, F1) =−1000 P(F1|D3, I) = 0.5567 r(F1, I, F1) =−1000 P(F1|F1, I) = 0.0137
r(D3, I, D3) = 800 P(D3|D3, I) = 0.0721 r(F1, I, D1) = 1000 P(D1|F1, I) = 0.9863
r(D3, I, F0) =−500 P(F0|D3, I) = 0.3712
r(D3, II, M3) =−100 P(M3|D3, II) = 1.0

D2, andD3 whereas action I is available in statesM1, M2, M3,
F0, andF1.

The reward for the component to stay in statesD1, D2, and
D3 is 1000, 900, and 800, respectively. The reward decreases
from D1 to D3 because the component is deteriorating, and it
may not work as good as new. The reward for the component
to stay in statesM1, M2, andM3 is −100, but for statesF0 and
F1 the reward is−500 and−1000, respectively. The reward in
these states is based on the duration of the unavailability; the
longer time the component stays in such states, the greater the
loss. The transition probabilities are based on the values obtained
from Markov model.

Action sets are:KD1 ={I, II}, KD2 ={I, II}, KD3 ={I, II}
KM1 ={I}, KM2 ={I}, KM3 ={I} KF0 ={I}, KF1 ={I}.

Fig. 3 shows the state diagram of the component for a case
where the number of stages in the process is 4. The reward and
transition probabilities for each transition with possible actions
are given inTable 2.

Table 3provides the summary of the results by using the
policy iteration. The optimal policy of the model is: “do nothing”

Table 3
Optimal policy

D1 D2 D3 Gain D1 D2 D3

I I I 659 I II I
I II I 714 I II II
I II II 714 I II II

in statesD1, M1, M2, M3, F0, andF1; “do maintenance” in states
D2 andD3. The average reward or gain of this policy is 714.
The optimal policy is expected, because the probabilities of the
component transiting to failure state is getting higher in stateD2
andD3, also the probability of deterioration failure which is in
stateD3 is very high.

5. Conclusion

As the mean time to Poisson failure increases, the need for
minimal preventive maintenance decreases. If minimal repair is
carried out after random failures, the effect of random failure
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is eliminated and preventive maintenance is fully effective. As
the mean time to deterioration failure increases, the availability
also increases, and the need for minimal preventive maintenance
will increase. Also, as the mean repair time increases, avail-
ability decreases. One of the best ways to reduce the mean
time to minimal maintenance is to reduce the mean time of
repairing a deterioration failure. In other words, for minimal
PM to be effective, the deterioration failures must dominate
the failure mix because the Poisson failure cannot be prevented
through PM. The optimum maintenance policy will maximize
the benefits. Assuming that the component is in stateD2, we
may perform the maintenance more frequently than in stateD1,
which may reduce the rate that the component will transit to
stateD3.
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