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Abstract

This paper presents a method to find the optimum maintenance policy for a component. Random failures and failures due to deterioration ar
considered. Using Markov processes, the state probabilities are calculated and the optimal value of the mean time to preventive maintenance
determined by maximizing the availability of single component with respect to mean time to minimal preventive maintenance. Using the state
probabilities, the problem is set up as Markov decision processes and an optimum maintenance policy using the policy iteration algorithm is
determined. An example is used to illustrate the method. Maple V and Matlab software have been used to solve the equations.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction will, and eventual loss of customers. An effective maintenance
strategy is essential in delivering safe and reliable electric power
In principle, improving system reliability and reducing oper- to customers economically.
ations and maintenance (O&M) costs are top priorities of electric  In general, maintenance is either planned or unplanned. Cor-
utilities. In an increasingly competitive power delivery envi- rective maintenance is a reactive strategy which is unplanned
ronment, electric utilities are forced to apply more proactiveand is carried out after failure has occurred. The intention is to
methods of utility asset management. One of the main elementsstore an item to a state that can perform its required function.
of electric power delivery asset management is the capital bud?rlanned maintenance strategies are proactive in nature and can
get and O&M of existing facilities. Since in many cases thebe divided into two groups: preventive and predictive. Preven-
cost of construction and equipment purchases are fixed, O&Mve maintenance (PM) which is sometimes called scheduled, is
expenditures are the primary candidate of potential savings. Ag maintenance carried out at regular intervals. The purpose of
system equipments continue to age and gradually deterioratBM is to eliminate the need for radical treatment sometime in
the probability of service interruption due to component failurethe future (which is almost always much more expensive). PM,
increases. by its very nature, can be scheduled and controlled for a mini-
Electric utilities are confronted with many challenges in thismum cost. Clearly, too little maintenance may have very costly
new era of competition: rising O&M costs, growing demand onconsequences but on the other hand, it may not be economical to
systems, maintaining high levels of reliability and power quality,perform it too frequentlyl]. Predictive maintenance (PdM) is a
and managing equipment aging. Therefore, the health of equiphaintenance carried out when it is deemed necessary, based on
ment is of utmost importance to the industry because revenugseriodic inspections, diagnostic tests or other means of condition
are affected by the condition of equipment when demand is highmonitoring.
and when equipment is in working order, substantial revenues Quantitative analysis of a maintenance scheme is usually
can be realized. On the contrary, unhealthy equipment can resiiased on the deterministic assumption that the consequences
in service interruption, customer dissatisfaction, loss of gooaf the maintenance actions are non-random. For example, after
an overhaul, the future trend of operating cost is known and the
random failures of the equipment have no bearing on the mainte-
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may be either postponed or canceled, thus the maintenance inter-
val may become random in nature. A maintenance policy which
is based on the probabilistic principles would not only better
reflect the random nature of the equipment operating times, but
could also lead to substantial savings in maintenance costs.

The problem of replacement or overhaul of equipment, which  #
deteriorates with usage, is one of the standard applications of
Markov processelR]. Continuous operation, or daily start—stop
operation, without failure requires a comprehensive plant pre- ¥
ventive maintenance policy and diagnostic system for each | ”
equipment and component.[B], multi-state system models for
reliability evaluation have been proposed. Models and appropri- o
ate methods for parameter estimation of degradation data have
been developefd]. These models incorporate catastrophic fail-
ure as well as degradation failure. Literature related to optimal
maintenance policies for repairable components are given ifig. 1. Maintenance model with deterioration and full repair after random
[5]. Such policies which require to make choices among actiongilure.

(such as“repair”, “overhaul”, or “do nothing”) can be formulated

as a Markov decision procef§]. The goal is to find an optimal represents the random failures that can occur at any time but

maintenance policy which maximizes the expected benefits. not while maintenance is performed on the component. Repair
following random failure is completed at a rateiof, and then

2. Markov processes return to state;. The state space diagram of the maintenance
model is shown irFig. 1

To date, in the power systems context, continuous parame- The state transition matrix for the model has the form
ter Markov chains have been applied most extensively to model - -3 kg 0 Am 0 0 Ao 0 7

H\J

M,

power system reliability and maintenance problems. Each equip-

. . . . 0 -y kM 0 Am 0 Ao 0
ment is assumed to be repairable. The time to repair depends on
the type of failure. Periodically, the component is removed from 0 0 -2 O 0  Am A0 Kim
operation for minimal preventive maintenance. Minimal preven- =~ | im 0 0 -wum O 0 0 0
tive maintenance is a preventive maintenance activity of Iimitecf‘ | um 0 0 0 —um 0 0 0
gffc_)rt and effect. If_deterioration is mod.el_ed as occur.ring in_a 0 . 0 0 0 —um O 0
limited number of discrete steps, then minimal preventive main- 0 0 0 0 0 - 0
tenance sets back the process by one step. This improves the Ho Ho
component from stageto stagei — 1 of deterioration. If the L O 0 0 0 0 0 —p
component is in stage one of deterioration, it remains in that @

stage on completion of minimal preventative maintenance. "’whereE,-zthe negative of the sum of all the remaining elements

is assumed that the duration of each stage of deterioration s row ;. The set of steady state equations can be solved]by
well as times for repairing a failed equipment are exponentiallyyg-

distributed.

In this mode[7], both random failure and failure due to dete- PA” = 0 (2)
rioration can occur. Deterioration of the equipment is modeled g
as occurring irk discrete steps. The time spent in each stagipi -10 3)

of deterioration are exponentially distributed with an identi- =/

cal mean of Wx,. Therefore, the time to deterioration failure _ B
is represented by an Erlangian distribution. An application ofVN€réP=[P1 P2 P3 P4 PS5 P6 P7 P8]. P; = steady state proba-

device-of-stages technique to electric power distribution sysPility thatthe componentis in statand not undergoing minimal

tems have been proposf&]. Two types of stage configurations Maintenance,=1,2,..., k, Fo, F1. _ .

are described and models parameters are estimated. Mainte- 1 N€ Solution to these equations is obtained by using a recur-
nance is assumed to improve the component's condition, but n&fve approactid] with Maple V and Matlab software. The
to as-good-as-new state. Maintenance is modeled as a PoisgdiPabilityA(im) (availability) that the componentis in service

process with a parametef,. Maintenance times are exponen- 'S 9iven by

tially distrib_uted with a mean of um_. Repair_is_ an activity that A(\m) = P1 + Py + Ps (4)
returns a failed component to working condition (e.g. overhaul).

Assumption is made that repairs after failure due to deterioratiowhereP1, P2, andP3 are the probabilities that the component is
will always produce as-good-as-new conditions with a mean oin service.

1/u1, whereas repairs of random failures may or may notachieve Once the state probabilities of the model are calculated, the
this. Note that this assumption could be easily relaxed. $ate optimal value of the mean time to preventive maintenangg (
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is calculated by taking the derivative afi,) with respect to I ; - - T ;
Am and then equating it to zero. ' ' ' : '

3. Markov decision processes BT E : T m— e —

Using the state probabilities found in the previous section, " ; ; ; ;
the optimal stationary policy of the model can be determined by o97} /- - - - - . .. s 5 s 2 e = ol s o s o v e o
setting up the problem as a Markov decision process (MDP). In : : : . :
general an MDP is a 4-tupl§,(K, R, T) whereS = a set of system 0okl - o ool oL . b e e
states (assumed to be finit&);= a set of available actiong,=a Z I ) . '
set of state- and action-dependent immediate rewards or costsggs : : . .. R
T=a set of state- and action-dependent transition probabilities. ' ’ g : :

A decision ruled,,, is a scheme for assigning actionskirio 0.94
states irs. A policy is a sequence of decision rules for a specified
time horizon which can be finite or infinite. A “stationary policy”  ¢;l : . . N .
is a policy over a specified time horizon where the decisionrules ~ ° L # L o 20 e
for each period are identical. #{j|i, k) represents the transition Fig. 2. The effect of mean time to minimal maintenance on availability.
probability of state to statej as a result of actiok, andr(i, ,

J) represent returns that result from a transition from st&§ e in 500 days and that the repair lasts 7 days. If the unit is
as a result of actioh, then expected return from taking action ot maintained, it would fail from deterioration every 1000 days
while in statei is given by (on average). Also, the mean repair time is 14 days and the min-
— - C imal maintenance would take an average of half a day. Assume
(i, k) = mel’ Kr(i, k. J) ®) that all times are exponentially distributed and the number of
n ord o ol stat v for th del. th stages of deterioration of the unit is 3. In this case3, 1 =
n order to find the optimal stationary policy for the model, the -1 _ -1 _ -1 _
unichain policy iteration algorithm is used. A system with azqq f)(/)?g%jays.133%1?(){2?%ngA(Z:)a\)//v?tﬁlrespelc‘: ?gﬁ't?]zd
single set of recurrent states and possibly some transient Sta.tggtimal value of the mean time to minimal maintenance can be
is said to be unichain. In order to be able to use the unichaigetermined]. Fig. 2illustrates the effect of the mean time to
policy iteration algorithm, the MDP model should be checkedyinimal preventive maintenance on the availability of the com-
to determine whether itis unichain. The result of this verificationpomam_-rame 1provides the state probabilities of the component
indicates that indeed this model is unichain. The unichain poliq(in percent). The availability of the model is calculated as 0.9808.

lambda0 = 500 days 4
lambda0=1000 days
lambda0=10000 days

jes

iteration algorithm involves the following stefs: The optimal value of the mean time to minimal preventive
Step 1. Setn=0 and select an arbitrary decision rulee D maintenance for the model is 203 days for a mean time to Pois-
wheren = iteration countp = set of decision rules. son failure of 500 days. The availability decreases slowly as

the mean time to minimal preventive maintenance exceeds its
optimal value; the decrease is faster if the mean time to preven-
tive maintenance is less than the optimal value. As the value of
rdy, — ge + (Pgn — Dh =0 (6) o increases from 500, to 1000, to 10,000, the optimal value
] ] decreases from 203 to 163 days and then to 136 days. The
wherev;(n) =ng; + h; = expected total earnings inthe nextan- 5 ilability of the component increases iasincreases. This
sitionsifthe systemis now in state?; = Markov reward process s pecause the value af, depends on the values .
with transition matrixpg; /= identity matrix. In order to find the optimal policy, the best action in each
Step 3. (Policy improvement) choosé, , 1 =d,, to satisfy: state must be selected. There are two actions to be taken. Action |
refers to “do nothing” while action Il refers to “do maintenance”.

Step 2. (Policy evaluation) obtain a scalgy and an, € V by
solving:

N There are Z2x2x 1x1x1x1x1=8 stationary policies
dy+1 € arg maxy rd + ledhn (") to choose from. Actions | and Il can be chosen from states
=
whereN is the number of states in the system, setting; =d,,  Table1
if possible. State probabilities
_ i _ Py 67.03
Step 4. If d, . 1=d, for all states, stop and sét =d,. Other- P, 23.84
wise increment by 1 and return to step 2. Ps 791
P 0.165
4. Example Py 0.059
Pus 0.018
P 1.373

The following example illustrates the implementation of the
. . : Pro 0.303
model. Consider that the average random failure of a unit occurs.
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— Do Nothing
= Maintenance
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Fig. 3. State diagram.
Table 2
Reward and transition probabilities
Reward Transition probabilities Reward Transition probabilities
r(D1, I, Fp) =—500 P(Fo|D1,1)=0.1349 r(My, I, D1) =1000 P(D1|M1, 1)=0.9983
#(D1, 1, D2) =900 P(D2|D1,1)=0.1978 My, I, M1) =—100 P(M1|M3, I)=0.0017
r(D1, I, D1) =1000 P(D1|D1,1)=0.6703 r(M>, I, D1) =1000 P(D1|M>, 1)=0.9994
(D1, II, M1) =—100 P(M1|D1,I)=1.0 (Mo, I, M2) = —100 P(M>|M>, I)=0.0006
r(D2, I, D3) =800 P(D3|D2, 1)=0.4570 r(Ms3, I, D2) =900 P(D2|M3,1)=0.9998
r(Dz, 1, Fo):—SOO P(Fo\Dz,I)ZO.3O46 r(Mg,I, M3):—100 P(M3|M3, [):0.0002
r(D2, I, D2) =900 P(D2|D2,1)=0.2384 r(Fo, I, Fp) =—500 P(Fo|Fo, 1)=0.0030
r(Dz,”, Mz):—100 P(M2|D2,”):1.0 r(Fo, 1, Dl):].OOO P(D]_\Fo,[)zo.9970
r(Ds, I, F1) =—1000 P(F1|D3, 1)=0.5567 r(F1, I, F1)=—1000 P(F1|F1,1)=0.0137
r(D3, 1, D3)=800 P(D3|D3,I)=0.0721 r(F]_,], D1)=1000 P(D]_\Fl, [)20.9863
r(Ds, I, Fp) =—500 P(Fo|D3,1)=0.3712
(D3, II, M3)=—100 P(M3|D3, 1)=1.0
D>, andD3 whereas action | is available in statdd, M2, M3, Table 3
FO. andF1. Optimal policy
The reward for the component to stay in stalgs D, and  p1 D2 D3 Gain D1 D2 D3
D3 is 1000, 900, and 800, respectively. The reward decreaqu | | 659 | " |
from Dj to D3 because the component is deteriorating, and ij I | 714 | I I
may not work as good as new. The reward for the component I I 714 [ I I

to stay in states/1, M2, andM3 is —100, but for stategy and
Fj the reward is—500 and—1000, respectively. The reward in
these states is based on the duration of the unavailability; thie statesD1, M1, M2, M3, F,, andFy; “do maintenance” in states
longer time the component stays in such states, the greater th® andD3. The average reward or gain of this policy is 714.
loss. The transition probabilities are based on the values obtaindde optimal policy is expected, because the probabilities of the
from Markov model. component transiting to failure state is getting higher in dbate
Action sets areKp;={l, Il'}, Kp2={l, I}, Kpg={l, 1}  andDs, also the probability of deterioration failure which is in
Ky1={1}, Ks2={1}, Knz={1} Kro={1}, Kpp = {1}. stateDs is very high.
Fig. 3shows the state diagram of the component for a case
where the number of stages in the process is 4. The reward asd Conclusion
transition probabilities for each transition with possible actions
are given inTable 2 As the mean time to Poisson failure increases, the need for
Table 3provides the summary of the results by using theminimal preventive maintenance decreases. If minimal repair is
policy iteration. The optimal policy of the modelis: “do nothing” carried out after random failures, the effect of random failure
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is eliminated and preventive maintenance is fully effective. AsReferences
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