
Extension based Limited Lookahead Supervision of

Discrete Event Systems ∗

Ratnesh Kumar, Hok M. Cheung
Department of Electrical Engineering

University of Kentucky, Lexington, KY 40506

Steven I. Marcus
Department of Electrical Engineering and ISR

University of Maryland, College Park, MD 20742

Abstract

Supervisory control of discrete event systems using limited lookahead has been
studied by Chung-Lafortune-Lin, where control is computed by truncating the plant
behavior up to the limited lookahead window. We present a modification of this ap-
proach in which the control is computed by extending the plant behavior by arbitrary
traces beyond the limited lookahead window. The proposed supervisor avoids the no-
tion of pending traces. Consequently the need for considering either a conservative or
an optimistic attitude regarding pending traces (as in the work of Chung-Lafortune-
Lin) does not arise. It was shown that an optimistic attitude may result in violation of
the desired specifications. We demonstrate here that a conservative attitude may result
in a restrictive control policy by showing that in general the proposed supervisor is less
restrictive than the conservative attitude based supervisor. Moreover, the proposed
approach uses the notion of relative closure to construct the supervisor so that it is
non-blocking even when the desired behavior is not relative closed (Chung-Lafortune-
Lin assume relative closure). Finally, the proposed supervisor possesses all the desirable
properties that a conservative attitude based supervisor of Chung-Lafortune-Lin pos-
sesses. We illustrate our approach by applying it to concurrency control in database
management systems.

Keywords: Discrete Events Systems, Supervisory Control, Limited Lookahead, Con-
trollability, Relative Closure.

∗This research was supported in part by the Center for Robotics and Manufacturing Systems, University
of Kentucky, in part by the National Science Foundation under the Grants NSF-ECS-9409712, NSF-ECS-
9709796 and NSF-EEC-9402384, and in part by the Office of Naval Research under the Grant ONR-N00014-
96-1-5026.

1brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357335856?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

Discrete Event Systems (DESs) are those dynamical systems which evolve according to
the asynchronous occurrence of certain discrete qualitative changes, called events. Many
man made systems including manufacturing systems, communication protocols, database
transaction systems, traffic systems, etc., are examples of DESs. The theory of supervisory
control of DESs initiated by Ramadge and Wonham [25, 26] deals with control of the “orderly
flow” of events in such systems. The behavior of a DES, also called a plant, is described using
the set of all finite length sequences of events that it can execute, and a certain subset of the
plant behavior represents a desired or target behavior. A supervisor, based on its observation
of the sequence of events executed by the plant, dynamically disables some of the controllable
events from occurring, so that the constraints imposed by the desired behavior specification
are satisfied.

In the conventional approach for supervisor synthesis, the entire control policy for the
given DES is computed off-line. This requires automata models which describe the entire
behavior of the DES and the target behavior. However, in many situations it is difficult to
perform the off-line computations:

• The DES is very complex and contains a large number of states. The off-line compu-
tation for the entire control policy is computationally too complex to be feasible.

• The DES is time varying and its complete description cannot be given as a fixed
automaton.

• Even if the DES is time invariant, the entire description of the DES is not known
initially but possibly becomes known during the execution time.

• Due to the complexity of the desired behavior constraints, it is difficult to construct
an automaton consistent with desired specifications.

• The desired behavior itself may be time varying. The desired behavior is incompletely
specified initially and must be specified using sensory information during the execution
time.

In view of these observations, Chung-Lafortune-Lin [5] have proposed a control scheme
using Limited Lookahead Policy (LLP). This control scheme allows control actions to be
calculated on-line instead of off-line. The next control action is computed on the basis of the
DES behavior truncated up to the next N -steps. The control action can be computed based
on two extreme attitudes regarding the pending sequences—conservative and optimistic. In
[6] the authors have further studied how to use previous computations to help in the next
computation of the control action. Effect of taking an undecided attitude to help improve the
computational complexity has been investigated by the authors in [7], on-line computational
technique in which no constraint is imposed on the depth of the lookahead window has
been investigated in [9] assuming that the additional state-information is also available. The
application to the case of partial observation has been considered in [11, 10].

2

Lookahead policies have also been employed earlier for instance for deadlock avoidance
in flexible manufacturing systems using Petri net models [1, 27], for planning in artificial
intelligence [24, 20, 23], in robotics [13], etc.

In an attempt to propose a modification of the limited lookahead supervision, we note
the following limitations of the limited lookahead policy based supervisor studied in [5]:

• Due to the presence of the pending sequences, the limited lookahead policy based su-
pervisor either takes an optimistic attitude which may result in violation of constraints
imposed by the desired specifications, or it takes a conservative attitude which may re-
sult in a restrictive control policy. This is demonstrated by showing that the proposed
supervisor is in general more permissive.

• The assumption of the relative closure (also known as the Lm-closure in the literature)
of the desired behavior can only be verified if the entire plant and the desired behavior
is known at the outset. So such an assumption is not practical for the limited lookahead
setting, and should be relaxed.

• Similarly, the assumption that the plant is non-blocking, i.e., each generated trace is a
prefix of some marked trace cannot be verified in the setting of limited lookahead and
must be relaxed to be realistic.

• The LLP supervisor becomes blocking if the target behavior is not a relative closed
language. As mentioned above an apriori assumption of relative closure is impractical
in the limited lookahead setting as it cannot be verified. Moreover, such an assumption
may not always be realistic. To see this consider the following simple example from
Ramadge-Wonham [26]: In this example the plant consists of two tandemly operating
machines, where the first machine receives an incoming part, and upon processing,
puts it into a buffer from where the second machine fetches the part for the final step
of processing. Each machine starts from its “idle” state, which is also its only “final”
or “marked” state. It is desired that the machines operate in a manner that the buffer
never overflows/underflows. Suppose it is further required that upon completion of the
task all machines must be in their idle state and the buffer be in its empty state. Then
it is easy to see that this desired behavior is not relative closed: The event sequence
corresponding to arrival of a part into the first machine followed by departure from
that machine has the property that (i) it is a prefix of the desired behavior (it can
be extended by the trace arrival into the second machine and departure from the
second machine to yield a trace that satisfies the given specification of the buffer
overflow/underflow constraint and leaves the machines in their idle states and the
buffer in its empty state); and (ii) it also leaves both the machines in their idle state,
i.e., it is a trace belonging to the “marked behavior” of the plant. However, this trace
does not belong to the desired behavior since the buffer state is not empty at this
point.

• The optimistic LLP supervisor requires the knowledge of the desired behavior beyond
the N -step lookahead window: Determination of whether a next N -step continuation

3

would yield a prefix of the desired behavior actually requires the knowledge of the
desired behavior beyond the N -step window. So the optimistic LLP supervisor is
ill-defined. (Also refer to the footnote below in Section 2.1.)

These observations motivate us to consider a modification of the limited lookahead based
supervisor, which avoids these limitations. We call it to be the extension based Limited
Lookahead (ELL) supervisor. The proposed supervisor estimates the plant behavior as well
as the desired behavior based on its next N -step knowledge of the plant behavior. The
estimate of the plant behavior is obtained by appending the set of all finite length event
sequences beyond the N -step projection of the plant behavior. For example when N = 0,
then the estimate of the plant behavior equals the set of all finite length event sequences. The
estimate of the desired behavior is obtained by considering the legal portion of the estimate
of the plant behavior when the specification is prefix closed, and otherwise in the non-prefix
closed case it is obtained as N -step truncation of the legal portion of the estimate of the
plant behavior. The next control action is computed by computing the supremal relative
closed and controllable sublanguage of the estimated desired behavior with respect to the
estimated plant behavior.

The ELL supervisor is defined for each value of the number of steps of lookahead, and
we show that it is non-blocking even when the desired behavior is not relative closed. The
ELL supervisor is in general more permissive than the conservative LLP supervisor. In
some cases such as when there are no uncontrollable events, or when an upper bound of the
number of consecutive uncontrollable events that can occur in the plant is available, the ELL
supervisor is strictly more permissive than the conservative LLP one. Moreover, the ELL
supervisor possesses many of the desirable properties of the conservative LLP supervisor,
and is computationally equally viable.

2 Notation and Preliminaries

Let Σ denote the set of events that occur in a given discrete event plant to be controlled.
Σ∗ is used to denote the set of all finite length sequences of events from Σ, including the
zero length sequence, denoted ε. A member of Σ∗ is called a string or a trace, and a subset
of Σ∗ is called a language. Given a string s ∈ Σ∗, |s| ∈ N is used to denote the length of s; if
t ∈ Σ∗ is a prefix of s, then it is written as t ≤ s. t is said to be a proper prefix of s, denoted
t < s, if t ≤ s and |t| < |s|. The notation pr(s) ⊆ Σ∗ denotes the set of all prefixes of s,
i.e., pr(s) := {t ∈ Σ∗ | t ≤ s}. Given a language L ⊆ Σ∗, the prefix closure of L denoted
pr(L) ⊆ Σ∗, is defined as pr(L) := {s ∈ Σ∗ | ∃t ∈ L s.t. s ≤ t}; L is said to be prefix closed
if L = pr(L).

Let P denote a plant. The language pair (L(P), Lm(P)) is used to denote the language
model of P , which is also denoted as P ≡ (L(P), Lm(P)). L(P) ⊆ Σ∗ is called the generated
language of P , and represents the set of all finite traces of events which P can execute.
Clearly, L(P) is prefix closed and nonempty. Lm(P) ⊆ L(P) is called the marked language
of P , and represents the set of all those traces whose executions represent completion of a

4

certain task. We use Lcomplete ⊆ Σ∗ to denote the set of all traces corresponding to completion
of a task. Note that this set may contain traces which are not physically possible in the plant.
For example, in concurrency control for database transaction systems Lcomplete equals the set
of all completed schedules [21]. Thus Lm(P) = Lcomplete ∩L(P). In this paper we will assume
that the set of complete traces Lcomplete is specified. Hence if the generated language of a
plant is known, its marked language can be determined. Given two plants P1 and P2, we
use P1 ≤ P2 to denote that Lm(P1) ⊆ Lm(P2) and L(P1) ⊆ L(P2); and P1 = P2 to denote
P1 ≤ P2 and P2 ≤ P1.

A nonempty language K ⊆ Lm(P) is used to denote the desired or target marked language.
We use Klegal ⊆ Σ∗ to denote the set of all legal traces. Note that this language may contain
traces that are not physically possible in the plant. In database transaction systems, for
instance, Klegal represents the set of all serializable and strict schedules [21]. Thus K =
Klegal ∩ Lm(P). In this paper we will assume that the set of legal traces is specified so that
the desired marked language can be computed if the marked language of the plant is known.

As in [26], the event set Σ is partitioned into the set of uncontrollable events, denoted
Σu ⊆ Σ, and the set of controllable events Σc = Σ − Σu. It is assumed that all events are
observable [19]. Given a language L ⊆ Σ∗, it is said to be controllable with respect to plant P

if pr(L)Σu∩L(P) ⊆ pr(L); it is said to be relative closed with respect to P if pr(L)∩Lm(P) =
L∩Lm(P). Note that this is equivalent to pr(L)∩Lm(P) ⊆ L when L ⊆ Lm(P). We use the
following notations to denote the set of controllable sublanguages, the set of relative closed
sublanguages, and the set of relative closed and controllable sublanguages of L with respect
to P , respectively:

C(L, P) := {H ⊆ L(P) | H ⊆ L, pr(H)Σu ∩ L(P) ⊆ pr(H)},

R(L, P) := {H ⊆ Lm(P) | H ⊆ L, pr(H) ∩ Lm(P) ⊆ H},

RC(L, P) := C(L, P) ∩ R(L, P).

It is known that supC(L, P), supR(L, P), supRC(L, P), namely, the supremal controllable
sublanguage, the supremal relative closed sublanguage, the supremal relative closed and
controllable sublanguage of L with respect to P , respectively, exist [25]. From defini-
tion, C(L, P) = C(L ∩ L(P), P), R(L, P) = R(L ∩ Lm(P), P), and RC(L, P) = RC(L ∩
Lm(P), P); hence supC(L, P) = supC(L∩L(P), P), supR(L, P) = supR(L∩Lm(P), P), and
supRC(L, P) = supRC(L∩Lm(P), P). It is shown in [14] that supR(L, P) = L− [(pr(L)∩
Lm(P))−L]Σ∗. A formula for supC(L, P) when L is prefix closed is given in [2] and a compu-
tationally optimal algorithm for computing it is given in [17]. Computations of supR(L, P)
and supC(L, P) can be used to compute supRC(L, P), as supRC(L, P) = supC(supR(L, P))
[15].

The after operation on a language L ⊆ Σ∗ by a trace s ∈ Σ∗, denoted L\s ⊆ Σ∗, is
defined as L\s := {t ∈ Σ∗ | st ∈ L}; the truncation operation on L by a non-negative integer
N ∈ N , denoted L|N ⊆ Σ∗, is defined as L|N := {s ∈ L | |s| ≤ N}. The following lemma
appeared in [5], the proofs of which can be found in [4].

Lemma 1 [5] Let K1, K2 ⊆ Σ∗ and s ∈ Σ∗. Then

5

1. (K1 ∩ K2)\s = K1\s ∩ K2\s,
(K1 ∪ K2)\s = K1\s ∪ K2\s.

2. pr(K1)\s = pr(K1\s).

3. (K1\s)K2 ⊆ (K1K2)\s,
[s ∈ pr(K1)] ⇒ [(K1\s)K2 = (K1K2)\s].

In order to obtain our main results of Section 3, we need the results of the following two
lemmas, the proof of the first one is straightforward, whereas that of the second one is given
in Appendix A.

Lemma 2 Let P1, P2 be two plants with P1 ≤ P2. Then for K ⊆ Lm(P1), supRC(K,P2) ⊆
supRC(K,P1).

The following lemma generalizes [5, Theorem A.1].

Lemma 3 Let K ⊆ Lm(P), and s ∈ Σ∗. Then

1. supRC(K,P)\s ⊆ supRC(K\s, P\s).

2. [s ∈ pr(supRC(K,P))] ⇒ [supRC(K,P)\s = supRC(K\s, P\s)].

2.1 Review of LLP Supervision

For the LLP supervisor, it is assumed that pr(Lm(P)) = L(P), K is relative closed with
respect to P ,1 and that the supervisor knows the possible future behavior of the plant within
the next N steps at any point during the execution. The LLP supervisor consists of five
different blocks depicted in Figure 1. Each block performs a particular operation. The first
block fN

P computes the plant behavior N steps beyond the previously executed trace s, where
one step corresponds to the execution of one event. This block generates the corresponding
N -tree, which also contains the marking information, i.e.,

fN
P (s) := P\s|N ≡ (L(P)\s|N , Lm(P)\s|N).

The block fN
K determines which traces in the N -tree are legal.

fN
K ◦ fN

P := (pr(K)\s|N , K\s|N). 2

1Note that these two assumptions cannot be verified unless the entire plant and desired behavior is known
at the outset which is unrealistic in the limited lookahead setting and must be relaxed.

2The computation of the next N -step continuations which belong to the prefix of the desired behavior,
i.e., traces belonging to the set pr(K)\s|N , requires the knowledge of continuations beyond the next N -step.
This is because to determine whether a certain N -step continuation is a prefix of the desired behavior, it
requires the knowledge of the desired behavior beyond the N -step window. This is inappropriate for the
limited lookahead setting.

6

L(P),L (P),K,pr(K)
knowledge base about

m

P

f f f f
N

P

N

K

N

a

N N

u
f

real-time knowledge
σevent

control action γN
(s)

Figure 1: Block diagram of the limited lookahead supervisor

The legal traces of length N in the N -tree are called pending traces. The block fN
a decides

whether or not the pending traces are desired. Two attitudes are used, namely, conservative
and optimistic. For conservative attitude, all pending traces are considered as undesired.
This results in exclusion of all pending traces from the legal behavior. For optimistic attitude,
all pending traces are considered as desired and marked. This results in inclusion of all
pending traces into the desired behavior.

fN
a ◦ fN

K ◦ fN
P (s) :=

{

conservative : K\s|N−1

optimistic : K\s|N ∪ (pr(K)\s|N − pr(K)\s|N−1).
3

If K is prefix closed, then

fN
a ◦ fN

K ◦ fN
P (s) :=

{

conservative : K\s|N−1

optimistic : K\s|N .

The block fN
↑ computes the supremal controllable sublanguage of the language marked by

the modified tree output by fN
a with respect to the language generated by the tree output

by fN
P .

fN(s) := fN
↑ ◦ fN

a ◦ fN
K ◦ fN

P (s)

:= supC(fN
a ◦ fN

K ◦ fN
P (s), P\s|N).

The block fN
u computes the control action γN(s) by including the next allowable events in

the tree output by fN
↑ and the set of all uncontrollable events that P can execute after s.

γN(s) := fN
u ◦ fN(s)

:= [pr(fN(s)) ∩ Σ] ∪ [Σu ∩ ΣL(P)(s)],

3Observe that the optimistic attitude requires the knowledge of the legal behavior beyond the N -step of
the lookahead window for the same reason given in the previous footnote.

7

where ΣL(P)(s) := L(P)\s∩Σ. Observe that the computation of the control action requires
the knowledge of the events that are immediately executable in plant, i.e., at least one-step
lookahead is needed.

The generated controlled plant language under the control policy γN : L(P) → 2Σ,
denoted L(P, γN), is defined recursively as follows:

• ε ∈ L(P, γN);

• ∀s ∈ Σ∗, σ ∈ Σ : s ∈ L(P, γN), sσ ∈ L(P), σ ∈ γN(s) ⇒ sσ ∈ L(P, γN).

The marked controlled plant behavior, denoted Lm(P, γN), is defined as:

Lm(P, γN) := L(P, γN) ∩ Lm(P).

The notation γN
cons and fN

cons (respectively, γN
optm and fN

optm) is used to indicate that the
conservative (respectively, optimistic) attitude is chosen in the module fN

a .

3 Extension based Limited Lookahead Supervision

In this section, we propose a new limited lookahead based supervisor, which we call the
extension based limited lookahead (ELL) supervisor. If the generated plant language L(P) is
known N steps beyond a previously executed trace, it is natural to assume that any sequence
of events could happen after the known N steps. Therefore, we have the following definition.

Definition 1 Given s ∈ L(P) and N ≥ 0, the estimates of the generated plant language,
marked plant language, and the desired marked language (after the trace s based on N -step

lookahead), denoted
︷ ︸︸ ︷

[L(P)\s] N ,
︷ ︸︸ ︷

[Lm(P)\s] N ,
︷ ︸︸ ︷

[K\s] N , respectively, are defined as:

︷ ︸︸ ︷

[L(P)\s] N :=

{

L(P)\s|N−1 ∪ (L(P)\s|N ∩ ΣN)Σ∗ if N ≥ 1
Σ∗ otherwise,

︷ ︸︸ ︷

[Lm(P)\s] N := [Lcomplete]\s ∩
︷ ︸︸ ︷

[L(P)\s] N

(=
︷ ︸︸ ︷

[L(P)\s] N , when spec. closed)

︷ ︸︸ ︷

[K\s] N :=

[[Klegal]\s ∩
︷ ︸︸ ︷

[Lm(P)\s] N]|N

[Klegal]\s ∩
︷ ︸︸ ︷

[L(P)\s] N , when spec. closed

In other words, we append Σ∗ to all the traces of L(P)\s of length N to obtain the estimate
of the generated plant language. The estimate of the marked language equals that portion
of the estimate of the generated language which corresponds to the completion of a task. In
the special case when the specification is a safety specification so that it is prefix closed, we

have Lcomplete = Σ∗, which implies
︷ ︸︸ ︷

[Lm(P)\s] N =
︷ ︸︸ ︷

[L(P)\s] N . The estimate of the desired
marked language equals the legal portion of the estimate of the marked plant language when

8

the specification is prefix closed, and otherwise (when the specification is not prefix closed) it
is obtained as the N -step truncation of the legal portion of the estimate of the plant marked
language. The reason for applying truncation in the non-prefix closed case is discussed in
Remark 3 below.

Remark 1 It should be noted that the estimate of the plant behavior can be further refined
by incorporating any additional knowledge regarding the plant behavior. For instance, if
we know that the number of consecutive uncontrollable events that can occur in the plant
cannot exceed a fixed value, say M , then our estimate of generated behavior can be refined
as:

︷ ︸︸ ︷

[L(P)\s] N := [L(P)\s|N−1 ∪ (L(P)\s|N ∩ ΣN)Σ∗] ∩ (Σ∗
c .Σ

≤M
u .Σ∗

c)
∗,

where Σ≤M
u := {s ∈ Σ∗

u : |s| ≤ M}. For example, in the concurrency control of database
systems at most one consecutive “crash” event can occur, i.e., M = 1.

The estimates of the marked plant language and the desired behavior are obtained using
the languages Lcomplete and Klegal. However, if these languages are not specified and instead
Lm(P) and K are given (as is the case in the setting of LLP [5]), then these estimates may
be defined as follows (without resulting in loss of any of the results obtained in the paper):

︷ ︸︸ ︷

[Lm(P)\s] N := Lm(P)\s|N−1 ∪ (Lm(P)\s|N ∩ ΣN)Σ∗

︷ ︸︸ ︷

[K\s] N := K\s|N .

♦

Remark 2 The estimate of the generated plant language as given in Definition 1 is a regular
language. However, (1) the estimate of the marked plant language when the specification
language is non-prefix closed and Lcomplete is non-regular, and (2) that of the desired language
when the specification is prefix closed and Klegal is non-regular may turn out to be non-
regular, and as a result the N -step ELL supervisor may not be computable in those cases.

The first case is not a real problem since when the specification language is non-prefix
closed, the desired marked language estimate by definition contains traces of length at most
N , and as a result in the computation of the N -step ELL supervisor the estimate of the
marked plant language can be replaced by its truncation of length N + 1 (thus making it a
regular language), without affecting the supervisor.

In the second case some compromise in the permissiveness of the supervisor needs to be
made by approximating the desired language estimate by a regular language by truncating
it beyond a certain length, say Ndesign > N , which is left as a design parameter decided for
example by the amount of available computational resources:

︷ ︸︸ ︷

[K\s] N :=

[Klegal\s ∩
︷ ︸︸ ︷

[Lm(P)\s] N]|N

[Klegal\s ∩
︷ ︸︸ ︷

[L(P)\s] N]|Ndesign
, when spec. closed

Using the fact that Ndesign > N , it is easy to show that all the results in the paper remain
valid even with this revised definition of the estimate of the desired language. ♦

9

Similar to a LLP supervisor in [5], the ELL supervisor also consists of a series of blocks
which perform different operations, and is depicted in Figure 2. The block gN

P knows the

knowledge base about

P

g g g gNNN
P K

N

L(P),Kcomplete ,Klegal

real-time knowledge
event

control action

u

α (s)
N

σ

Figure 2: Block diagram of the extension based limited lookahead supervisor

plant behavior N steps beyond a previously executed trace s. It then generates the estimates
of the generated and marked plant language.

gN
P (s) :=

︷ ︸︸ ︷

[P\s] N ≡ (
︷ ︸︸ ︷

[L(P)\s] N ,
︷ ︸︸ ︷

[Lm(P)\s] N).

The block gN
K determines which traces in the output of gN

P are desired.

gN
K ◦ gN

P (s) := (pr(
︷ ︸︸ ︷

[K\s] N),
︷ ︸︸ ︷

[K\s] N).

The block gN
⇑ computes the supremal relative closed and controllable sublanguage of

︷ ︸︸ ︷

[K\s] N

with respect to
︷ ︸︸ ︷

[P\s] N .

gN(s) := gN
⇑ ◦ gN

K ◦ gN
P (s)

:= supRC(
︷ ︸︸ ︷

[K\s] N ,
︷ ︸︸ ︷

[P\s] N)

(= supC(
︷ ︸︸ ︷

[K\s] N ,
︷ ︸︸ ︷

[P\s] N) when spec. closed)

The control action αN(s) is defined slightly differently from that in [5] since we do not
require N ≥ 1, which is required in [5]. This requirement implies that the next event set
after the trace s, namely ΣL(P)(s), is known. We define αN(s) as follows:

αN(s) := gN
u ◦ gN(s) := (pr(gN(s)) ∩ Σ) ∪ Σu.

Thus, since the next event set ΣL(P)(s) may not be known, all the uncontrollable events
are enabled by the control action. However, only those uncontrollable events that are also
physically possible will occur in the controlled plant.

The generated language of the controlled plant under the control policy αN : L(P) → 2Σ,
denoted L(P, αN) ⊆ L(P), is recursively defined as follows:

10

• ε ∈ L(P, αN);

• ∀s ∈ Σ∗, σ ∈ Σ : s ∈ L(P, αN), sσ ∈ L(P), σ ∈ αN(s) ⇒ sσ ∈ L(P, αN).

The marked controlled plant behavior is defined as

Lm(P, αN) := L(P, αN) ∩ Lcomplete = L(P, αN) ∩ Lm(P).

The ELL supervisor αN : L(P) → 2Σ is non-blocking if pr(Lm(P, αN)) = L(P, αN). In this
paper, we are interested in the synthesis of non-blocking ELL supervisors.

Example 1 Suppose Σ = {a, b}, Σu = {b}, Lcomplete = Σ∗b, and

L(P) = Klegal = {s ∈ Σ∗ | ∀t ≤ s : #(a, t) − #(b, t) ≥ 0},

where #(x, t) denotes number of x’s in trace t.
First suppose N = 1. Then

︷ ︸︸ ︷

[L(P)\ε] N = pr(a) ∪ aΣ∗;
︷ ︸︸ ︷

[(K)\ε] N = ∅.

Hence supRC(
︷ ︸︸ ︷

[K\ε] N ,
︷ ︸︸ ︷

[P\ε] N) = ∅. So αN (ε) = {b} (all uncontrollable events are always
enabled). However, since b is not physically possible, L(P, αN) = ε.

Next suppose N = 2. Then

︷ ︸︸ ︷

[L(P)\ε] N = pr({aa, ab}) ∪ {aa, ab}Σ∗;
︷ ︸︸ ︷

[(K)\ε] N = {ab}.

Again, supRC(
︷ ︸︸ ︷

[K\ε] N ,
︷ ︸︸ ︷

[P\ε] N) = ∅, and hence L(P, αN) = ε.
Consider a third case when N = 3. Then

︷ ︸︸ ︷

[L(P)\ε] N = pr(H) ∪ HΣ∗;
︷ ︸︸ ︷

[(K)\ε] N = {ab, aab},

where H = {aaa, aab, aba}. So supRC(
︷ ︸︸ ︷

[K\ε] N ,
︷ ︸︸ ︷

[P\ε] N) = {ab}. Hence initially both a and
b are enabled. Since a only is physically possible, we have a ∈ L(P, αN). In order to compute
the next control action we have

︷ ︸︸ ︷

[L(P)\a] N = pr(H ′) ∪ H ′Σ∗;
︷ ︸︸ ︷

[(K)\a] N = {aab, ab, abb, b, bab},

where H ′ = {aaa, aab, aba, abb, baa, bab}. It is easy to see that supRC(
︷ ︸︸ ︷

[K\a] N ,
︷ ︸︸ ︷

[P\a] N) =
{b}. Hence ab ∈ L(P, αN). Continuing in this manner one can conclude that L(P, αN) =
pr((ab)∗).

Closed-loop behaviors for other values of N can be computed in a similar manner. ♦

11

Remark 3 Since no truncation is involved in computation of the estimate for the desired
behavior in the prefix closed case, the supervisor in this case becomes more permissiveness
compared to the non-prefix closed case. However, the reason for applying truncation for
the non-prefix closed case is that otherwise the supervisor may violate the desired behavior
specification as shown by the following example:

Suppose Σ = {a, b}, Σu = ∅, L(P) = pr(aa), Lcomplete = {aa, ab}, Klegal = pr(ab). Then
Lm(P) = {aa} and K = ∅. With one step lookahead when no truncation is used in the
computation of the estimate for desired behavior we get:

︷ ︸︸ ︷

[L(P)\ε] N = pr(a) ∪ aΣ∗;
︷ ︸︸ ︷

[Lm(P)\ε] N = {aa, ab};
︷ ︸︸ ︷

[K\ε] N = ab.

So supRC(
︷ ︸︸ ︷

[K\ε] N ,
︷ ︸︸ ︷

[P\ε] N) = ab, and the supervisor enables a initially. This, however,
violates the desired behavior specification since K = ∅. ♦

It is clear from the definition of the estimates that the following properties hold for each
N ≥ 0, s ∈ Σ∗, and σ ∈ Σ:

P1 (Anti-Monotonicity):
︷ ︸︸ ︷

[L(P)\s] N+1 ⊆
︷ ︸︸ ︷

[L(P)\s] N ;

P2 (Consistency):
︷ ︸︸ ︷

[L(P)\sσ] N ⊆
︷ ︸︸ ︷

[L(P)\s] N+1\σ.

It follows from P1 that
︷ ︸︸ ︷

[Lm(P)\s] N+1 ⊆
︷ ︸︸ ︷

[Lm(P)\s] N .

Similarly, it follows from P2 that the following hold:

︷ ︸︸ ︷

[Lm(P)\s] N+1\σ =
︷ ︸︸ ︷

[Lm(P)\sσ] N ;
︷ ︸︸ ︷

[K\s] N+1\σ =
︷ ︸︸ ︷

[K\sσ] N .

Consequently, from P1 and P2 we have

︷ ︸︸ ︷

[P\s] N+1 ≤
︷ ︸︸ ︷

[P\s] N ;
︷ ︸︸ ︷

[P\s] N+1\σ =
︷ ︸︸ ︷

[P\sσ] N .

The following lemma presents a few properties of gN(s), which is defined as gN(s) :=

supRC(
︷ ︸︸ ︷

[K\s] N ,
︷ ︸︸ ︷

[P\s] N).

Lemma 4 Let s ∈ Σ∗ and σ ∈ Σ. Then for N ≥ 0,

1. supRC(
︷ ︸︸ ︷

[K\s] N ,
︷ ︸︸ ︷

[P\s] N) ⊆ supRC(
︷ ︸︸ ︷

[K\s] N+1,
︷ ︸︸ ︷

[P\s] N+1).

2. supRC(
︷ ︸︸ ︷

[K\s] N ,
︷ ︸︸ ︷

[P\s] N) ⊆ supRC(K\s, P\s).

3. [supRC(
︷ ︸︸ ︷

[K\s] N ,
︷ ︸︸ ︷

[P\s] N)\σ ⊆ supRC(
︷ ︸︸ ︷

[K\sσ] N ,
︷ ︸︸ ︷

[P\sσ] N)].

Proof: We begin by proving the first part for the non-prefix closed case first:

12

supRC(
︷ ︸︸ ︷

[K\s] N ,
︷ ︸︸ ︷

[P\s] N)

⊆ supRC(
︷ ︸︸ ︷

[K\s] N ,
︷ ︸︸ ︷

[P\s] N+1) (Lemma 2)

⊆ supRC(
︷ ︸︸ ︷

[K\s] N+1,
︷ ︸︸ ︷

[P\s] N+1) (
︷ ︸︸ ︷

[K\s] N ⊆
︷ ︸︸ ︷

[K\s] N+1)

In the prefix closed case we do not have
︷ ︸︸ ︷

[K\s] N ⊆
︷ ︸︸ ︷

[K\s] N+1, but we have
︷ ︸︸ ︷

[K\s] N ∩
︷ ︸︸ ︷

[L(P)\s] N+1 =
︷ ︸︸ ︷

[K\s] N+1, which we use to prove the assertion as follows:

supRC(
︷ ︸︸ ︷

[K\s] N ,
︷ ︸︸ ︷

[P\s] N)

⊆ supRC(
︷ ︸︸ ︷

[K\s] N ,
︷ ︸︸ ︷

[P\s] N+1) (Lemma 2)

= supRC(
︷ ︸︸ ︷

[K\s] N ∩
︷ ︸︸ ︷

[L(P)\s] N+1,
︷ ︸︸ ︷

[P\s] N+1) (by definition, see Section 2)

= supRC(
︷ ︸︸ ︷

[K\s] N+1,
︷ ︸︸ ︷

[P\s] N+1) (
︷ ︸︸ ︷

[K\s] N ∩
︷ ︸︸ ︷

[L(P)\s] N+1 =
︷ ︸︸ ︷

[K\s] N+1)

Next we prove the second part.

supRC(
︷ ︸︸ ︷

[K\s] N ,
︷ ︸︸ ︷

[P\s] N)

⊆ supRC(
︷ ︸︸ ︷

[K\s] N , P\s) (Lemma 2, as P\s ≤
︷ ︸︸ ︷

[P\s] N and
︷ ︸︸ ︷

[K\s] N ⊆ Lm(P)\s)

⊆ supRC(K\s, P\s) (
︷ ︸︸ ︷

[K\s] N ⊆ K\s)

Finally, we prove the last part.

supRC(
︷ ︸︸ ︷

[K\s] N ,
︷ ︸︸ ︷

[P\s] N)\σ

⊆ supRC(
︷ ︸︸ ︷

[K\s] N+1,
︷ ︸︸ ︷

[P\s] N+1)\σ (part 1, Lemma 4)

⊆ supRC(
︷ ︸︸ ︷

[K\s] N+1\σ,
︷ ︸︸ ︷

[P\s] N+1\σ) (part 1, Lemma 3)

= supRC(
︷ ︸︸ ︷

[K\sσ] N ,
︷ ︸︸ ︷

[P\sσ] N) (consistency property of estimates)

The third part of Lemma 4 can be generalized in a straightforward manner using induction
to obtain the following corollary.

Corollary 1 Let s, t ∈ Σ∗. For N ≥ 0,

[supRC(
︷ ︸︸ ︷

[K\s] N ,
︷ ︸︸ ︷

[P\s] N)\t ⊆ supRC(
︷ ︸︸ ︷

[K\st] N ,
︷ ︸︸ ︷

[P\st] N)].

4 Comparing Conservative LLP and ELL Supervisors

In this section, we compare the performance of the ELL supervisor with the conservative
LLP supervisor studied in [5]. Since the LLP supervisor assumes K is relative closed with
respect to P , in order to make the comparison, we also assume for our ELL supervisor that
K is relative closed with respect to P . This implies that supRC(K,P) = supC(K,P).

13

Lemma 5 For N ≥ 1, supC(K\s|N−1, P\s|N) ⊆ supC(
︷ ︸︸ ︷

[K\s] N ,
︷ ︸︸ ︷

[P\s] N).

Proof: Since K\s|N−1 contains traces with length no more than N − 1, clearly

supC(K\s|N−1,
︷ ︸︸ ︷

[P\s] N) = supC(K\s|N−1,
︷ ︸︸ ︷

[P\s] N |N)

= supC(K\s|N−1, P\s|N), (1)

where the last equality follows from the fact that P\s|N =
︷ ︸︸ ︷

[P\s] N |N . Also, since K\s|N−1 ⊆
︷ ︸︸ ︷

[K\s] N ,

supC(K\s|N−1,
︷ ︸︸ ︷

[P\s] N) ⊆ supC(
︷ ︸︸ ︷

[K\s] N ,
︷ ︸︸ ︷

[P\s] N). (2)

Hence it follows from (1) and (2) that

supC(K\s|N−1, P\s|N) ⊆ supC(
︷ ︸︸ ︷

[K\s] N ,
︷ ︸︸ ︷

[P\s] N),

which completes the proof.
The following theorem states that the ELL supervisor is in general less restrictive than

the conservative LLP supervisor studied in [5].

Theorem 1 For N ≥ 1, L(P, αN) ⊇ L(P, γN
cons).

Proof: We need to show that if s ∈ L(P, γN
cons), then s ∈ L(P, αN). We use induction on the

length of s to show this. If |s| = 0, then s = ε. By definition ε ∈ L(P, αN), which establishes
the base step.

In order to prove the induction step, let s = s̄σ, where σ ∈ Σ. Since s ∈ L(P, γN
cons),

which is prefix closed, we have s̄ ∈ L(P, γN
cons). Hence it follows from induction hypothesis

that s̄ ∈ L(P, αN). Since s = s̄σ ∈ L(P, γN
cons), σ ∈ γN

cons(s̄). On the other hand, since
s̄ ∈ L(P, αN), it follows from the definition of ELL supervisor that s = s̄σ ∈ L(P, αN) if and
only if σ ∈ αN(s̄) ∩ ΣL(P)(s̄). Thus in order to show that s = s̄σ ∈ L(P, αN), it suffices to
show γN

cons(s̄) ⊆ αN(s̄) ∩ ΣL(P)(s̄). We have

γN
cons(s̄) = [fN

cons(s̄) ∩ Σ] ∪ [Σu ∩ ΣL(P)(s̄)]

= [pr(supC(K\s̄|N−1, P\s̄|N)) ∩ Σ] ∪ [Σu ∩ ΣL(P)(s̄)]

⊆ [pr(supC(
︷ ︸︸ ︷

[K\s̄] N ,
︷ ︸︸ ︷

[P\s̄] N)) ∩ Σ] ∪ [Σu ∩ ΣL(P)(s̄)]

= [pr(gN(s̄)) ∩ Σ] ∪ [Σu ∩ ΣL(P)(s̄)]

= [[pr(gN(s̄)) ∩ Σ] ∪ Σu] ∩ [[pr(gN(s̄)) ∩ Σ] ∪ ΣL(P)(s̄)]

= [αN (s̄)] ∩ [ΣL(P)(s̄)],

where the containment follows from Lemma 5; and in the final equality we have used the
fact that N ≥ 1, which implies that [pr(gN(s̄)) ∩ Σ] ⊆ ΣL(P)(s̄) so that [[pr(gN(s̄)) ∩ Σ] ∪
ΣL(P)(s̄)] = ΣL(P)(s̄). This completes the proof.

14

The following example illustrates that in general the reverse containment of Theorem 1
does not hold, i.e., in general L(P, αN) 6⊆ L(P, γN

cons), and thus ELL supervisor is strictly
more permissive than conservative LLP supervisor in both non-prefix closed and prefix closed
cases.

Example 2 Let Σ = {c}, Σu = ∅, and

Klegal = c∗, Lcomplete = (cM)∗, L(P) = pr((cM)∗),

where M > 1 is a fixed number. Then Lm(P) = K = (cM)∗. Then for N = M ,
L(P, αN) = pr((cM)∗), but L(P, γN

cons) = ε, showing that the conservative LLP supervi-
sor is more restrictive than the ELL supervisor proposed here. Note that the same results
would be obtained if Lm(P) and K are specified instead of Lcomplete and Klegal.

To see that L(P, αN) 6⊆ L(P, γN
cons) in the prefix closed case, consider the first example

in the proof of Theorem 2 below, which actually shows that L(P, αN) ⊃ L(P, γN+1
cons). ♦

Remark 4 The first part of the above example can be easily modified to illustrate that
the ELL supervisor is less restrictive than the conservative LLP supervisor even when the
set of uncontrollable events is non-empty and there is a known upper bound on the number
of consecutive uncontrollable events that can occur in the plant so that the refined plant
behavior estimate of Remark 1 can be used in the computation of the ELL supervisor. ♦

Theorem 1 shows that a N -step lookahead based ELL supervisor is generally more per-
missive than a N -step lookahead based conservative LLP supervisor. In the next theorem
we show that it is generally less permissive than a (N +1)-step lookahead based conservative
supervisor whenever the specification is non-prefix closed, and otherwise the two supervisors
are non-comparable in their permissiveness.

Theorem 2 For N ≥ 1, L(P, αN) ⊆ L(P, γN+1
cons) in the non-prefix closed case, whereas

L(P, αN) and L(P, γN+1
cons) are non-comparable in the prefix closed case.

Proof: For the non-prefix closed case, by definition the following holds for any trace s ∈ Σ∗:

K\s|N =
︷ ︸︸ ︷

[K\s] N ; P\s|N+1 ≤
︷ ︸︸ ︷

[P\s] N .

So by simply replacing
︷ ︸︸ ︷

[K\s] N+1 with K\s|N and
︷ ︸︸ ︷

[P\s] N+1 with P\s|N+1 in the proof steps
of the first part of Lemma 4 we can conclude that

supC(
︷ ︸︸ ︷

[K\s] N ,
︷ ︸︸ ︷

[P\s] N) ⊆ supC(K\s|N , P\s|N+1).

Next by applying a similar modification in the proof steps of Proposition 1 we obtain the
desired containment that L(P, αN) ⊆ L(P, γN+1

cons) (in the non-prefix closed case).
To see the non-comparability of L(P, αN) and L(P, γN+1

cons) in the prefix closed case consider
the following two examples. First suppose Σ = {a, b}, Σu = {b}, Lcomplete = Σ∗, L(P) =
pr(ab∗), = Klegal, and N = 1 so that N + 1 = 2. Then K\ε|N = pr(a), L(P)\s|N+1 =

15

pr(ab). So supC(K\ε|N , L(P)\ε|N+1) = ε, and a is initially disabled by γN+1
cons . However,

︷ ︸︸ ︷

[K\ε] N =
︷ ︸︸ ︷

[L(P)\s] N = pr(ab∗), and a is initially enabled by αN . This shows that in this
example L(P, αN) ⊃ L(P, γN+1

cons). Next suppose instead L(P) = pr(aab∗), and Klegal = pr(a).
Then K\ε|N = pr(a), L(P)\s|N+1 = pr(aa). So supC(K\ε|N , L(P)\ε|N+1) = pr(a), and a

is initially enabled by γN+1
cons . However,

︷ ︸︸ ︷

[K\ε] N = pr(a), and
︷ ︸︸ ︷

[L(P)\s] N = pr(ab∗). So

supC(
︷ ︸︸ ︷

[K\ε] N ,
︷ ︸︸ ︷

[L(P)\ε] N) = ε, and a is initially disabled by αN . This shows that in this
example L(P, αN) ⊂ L(P, γN+1

cons).
The following example illustrates that in the non-prefix closed case the reverse contain-

ment of Theorem 2 does not generally hold.

Example 3 Let Σ = {a, b}, Σu = {b}, Klegal = Lcomplete = L(P) = pr(aa), and N = 1 (so
N+1 = 2). Then K\ε|N = pr(a) and L(P)\ε|N+1 = pr(aa). So supC(K\ε|N , L(P)\ε|N+1) =
pr(a). Hence a ∈ L(P, γN+1

cons).

On the other hand,
︷ ︸︸ ︷

[K\ε] N = K\ε|N = pr(a), and
︷ ︸︸ ︷

[L(P)\ε] N = pr(a) ∪ aΣ∗. It fol-

lows that supC(
︷ ︸︸ ︷

[K\ε] N ,
︷ ︸︸ ︷

[P\ε] N) = ε. Since the uncontrollable event cannot occur initially,
L(P, αN) = ε. ♦

5 Properties of ELL Supervisor

In this section, we present some useful properties of the ELL supervisor. These properties
are quite similar to some of those of the LLP supervisor obtained in [5]. We first discuss the
properties for the non-prefix closed case.

5.1 Non-prefix Closed Case:

The first proposition of this section establishes the expected result that a larger lookahead
results in a less restrictive supervision. A similar result was first presented in [5, Theorem
4.5] in context of LLP supervision.

Proposition 1 (Monotonicity) For N ≥ 0, L(P, αN) ⊆ L(P, αN+1).

Proof: It suffices to show that for each s ∈ Σ∗, αN (s) ∩ ΣL(P)(s) ⊆ αN+1(s) ∩ ΣL(P)(s).
From the first part of Lemma 4 we have

gN(s) ⊆ gN+1(s),

which implies

[pr(gN(s)) ∩ Σ] ∪ Σu ⊆ [pr(gN+1(s)) ∩ Σ] ∪ Σu.

Hence it follows from the definition of αN(·) that

αN(s) ⊆ αN+1(s),

16

which implies

αN(s) ∩ ΣL(P)(s) ⊆ αN+1(s) ∩ ΣL(P)(s).

This completes the proof.
Proposition 1 establishes a monotonicity property of the controlled plant generated lan-

guage under increasing length of lookahead. However, it does not provide any clue to the
range in which the controlled plant generated language under ELL supervision lies. By def-
inition, the controlled plant generated language under ELL supervision is non-empty, i.e.,
it is bounded below by the empty set. The next proposition establishes another expected
result that if a minimally restrictive supervisor exists (namely, if supRC(K,P) 6= ∅), then
the controlled plant generated language under ELL supervision is bounded above by the con-
trolled plant generated language under minimally restrictive supervision. In fact it proves
that the existence of a minimally restrictive supervisor is equivalent to the satisfaction of
such a bound. This result is similar to the one derived in [5, Theorem 4.4] in context of LLP
supervision.

Proposition 2 For N ≥ 0, supRC(K,P) 6= ∅ if and only if L(P, αN) ⊆ pr(supRC(K,P)).

Proof: In order to see sufficiency, suppose L(P, αN) ⊆ pr(supRC(K,P)). By definition,
ε ∈ L(P, αN). Hence it follows from the assumption that ε ∈ pr(supRC(K,P)). This implies
supRC(K,P) 6= ∅.

Conversely, suppose supRC(K,P) 6= ∅. We need to show that if s ∈ L(P, αN), then
s ∈ pr(supRC(K,P)). We use induction on the length of s to prove this. If |s| = 0, then
s = ε. By definition, ε ∈ L(P, αN); and supRC(K,P) 6= ∅ implies ε ∈ pr(supRC(K,P)).
Hence we trivially have the base step.

In order to prove the induction step, let s = s̄σ, where σ ∈ Σ. Since L(P, αN) is
prefix closed, s ∈ L(P, αN) implies s̄ ∈ L(P, αN). Hence by the induction hypothesis
s̄ ∈ pr(supRC(K,P)). Also, since s = s̄σ ∈ L(P, αN), we have σ ∈ αN(s̄) ∩ ΣL(P)(s̄) =
[pr(gN(s̄)) ∩ ΣL(P)(s̄)] ∪ [Σu ∩ ΣL(P)(s̄)].

Let us suppose σ ∈ Σu ∩ ΣL(P)(s̄). Then from the controllability of supRC(K,P) and
the fact that s̄ ∈ pr(supRC(K,P)), it follows that s = s̄σ ∈ pr(supRC(K,P)), as desired.
It remains to show that if σ ∈ pr(gN(s̄)) ∩ Σ(L(P)(s̄), then σ ∈ pr(supRC(K,P))\s̄, as this
is equivalent to s = s̄σ ∈ pr(supRC(K,P)). We have

pr(gN(s̄)) ∩ ΣL(P)(s̄)

= pr(supRC(
︷ ︸︸ ︷

[K\s̄] N ,
︷ ︸︸ ︷

[P\s̄] N)) ∩ ΣL(P)(s̄) (definition of gN(s̄))
⊆ pr(supRC(K\s̄, P\s̄)) ∩ ΣL(P)(s̄) (part 2, Lemma 4)
= pr(supRC(K,P)\s̄) ∩ ΣL(P)(s̄) (part 2, Lemma 3, as s̄ ∈ pr(supRC(K,P)))
= pr(supRC(K,P))\s̄ ∩ ΣL(P)(s̄) (part 2, Lemma 1)

This completes the proof.
The result of Proposition 2 is of theoretical interest as it provides an upper bound for the

controlled plant generated language when ELL supervisor is employed, under the condition

17

for the existence of a minimally restrictive supervisor. However, due to limited lookahead
it is not possible to compute supRC(K,P); consequently, it is not possible to check for its
non-emptiness. Thus the result of Proposition 2 does not bear any practical interest. It
turns out that a stronger condition of the absence of starting error in L(P, αN) can be easily
verified, so that the upper bound result of Proposition 2 can be concluded whenever there
is no starting error in L(P, αN). The following definition similar to that given in [5] defines
starting error as well as run time error.

Definition 2 We say that there is a run time error (RTE) in L(P, αN) at trace s ∈ L(P, αN)
if gN(s) = ∅; the RTE is said to be a starting error (SE) if s = ε. If there is no RTE in
L(P, αN) at all traces in L(P, αN), then we say that there is no RTE in L(P, αN).

Clearly, the absence of SE in L(P, αN) can be easily verified by testing the non-emptiness

of supRC(
︷ ︸︸ ︷

[K\ε] N ,
︷ ︸︸ ︷

[P\ε] N). The next proposition states that the absence of SE in L(P, αN)
also implies the absence of RTE in L(P, αN). For these reasons, all of the results that we
present below are obtained under the single assumption of the absence of SE in L(P, αN). We
first show that the absence of SE in L(P, αN) is a stronger condition than the non-emptiness
of supRC(K,P). A similar result was first proved in the context of LLP supervision in [5,
Lemma 3.5].

Lemma 6 For N ≥ 0, if there is no SE in L(P, αN), then supRC(K,P) 6= ∅.

Proof: If there is no SE in L(P, αN), then by definition gN(ε) 6= ∅. This is equiva-

lent to supRC(
︷ ︸︸ ︷

[K\ε] N ,
︷ ︸︸ ︷

[P\ε] N) 6= ∅. By the second part of Lemma 4, this implies that
supRC(K\ε, P\ε) = supRC(K,P) 6= ∅, which completes the proof.

The following theorem follows in a straightforward manner from Proposition 2 and
Lemma 6, and provides an upper bound for the controlled plant generated language when
ELL supervisor is employed, under the assumption of the absence of SE in L(P, αN). It is
similar to [5, Corollary 4.2] obtained in context of LLP supervision.

Theorem 3 For N ≥ 0, if there is no SE in L(P, αN), then L(P, αN) ⊆ pr(supRC(K,P)).

Proof: If there is no SE in L(P, αN), it follows from Lemma 6 that supRC(K,P) 6= ∅.
Hence from Proposition 2 we have that L(P, αN) ⊆ pr(supRC(K,P)).

In the next proposition we establish a useful consequence of the absence of SE in L(P, αN),
namely, the absence of RTE in L(P, αN). A similar result was first proved in [5, Theorem
4.6] in context of LLP supervision.

Proposition 3 For N ≥ 0, if there is no SE in L(P, αN), then there is no RTE in L(P, αN).

Proof: We need to show that if there is no SE in L(P, αN), then there is no RTE for all s

in L(P, αN). We use induction on the length of trace s. If |s| = 0, then no SE in L(P, αN)
implies no RTE at s. This establishes the base step.

18

In order to prove the induction step, let s = s̄σ ∈ L(P, αN), where σ ∈ Σ. Since
L(P, αN) is prefix closed, this implies that s̄ ∈ L(P, αN). Hence it follows from the in-

duction hypothesis that there is no RTE at s̄, i.e., supRC(
︷ ︸︸ ︷

[K\s̄] N ,
︷ ︸︸ ︷

[P\s̄] N) 6= ∅, which

implies that ε ∈ pr(supRC(
︷ ︸︸ ︷

[K\s̄] N ,
︷ ︸︸ ︷

[P\s̄] N)). Hence it follows from the controllability of

supRC(
︷ ︸︸ ︷

[K\s̄] N ,
︷ ︸︸ ︷

[P\s̄] N) that

Σu ∩ ΣL(P)(s̄) ⊆ pr(supRC(
︷ ︸︸ ︷

[K\s̄] N ,
︷ ︸︸ ︷

[P\s̄] N)) ∩ ΣL(P)(s̄)

= pr(gN(s̄)) ∩ ΣL(P)(s̄). (3)

Since σ ∈ L(P, αN)\s̄, we have that

σ ∈ αN(s̄) ∩ ΣL(P)(s̄) = [[pr(gN(s̄)) ∩ Σ] ∪ Σu] ∩ ΣL(P)(s̄)]

= [pr(gN(s̄)) ∩ ΣL(P)(s̄)] ∪ [Σu ∩ ΣL(P)(s̄)]

= [pr(gN(s̄)) ∩ ΣL(P)(s̄)],

where the last equality follows from (3).

Thus we have σ ∈ pr(gN(s̄))∩ΣL(P)(s̄) = pr(supRC(
︷ ︸︸ ︷

[K\s̄] N ,
︷ ︸︸ ︷

[P\s̄] N))∩ΣL(P)(s̄), which

implies that [supRC(
︷ ︸︸ ︷

[K\s̄] N ,
︷ ︸︸ ︷

[P\s̄] N)]\σ 6= ∅. Hence it follows from the third part of Lemma

4 that supRC(
︷ ︸︸ ︷

[K\s̄σ] N ,
︷ ︸︸ ︷

[P\s̄σ] N) 6= ∅, i.e., there is no RTE at s = s̄σ.
The following result was proved in the course of the proof of Proposition 3.

Corollary 2 For N ≥ 0, if there is no RTE at s̄ ∈ L(P, αN), then αN(s̄) ∩ ΣL(P)(s̄) =
pr(gN(s̄)) ∩ ΣL(P)(s̄).

The following corollary can be obtained in a straightforward manner by combining the
results of Proposition 3 and Corollary 2:

Corollary 3 For N ≥ 0, if there is no SE in L(P, αN), then for each s ∈ L(P, αN), αN(s)∩
ΣL(P)(s) = pr(gN(s)) ∩ ΣL(P)(s).

Using the results of Proposition 3 and Corollary 3 we establish in the following theorem
that the ELL supervisor is non-blocking.

Theorem 4 For N ≥ 0, if there is no SE in L(P, αN), then L(P, αN) = pr(Lm(P, αN)).

Proof: Since pr(Lm(P, αN)) ⊆ L(P, αN), we only need to show that if s ∈ L(P, αN), then
s ∈ pr(Lm(P, αN)). We use induction on the length of s to prove this. If |s| = 0, then

s = ε. Since there is no SE in L(P, αN), supRC(
︷ ︸︸ ︷

[K\ε] N ,
︷ ︸︸ ︷

[P\ε] N) 6= ∅, i.e., there exists a

trace t ∈ supRC(
︷ ︸︸ ︷

[K\ε] N ,
︷ ︸︸ ︷

[P\ε] N). However,

19

supRC(
︷ ︸︸ ︷

[K\ε] N ,
︷ ︸︸ ︷

[P\ε] N)
⊆ supRC(K\ε, P\ε) (part 2, Lemma 4)
= supRC(K,P) (definition of (·)\ε)
⊆ K (definition of supRC(K,P))
⊆ Lm(P) (K = Klegal ∩ Lm(P))

Then, we have that t ∈ Lm(P). Thus it suffices to show that t ∈ L(P, αN), so that t ∈
L(P, αN)∩Lm(P) = Lm(P, αN), implying that ε ∈ pr(Lm(P, αN)), and thus establishing the
base step. If t = ε, then clearly, t ∈ L(P, αN). Suppose t 6= ε; and suppose for contradiction
that there exists t′ < t and σ ∈ Σ such that t′σ ≤ t, t′ ∈ L(P, αN) and t′σ 6∈ L(P, αN), i.e.,

σ 6∈ pr(supRC(
︷ ︸︸ ︷

[K\t′] N ,
︷ ︸︸ ︷

[P\t′] N)). (4)

On the other hand, since t ∈ supRC(
︷ ︸︸ ︷

[K\ε] N ,
︷ ︸︸ ︷

[P\ε] N), we have that

σ ∈ pr(supRC(
︷ ︸︸ ︷

[K\ε] N ,
︷ ︸︸ ︷

[P\ε] N)\t′). (5)

From Corollary 1 we have

supRC(
︷ ︸︸ ︷

[K\ε] N ,
︷ ︸︸ ︷

[P\ε] N)\t′ ⊆ supRC(
︷ ︸︸ ︷

[K\t′] N ,
︷ ︸︸ ︷

[P\t′] N).

So (5) implies

σ ∈ pr(supRC(
︷ ︸︸ ︷

[K\t′] N ,
︷ ︸︸ ︷

[P\t′] N)),

which is contradictory to (4).
In order to prove the induction step, let s = s̄σ, where σ ∈ Σ. Since s ∈ L(P, αN), and

L(P, αN) is prefix closed, it follows that s̄ ∈ L(P, αN). Hence from induction hypothesis we
obtain that s̄ ∈ pr(Lm(P, αN)). Thus it suffices to show that

σ ∈ pr(Lm(P, αN))\s̄
= pr(Lm(P, αN)\s̄) (part 2, Lemma 1)
= pr([L(P, αN) ∩ Lm(P)]\s̄) (definition of Lm(P, αN))
= pr(L(P, αN)\s̄ ∩ Lm(P)\s̄) (part 1, Lemma 1)

In other words, it suffices to show that there exists a string t̄ ∈ Σ∗ such that t := σt̄ ∈
L(P, αN)\s̄∩Lm(P)\s̄. Since there is no SE in L(P, αN), it follows from Proposition 3 that
there is no RTE at s̄ in L(P, αN). Hence it follows from Corollary 3 that σ ∈ pr(gN(s̄)) ∩

ΣL(P)(s̄) ⊆ pr(supRC(
︷ ︸︸ ︷

[K\s̄] N ,
︷ ︸︸ ︷

[P\s̄] N)). This implies that there exists a trace t̄ ∈ Σ∗ such

that t := σt̄ ∈ supRC(
︷ ︸︸ ︷

[K\s̄] N ,
︷ ︸︸ ︷

[P\s̄] N) ⊆ Lm(P)\s̄. It can be proved in a manner analogous
to the proof of the base step that t ∈ L(P, αN)\s̄, which establishes the induction step and
completes the proof.

20

5.2 Prefix Closed Case:

The theorem below of this section describes the important properties of the ELL super-
visor in the prefix-closed case. The first part of the theorem is analog of Proposition 2, and
the second part is the analog of Proposition 1. Note that since in the prefix closed case each
trace is marked, the non-blockingness of supervisor trivially holds and so there is no analog
of Theorem 4 in this section.

Theorem 5 The following hold for N ≥ 0:

1. supC(K,P) 6= ∅ if and only if L(P, αN) ⊆ supC(K,P).

2. L(P, αN) ⊆ L(P, αN+1).

Proof: In the first assertion, the sufficiency is obvious. The necessity can be shown us-
ing induction on the length of traces as follows: Since supC(K,P) 6= ∅, and since it is
prefix closed (since K is prefix closed), ε ∈ supC(K,P), which establishes the base step.
For the induction step consider sσ ∈ L(P, αN), where σ ∈ Σ. Then s ∈ L(P, αN) and

σ ∈ supC(
︷ ︸︸ ︷

[K\s] N ,
︷ ︸︸ ︷

[P\s] N) ∪ [Σu ∩ ΣL(P)(s)]. From induction hypothesis s ∈ supC(K,P).
Hence if σ ∈ [Σu ∩ ΣL(P)(s)], the from the controllability of supC(K,P), sσ ∈ supC(K,P).
Otherwise (when σ 6∈ [Σu ∩ ΣL(P)(s)]), suppose for contradiction that σ 6∈ supC(K,P)\s.
Then there exists a sequence of uncontrollable events u ∈ Σ∗

u such that σu ∈ L(P)\s−K\s =

L(P)\s − Klegal\s. Since L(P)\s ⊆
︷ ︸︸ ︷

[L(P)\s] N and
︷ ︸︸ ︷

[K\s] N ⊆ Klegal\s, it follows that

L(P)\s − K\s ⊆
︷ ︸︸ ︷

[L(P)\s] N −
︷ ︸︸ ︷

[K\s] N .

So we have that σu ∈
︷ ︸︸ ︷

[L(P)\s] N −
︷ ︸︸ ︷

[K\s] N , which is contradictory to the fact that σ ∈

supC(
︷ ︸︸ ︷

[K\s] N ,
︷ ︸︸ ︷

[P\s] N).
We prove the second assertion also by induction on the length of traces. By definition

ε ∈ L(P, αN) ∩ L(P, αN+1), which proves the base step. For induction step, consider sσ ∈
L(P, αN) with σ ∈ Σ. Then s ∈ L(P, αN), and so from induction hypothesis s ∈ L(P, αN+1).
If σ ∈ Σu ∩ ΣL(P)(s), then by definition σ ∈ L(P, αN+1)\s. Otherwise (if σ 6∈ Σu) σ ∈
L(P, αN)\s] if and only if

σΣ∗
u ∩

︷ ︸︸ ︷

[L(P)\s] N ⊆
︷ ︸︸ ︷

[K\s] N , (6)

and suffices to show that σΣ∗
u ∩

︷ ︸︸ ︷

[L(P)\s] N+1 ⊆
︷ ︸︸ ︷

[K\s] N+1. We have

σΣ∗
u ∩

︷ ︸︸ ︷

[L(P)\s] N+1

⊆ σΣ∗
u ∩

︷ ︸︸ ︷

[P\s] N (
︷ ︸︸ ︷

[P\s] N+1 ⊆
︷ ︸︸ ︷

[L(P)\s] N)

⊆
︷ ︸︸ ︷

[K\s] N (from 6)

=
︷ ︸︸ ︷

[L(P)\s] N ∩ Klegal\s.

21

By intersecting each term in the above series of containments with
︷ ︸︸ ︷

[L(P)\s] N+1, we obtain

σΣ∗
u ∩

︷ ︸︸ ︷

[L(P)\s] N+1 ⊆
︷ ︸︸ ︷

[L(P)\s] N+1 ∩ Klegal\s =
︷ ︸︸ ︷

[K\s] N+1,

as desired.

6 Valid and Non-Blocking ELL Supervisor

It follows from Proposition 2 and first part of Theorem 5 that a ELL supervisor is in
general not maximally permissive. It is useful to determine any condition under which such
a property (introduced as validity in [5]) will hold. In this section we obtain a sufficient
condition on the length of lookahead for the ELL supervisor to be valid and non-blocking,
so that the controlled plant generated language under ELL supervision equals the controlled
plant generated language under minimally restrictive supervision.

Definition 3 A ELL supervisor with control policy αN : L(P) → 2Σ is called valid and
non-blocking if L(P, αN) = pr(supRC(K,P)). (This reduces to L(P, αN) = supC(K,P) in
the prefix closed case.)

One should note that for a valid and non-blocking ELL supervisor, we have

Lm(P, αN) := L(P, αN) ∩ Lm(P)

= pr(supRC(K,P)) ∩ Lm(P)

= supRC(K,P),

where the last equality follows from the fact that supRC(K,P) is relative closed with respect
to P . This justifies the name non-blocking in Definition 3. For a ELL supervisor to be valid
and non-blocking it should have sufficient lookahead to determine the existence or non-
existence of all infimal controllable and relative-closed sublanguage of the “post-behavior”
(at every prefix of the desired behavior). This requires a lookahead window in which all the
infimal controllable and relative-closed sublanguages of the post-behavior are present. So
a lookahead window in which all the maximal length traces in the union of all the infimal
controllable and relative-closed superlanguages of the post-behavior are present would suffice.
We call such traces to be the “neighboring frontier traces” borrowing the terminology first
introduced in [5]. These traces have the property that it is possible to terminate execution
at these traces without getting blocked, and these are the shortest such traces. It is expected
that if the number of steps of lookahead is larger than the longest neighboring frontier trace,
then the ELL supervisor will be valid and non-blocking.

Definition 4 Given s ∈ pr(K), the set of frontier traces in K after the trace s, denoted
(K\s)f ⊆ K\s, is defined as:

(K\s)f := {t ∈ K\s | ∀σ ∈ Σ : [tσ ∈ L(P)\s] ⇒ [σ 6∈ Σu]}.

22

Kf is used to denoted (K\ε)f . The set of neighboring frontier traces in K after the trace s,
denoted (K\s)nf ⊆ (K\s)f , is defined as:

(K\s)nf := {t ∈ (K\s)f | |t| ≥ 1, and ∀t′ < t : t′ 6∈ (K\s)f}.

The length of the longest neighboring frontier trace, denoted Nnf , as:

Nnf :=

{

maxs∈pr(K)

{

maxt∈(K\s)nf
|t|

}

if it exists

undefined otherwise.

Remark 5 It is clear that in the prefix closed case Nnf simply equals the maximum number
of consecutive uncontrollable events possible in the specification language. ♦

Note that Nnf is undefined when (K\s)nf = ∅ for some s ∈ pr(K). We first prove the
following lemma.

Lemma 7 Suppose s ∈ pr(supRC(K,P)), σ ∈ Σ, and Nnf is defined. Then the following
are equivalent:

1. σ ∈ pr(supRC(K,P)\s).

2. There exists a nonempty H ∈ RC(K\sσ, P\sσ).

3. (K\sσ)nf 6= ∅.

Proof: The equivalence of the first two assertions generalizes [9, Theorem 1], and can be
proved analogously. In order to show the equivalence of the last two assertions, we first show
that the last assertion implies the second one. Define H := pr[(K\sσ)nf] ∩ K\sσ, which is
the set of marked prefixes of (K\sσ)nf . Then it is easy to see that H ∈ RC(K\sσ, P\sσ),
and its nonemptiness follows from the last assertion. On the other hand, suppose there exists
a nonempty H ∈ RC(K\sσ, P\sσ). Pick a frontier trace t ∈ H (which exists since H is
nonempty and Nnf is defined). So there exists a prefix of t′ ≤ t such that t′ ∈ (K\sσ)nf ,
showing that it is nonempty.

In the following theorem we give a condition for validity and non-blockingness of a ELL
supervisor. It generalizes a similar result first proved in [5, Theorem 5.5] in context of LLP
supervision.

Theorem 6 For N ≥ 0, if there is no SE in L(P, αN) and N ≥ Nnf + 2, then L(P, αN) =
pr(supRC(K,P)).

Proof: The forward containment follows from Theorem 3. We prove the reverse contain-
ment, i.e., pr(supRC(K,P)) ⊆ L(P, αN), using induction on the length of traces. Since ε ∈
L(P, αN), the base step holds. For induction step, consider a trace sσ ∈ pr(supRC(K,P)),
where σ ∈ Σ. Then s ∈ pr(supRC(K,P)); so from induction hypothesis s ∈ L(P, αN). It

suffices to show that σ ∈ pr(supRC(
︷ ︸︸ ︷

[K\s] N ,
︷ ︸︸ ︷

[P\s] N)), which we know is nonempty since
there is no SE, and as a result no RTE.

23

Since σ ∈ pr(supRC(K,P)\s), it follows from Lemma 7 that (K\sσ)nf 6= ∅. Also, since

N ≥ Nnf + 2, σ(K\sσ)nf ⊆
︷ ︸︸ ︷

[K\s] N . So the controllability and relative-closure of the set of
marked prefixes of (K\sσ)nf , absence of RTE, and the fact that N ≥ Nnf +2 together imply

σ(K\sσ)nf ⊆ pr(supRC(
︷ ︸︸ ︷

[K\s] N ,
︷ ︸︸ ︷

[P\s] N). This implies σ ∈ pr(supRC(
︷ ︸︸ ︷

[K\s] N ,
︷ ︸︸ ︷

[P\s] N)),
as desired.

Remark 6 The bound on the length of lookahead in Theorem 6 can be improved from
N ≥ Nnf + 2 to N ≥ Nnf + 1 by noting the fact that no uncontrollable events are feasible
at the frontier traces, which can be used to refine the estimate of the plant language by

intersecting it with the set (Σ∗
c .Σ

≤Nnf
u .Σ∗

c)
∗ as in Remark 1.

Under the assumption of absence of starting error, Theorem 6 gives a sufficient condition
for the validity and non-blockingness of the ELL supervision. It can be shown in an analogous
manner that the same result can also be obtained under a weaker condition of existence of
a minimally restrictive supervision, i.e., under the condition of supRC(K,P) 6= ∅. However,
as discussed above, due to limited lookahead it is not possible to compute supRC(K,P),
hence it is not possible to verify its non-emptiness. ♦

7 Application to Concurrency Control

This section presents an application of the ELL supervisor in concurrency control of
transactions in a simple database management system (DBMS). Modeling of transaction
execution in database systems using discrete event framework has been studied in [18] for
the untimed issues and in [8] for the real-time issues. Both these work assume complete-
information structure for concurrency control. The use of limited lookahead for concurrency
control in the untimed setting has been considered very informally in [12, Section 5]. We
provide a formal treatment here via an example, and construct a ELL supervisor for control-
ling transaction execution. The example is worked out in detail to illustrate the application
of the ELL supervisor. We have made some simplifying assumptions so that we are able to
focus on the main issues.

In the following, we introduce some terminologies for concurrency control of transaction
execution in DBMS; interested readers may refer to [21, 22] for details. A transaction is
defined to be a sequence of read and write operations on the data items of the database.
The additional operation, called commit operation, is used to signify successful termination
of the transaction. A transaction that is not committed is called active. Let X denote the
set of data items of the database. For each i ∈ N and x ∈ X, notations ri(x), wi(x), oi(x),
and ci are used to denote read operation on data item x, write operation on data item x, any
operation (read or write) on data item x, and commit operation, respectively, of transaction
Ti. We impose the natural requirement that each Ti can only read and write at most once
per data item, i.e., no multiple reads and writes on the same data item for each Ti is allowed,
and no operation of Ti follows its commit operation ci.

24

Given a transaction Ti, L(Ti) is the language consisting of all prefixes of the sequence of
operations from Ti. For example, if Ti = ri(a)wi(a)ci, then L(Ti) = pr[ri(a)wi(a)ci]. Letting
P denote the DBMS, its generated language, denoted L(P), is defined to be:

L(P) = ‖NT

i=1L(Ti),

where the non-negative integer NT ∈ N represents the maximum number of active transac-
tions allowed in the DBMS, and the ‖ operator denotes the interleaving of languages [16].
The value of NT may be dictated by limitations of the DBMS in terms of processing power
or the amount of memory available. Thus the event set of DBMS P is given by:

Σ = Σc =
⋃

i≤NT ,x∈X

{ri(x), wi(x), ci} .

Each member of L(P) is called a schedule; i.e., a schedule is a sequence of operations obtained
by interleaving operations from one or more Ti. A schedule is called complete if there are no
active transactions in it. The set of complete schedules denoted Lcomplete is defined to be:

Lcomplete := {s ∈ Σ∗ | oi in s implies ci also in s}.

Consider for example

T1 = w1(a)c1; T2 = r2(a)w2(a)c2, (7)

where a is a data item in the database. Also, consider the following three sequences of
operations:

s1 = w1(a)r2(a)c1w2(a)c2,

s2 = w1(a)r2(a)c1,

s3 = w1(a)w2(a)c1r2(a)c2.

s1 is a complete schedule; s2 is only a schedule but not complete since T2 is not committed;
s3, on the other hand, is complete but not a schedule, as the order of operations r2(a) and
w2(a) in s3 is not the same as that in the transaction T2.

For each i, j ≤ NT , i 6= j and x ∈ X, a pair of operations (oi(x), oj(x)) of a schedule s ∈
L(P) such that at least one of the operations is a write operation, is said to be a conflicting
pair of operations of schedule s. A schedule s is called serializable if all its conflicting pairs
are consistently ordered, i.e., the graph representing the executional precedence of conflicting
operations should be acyclic. The set of serializable schedules defines the legal behavior of
the DBMS. Hence we define:

Klegal = {s ∈ Σ∗ | s is serializable}.

The control objective of a concurrency controller is to ensure that only serializable schedule
occur in the DBMS. Note that Lcomplete and Klegal may contain traces that are not physically
possible schedules.

25

Since transactions start and terminate within the DBMS, it is not known a priori how
many transactions are involved in the interleaving language nor which Ti’s are involved. This
is an example of a time-varying discrete event system. The conventional supervisory control
approach is not applicable here because a plant P that models all possible future behavior
cannot feasibly be constructed.

For the purpose of illustrating the application of ELL supervisor, we consider the situation
where NT = 2. We assume for simplicity that there is only one data item a. The set of
events consists of all read ri(a) and write wi(a) operations on data item a and the commit
operations ci of the transaction Ti within the system. Thus, in our case we have

Σ = Σc = {r1(a), w1(a), r2(a), w2(a), c1, c2}.

Suppose the two transactions given in (7) simultaneously enter the database system.
(These transactions are fixed but not known to the ELL supervisor.) Since NT = 2, no new
transaction is allowed to enter the system until at least one of the existing ones terminates.
Suppose for simplicity that no new transaction enters the system until both the existing
transactions terminate. For notational simplicity, we omit the data item a in all the oper-
ations (e.g., r1(a) is denoted as r1). The generated language L(P), which is the set of all
possible schedules of T1 and T2, is depicted in Figure 3(a). The dark node is a marked state
which corresponds to complete schedules.

w1 c1

w1

w1

c1

c1

w2

N=3

w2

r2

c2 c2 c2

r2

w1 c1

N=2

w1 c1

w1

w1

c1

c1

c1

r2

N=4

r2 r2

w2 w2 w2

c2 c2 c2

w1 c1

w1

w1

w1

c1

c1

c1

r2

c2

w2 w2 w2

c2 c2

r2
r2

(a) (b)

Figure 3: DBMS example: uncontrolled plant; controlled plant with increasing lookahead

The relevant portion of the language Lcomplete is shown in Figure 4(a). Similarly, the
graphical representation of the relevant portion of Klegal is depicted in Figure 4(b). In the
graph of Klegal, all states are marked. For simplicity, we assume that the commit operation
ci performs self-loops around all nodes as it does not violate the criterion of serializability.

When the length of lookahead N = 0, 1, a starting error happens in L(P, αN). Since all
events are controllable, we have L(P, α0) = L(P, α1) = {ε}. There is no starting error for
N ≥ 2. The generated languages of the closed-loop controlled system L(P, αN) (for N = 2, 3,

26

{o1,o2}o2

c1

o1

o2

o1
o2

o1

c1 o2

c2

o1c2

c2

c1

o1

o2

r1

w1

w2

r2

r2

w2

w1

w1

r2

w2 r2

w2

r1

w2

r2
r1, w2

r2

r2
r1

w1

w1

r1

w2

w2

r1

r1

w1

w2

r2

w1
r1

r2, w1r1

w1

c i

c i

c i

c i

c i

c i

c i

c i

c i

c i

c i

c i

c i

c i

c i

c i

c i

c i

c i

c i

c i

(a) (b)

Figure 4: Lcomplete and Klegal for the simple DBMS

and 4) are depicted in Figure 3(b). The closed-loop generated behavior L(P, α4) is the set
of all complete and serializable schedules, and thus equals the supremal relative closed and
controllable sublanguage of the desired behavior. Therefore, the ELL supervisor with 4-step
lookahead is valid and non-blocking in our example.

8 Conclusion and Discussion

In this paper, we have presented a new approach for extension based limited lookahead
supervisor. The specific contributions of our work include the following:

1. The ELL supervisor avoids the need to choose an “attitude” regarding pending traces,
which is required in LLP supervisor. This results in a unique choice for the supervisor.

2. The ELL supervisor is compared with the conservative LLP supervisor; it is shown
that ELL supervisor is in general less restrictive than the conservative LLP supervisor.

3. The ELL supervisor is non-blocking even if the desired behavior is not a relative closed
language.

4. A lower bound for N has been obtained which guarantees in the absence of starting
error our on-line scheme performs as well as the traditional off-line scheme.

27

The complexity of computing control action at each point in the non-prefix closed case
(which is that of computing the supremal relative closed and controllable sublanguage of the
estimated desired marked language with respect to the estimated plant behavior) is of the
same order as that of computing the control action at each point for the LLP supervisor.
This is due to the facts that (i) the number of states in the estimate of the generated plant
language is same as that in its N -step truncation, since appending Σ∗ to the traces of length
N is equivalent to adding self-loops on each event at each of the leaf nodes in the N -tree
representing the N -step truncation; and (ii) the complexity of computing a supremal relative
closed and controllable sublanguage is of the same order as that of computing a supremal
controllable sublanguage. In the prefix-closed case, the computational complexity is also
affected by the complexity of Klegal.

Finally, there are many possible ways that this work presented here could be extended:

1. As in [6, 7, 9], it is important to develop algorithm to perform recursive computation
of supRC(·, ·) from one N -level tree to another as the limited lookahead windows roll
through the execution of each event.

2. For some application areas, the representations of Klegal and Lcomplete may be too
complex. One possible solution to this implementation issue is that instead of taking set

intersection to compute
︷ ︸︸ ︷

[K\s] N , it is possible to perform and implement a legality test

on
︷ ︸︸ ︷

[P\s] N to generate
︷ ︸︸ ︷

[K\s] N . For instance, in the case of DBMS, Serialization Graph
Testing (SGT) [22, 21] could be used to determine which schedules are serializable.

3. The non-blocking feature often results in restrictive control in the closed-loop behavior;
thus, the generated controlled behavior, although non-blocking, may be restrictive. As
noted by Chen and Lafortune [3], it is sometime better to allow some degrees of blocking
if such blocking occurs very rarely, or the expense to correct such blocking situation
is minimal, so that the controlled plant can achieve more of the desired behavior.
For example in DBMS, rollback mechanism is used for recovery from blocking. (A
rollback consists of undoing the effect of certain events until it is possible to resume
the execution of the system.) Thus, it is possible to modify the ELL supervisor to
allow blocking by redefining the function block gN(s) so that the ELL supervisor is
even more permissive. However, appropriate mechanism for recovery from blocking
must be incorporated.

4. In concurrency control of DBMS, locking and time-stamping [21, 22] are two popular
concurrency control techniques used by many schedulers existing today. It is instructive
to compare the performance between these two techniques with our ELL based on-line
control scheme. The non-blocking requirement for ELL supervisor must be relaxed in
order to make a meaningful comparison.

5. Abort operation, system failure, and rollback are also important events in DBMS. It
will be useful to extend the application of ELL supervisor to include these events in
the system.

28

A Proof of Lemma 3

Proof of Lemma 3: For notational simplicity, let H := supRC(K,P), H1 := H\s, and
H2 := supRC(K\s, P\s).

1. We need to show that H1 = H\s ⊆ H2. Since H2 is the supremal relative closed and
controllable sublanguage of K\s with respect to P\s, it suffices to show that H1 is a relative
closed and controllable sublanguage of K\s with respect to P\s, i.e., (i) H1 ⊆ K\s, (ii)
pr(H1)∩Lm(P)\s ⊆ H1, and (iii) pr(H1)Σu∩L(P)\s ⊆ pr(H1). Since H = supRC(K,P) ⊆
K; clearly, H1 = H\s ⊆ K\s. We first show that H1 is relative closed with respect to P\s.

pr(H1) ∩ Lm(P)\s
= pr(H\s) ∩ Lm(P)\s (H1 = H\s)
= pr(H)\s ∩ Lm(P)\s (part 2, Lemma 1)
= (pr(H) ∩ Lm(P))\s (part 1, Lemma 1)
⊆ H\s (H is relative closed)
= H1 (H1 = H\s)

Next we show that H1 is controllable with respect to P\s.

pr(H1)Σu ∩ L(P)\s
= pr(H\s)Σu ∩ L(P)\s (H1 = H\s)
= (pr(H)\s)Σu ∩ L(P)\s (part 2, Lemma 1)
⊆ pr(H)Σu\s ∩ L(P)\s (part 3, Lemma 1)
= (pr(H)Σu ∩ L(P))\s (part 1, Lemma 1)
⊆ pr(H)\s (H is controllable)
= pr(H\s) (part 2, Lemma 1)
= pr(H1) (H1 = H\s)

2. The forward containment follows from part 1 above. Hence we only need to show the
reverse containment, i.e., H1 = H\s ⊇ H2, or equivalently, H ⊇ {s}H2. Since H is the
supremal relative closed and controllable sublanguage of K with respect to P , it suffices to
show that H ∪ {s}H2 is relative closed and controllable sublanguage of K with respect to
P , which implies that H ∪ {s}H2 ⊆ H1; consequently, {s}H2 ⊆ H1. It is easy to see that
H ∪ {s}H2 ⊆ K. We first prove that H ∪ {s}H2 is controllable with respect to P . Since
s ∈ pr(H) and H is controllable with respect to P , we have

pr({s})Σu ∩ L(P) ⊆ pr(H). (8)

Also, since H2 is controllable with respect to P\s, we have

pr(H2)Σu ∩ L(P)\s ⊆ pr(H2),

or equivalently,

{s}pr(H2)Σu ∩ L(P) ⊆ {s}pr(H2). (9)

29

By considering the unions of left as well as right hand sides of (8) and (9) and using the fact
that pr({s}) ∪ {s}pr(H2) = pr({s}H2), we obtain

pr({s}H2)Σu ∩ L(P) ⊆ pr(H) ∪ {s}pr(H2). (10)

Since H is controllable with respect to P , we have

pr(H)Σu ∩ L(P) ⊆ pr(H). (11)

By considering the union of left as well as right hand sides of (10) and (11) and using the
fact that prefix operation distributes over the union operation, we obtain as desired:

pr(H ∪ {s}H2)Σu ∩ L(P) ⊆ pr(H ∪ {s}H2).

Next we prove that H ∪ {s}H2 is relative closed with respect to P . Since s ∈ pr(H) and
H is relative closed, we have

pr({s}) ∩ Lm(P) ⊆ H. (12)

Since H2 is relative closed with respect to Lm(P)\s, we have

pr(H2) ∩ Lm(P)\s ⊆ H2,

or equivalently,

{s}pr(H2) ∩ Lm(P) ⊆ {s}H2. (13)

By considering the unions of left as well as right hand sides of (12) and (13) and using the
fact that pr({s}) ∪ {s}pr(H2) = pr({s}H2), we obtain

pr({s}H2) ∩ Lm(P) ⊆ H ∪ {s}H2. (14)

Since H is relative closed with respect to P , we have

pr(H) ∩ Lm(P) ⊆ H. (15)

By considering the union of left as well as right hand sides of (14) and (15) and using the
fact that prefix operation distributes over the union operation, we obtain as desired:

pr(H ∪ {s}H2) ∩ Lm(P) ⊆ H ∪ {s}H2.

This completes the proof.

30

References

[1] Z. Banaszak and B. H. Krogh. Deadlock avoidance in flexible manufacturing sytems with
concurrently competing process flows. IEEE Transactions on Robotics and Automation,
6(6):724–734, December 1990.

[2] R. D. Brandt, V. K. Garg, R. Kumar, F. Lin, S. I. Marcus, and W. M. Wonham.
Formulas for calculating supremal controllable and normal sublanguages. Systems and
Control Letters, 15(8):111–117, 1990.

[3] E. Chen and S. Lafortune. Dealing with blocking in supervisory control of discrete event
systems. IEEE Transactions on Automatic Control, 36(6):724–735, 1991.

[4] S. L. Chung, S. Lafortune, and F. Lin. Addendum to “Limited lookahead policies in
supervisory control of discrete event systems”: Proofs of technical results. Technical
Report CGR-92-6, University of Michigan, Ann Arbor, Michigan, April 1992.

[5] S. L. Chung, S. Lafortune, and F. Lin. Limited lookahead policies in supervisory control
of discrete event systems. IEEE Transactions of Automatic Control, 37(12):1921–1935,
December 1992.

[6] S. L. Chung, S. Lafortune, and F. Lin. Recursive computation of limited lookahead su-
pervisory controls for discrete event systems. Discrete Event Dynamic Systems: Theory
and Applications, 3(1):71–100, 1993.

[7] S. L. Chung, S. Lafortune, and F. Lin. Supervisory control using variable lookahead
policies. Discrete Event Dynamic Systems: Theory and Applications, 4(3):237–268, July
1994.

[8] A. Ghosh. Modeling and analysis of real-time database systems in the framework of
discrete event systems. Technical Report MS 95-6, Institute of Systems Research, Uni-
versity of Maryland, 1995.

[9] N. B. Hadj-Alouane, S. Lafortune, and F. Lin. Variable lookahead supervisory control
with state information. IEEE Transactions on Automatic Control, 39(12):2398–2410,
December 1994.

[10] N. B. Hadj-Alouane, S. Lafortune, and F. Lin. Centralized and distributed algorithm for
on-line synthesis of maximal control policies under partial observation. Discrete Event
Dynamical Systems: Theory and Applications, 6(41):379–427, 1996.

[11] M. Heymann and F. Lin. On-line control of partially observed discrete event systems.
Discrete Event Dynamical Systems: Theory and Applications, 4(3):221–236, July 1994.

[12] P. Kozak and W. M. Wonham. Synthesis of database management protocols. IEEE
Transactions on Automatic Control, 41(9):1330–1335, September 1996.

31

[13] B. H. Krogh and D. Feng. Dynamic generation of subgoals for autonomous mobile
robots using local feedback information. IEEE Transactions on Automatic Control,
34(5):483–493, May 1989.

[14] R. Kumar. Formulas for observability of discrete event dynamical systems. In Proceed-
ings of 1993 Conference on Information Sciences and Systems, pages 581–586, Johns
Hopkins University, Baltimore, MD, March 1993.

[15] R. Kumar and V. K. Garg. Extremal solutions of inequations over lattices with ap-
plications to supervisory control. Theoretical Computer Science, 148:67–92, November
1995.

[16] R. Kumar and V. K. Garg. Modeling and Control of Logical Discrete Event Systems.
Kluwer Academic Publishers, Boston, MA, 1995.

[17] R. Kumar, V. K. Garg, and S. I. Marcus. On controllability and normality of discrete
event dynamical systems. Systems and Control Letters, 17(3):157–168, 1991.

[18] S. Lafortune. Modeling and analysis of transaction execution in database systems. IEEE
Transactions on Automatic Control, 33(5):439–447, 1988.

[19] F. Lin and W. M. Wonham. On observability of discrete-event systems. Information
Sciences, 44(3):173–198, 1988.

[20] P. Liu. Goal-oriented behavior in autonomous systems. In Proceedings of the 2nd
International IEEE Conference on Tools for Artificial Intelligence, pages 2–8, Herndon,
VA, 1990.

[21] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, Reading, MA, 1987.

[22] C. H. Papadimitriou. The Theory of Database Concurrency Control. Computer Science
Press, Rockville, MD, 1986.

[23] K. M. Passino and P. J. Antsaklis. A system and control theoretic perspective on
artificial intelligence planning systems. International Journal of Applied Artificial In-
telligence, 3:1–32, 1989.

[24] J. C. Pemberton and R. E. Korf. Incremental path planning on graphs with cycles.
In Proceedings of the 1st International Conference on Artificial Intelligence Planning
Systems, pages 179–188, College Park, MD, 1992.

[25] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event
processes. SIAM Journal of Control and Optimization, 25(1):206–230, 1987.

[26] P. J. Ramadge and W. M. Wonham. The control of discrete event systems. Proceedings
of IEEE: Special Issue on Discrete Event Systems, 77:81–98, 1989.

32

[27] N. Viswanadham, Y. Narahari, and T. L. Johnson. Deadlock prevention and deadlock
avoidance in flexible manufacturing systems using Petri net models. IEEE Transactions
on Robotics and Automation, 6(6):713–723, December 1990.

33

