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Abstract. Chemical data assimilation attempts to optimally use noisy observations along with im-

perfect model predictions to produce a better estimate of the chemical state of the atmosphere. It is

widely accepted that a key ingredient for successful data assimilation is a realistic estimation of the

background error distribution. Particularly important is the specification of the background error co-

variance matrix, which contains information about the magnitude of the background errors and about5

their correlations. As models evolve toward finer resolutions, the use of diagonal background covari-

ance matrices is increasingly inaccurate, as they captures less of the spatial error correlations. This

paper discusses an efficient computational procedure for constructing non-diagonal background error

covariance matrices which account for the spatial correlations of errors. The correlation length scales

are specified by the user; a correct choice of correlation lengths is important for a good performance of10

the data assimilation system. The benefits of using the non-diagonal covariance matrices for variational

data assimilation with chemical transport models are illustrated.

1 Introduction

Chemical data assimilation attempts to optimally use noisy observations along with imperfect model

predictions to produce a better estimate (in some optimal sense) of the chemical state of the atmo-15

sphere. This optimally estimated state better defines the spatial and temporal fields of key chemical

components in relation to their sources and sinks. This information is critical for improved studies of

the atmospheric composition. Chemical data assimilation could also, in principle, improve estimates
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of emission inventories, of model boundary conditions, or of important model parameters like wet

deposition velocities or photolysis rates.20

The close integration of observational data is recognized as essential in weather/climate analysis

and forecast activities. Consequently, considerable experience with data assimilation have been accu-

mulated in the field of numerical weather prediction (Daley, 1991; Courtier et al., 1998; Rabier et al.,

2000; Kalnay, 2002; Navon, 2009). In this work we focus on chemical data assimilation, i.e., on assimi-

lation of observations of pollutant levels in the atmosphere. Chemical data assimilation poses specific25

challenges related to the multiphysics nature of the system, the stiffness of chemical kinetic equations,

the sparseness of chemical observations, and the uncertainty in the levels of anthropogenic and natural

pollutants emitted into the atmosphere.

Previous studies have employed various approaches to assimilating observations of trace gases for

improved tropospheric chemistry representations. The base concepts of the variational approach to30

chemical data assimilation, and the construction of adjoint chemical transport models are discussed in

detail in (Sandu et al., 2005; Carmichael et al., 2008). Early work in chemical data assimilation using

variational techniques has been reported in (Fisher and Lary, 1995; Elbern and Schmidt, 1999, 2001).

Since then there is a growing body of literature with applications of 4D-Var chemical data assimilation.

Adjustment of gas phase chemical tracer initial conditions has been studied in (Chai et al., 2007; Zhang35

et al., 2008). Adjustment of pollutant emissions through 4D-Var chemical data assimilation has been

discussed in Chai et al. (2009). Data assimilation studies involving particle measurements to improve

aerosol fields have been performed in (Hakami et al., 2005; Henze et al., 2009).

Suboptimal Kalman filters have been employed successfully for chemical data assimilation (Menard

et al., 2000; Lamarque et al., 2002; Segers et al., 2005; Clark et al., 2006; Pierce et al., 2007; Parrington et40

al., 2009). The use of the ensemble Kalman filter (EnKF) in chemical data assimilation has been studied

in (Constantinescu et al., 2007b,c,d). Data assimilation has been used to improve initial conditions,

emissions, and boundary values. Besides the initial conditions, improvements in boundary values

lead to improved air quality forecasts. Comparisons of the the performance of different techniques for

chemical data assimilation have been performed (Lahoz et al., 2007; Wu et al., 2008).45

It is widely accepted that a key ingredient of successful data assimilation is a realistic estimation

of the background error distribution. Particularly important is the specification of the background er-

ror covariance matrix, which contains information about the magnitude of the background errors and

about their correlations. Background covariance matrices impact how the information from observa-

tions is spread both spatially and among the different types of analysis variables.50

The construction of background covariance matrices is challenging due to poorly characterized back-

ground errors, and to the very large dimension of the state space of realistic atmospheric models. As

a consequence, many chemical data assimilation studies to date have used diagonal background co-

variance matrices. An early covariance error modeling approach Hollingsworth and Lonnberg (1986)
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partitions differences between observations and the background into background errors and observa-55

tion errors. A popular approach to approximate the background covariance matrix is the NMC method

(Parrish and Derber, 1992), in which the differences between several forecasts verifying at the same time

are used to approximate the background error. This method has been successfully applied to chemical

data assimilation (Chai etal., 2006). The analysis-ensemble method (Fisher, 2003) runs the analysis

system several times for the same period with randomly-perturbed observations. Differences between60

background fields for different runs provide a surrogate for a sample of background error. Additional

methods for covariance modeling include the estimation of background error statistics from innovation

statistics, digital filters, and the diffusion operator (Fisher, 2006). The statistical structure of forecast

errors is used to construct error covariances in (Ingleby, 2001). Derber and Bouttier (1999) consider

errors in the spectral space, split covariances into vertical and horizontal, and construct correlations65

are homogeneous, isotropic, and non-separable. An alternative approach constructs autoregressive

models of background errors based on the short-term linearized model dynamics (Constantinescu et

al., 2007a). Multivariate, multidimensional background error covariance matrices that maintain the

geostrophic and hydrostatic balance have been proposed in (Akella and Navon, 2009).

A popular ansatz is that the background error correlations decay exponentially in space. This ansatz70

allows the construction of simple error correlation models, and is the basis of the covariance localization

technique used in ensemble Kalman filtering (Gaspari and Cohn, 1999; Ott et al., 2004; Constantinescu

et al., 2007b). Experimental studies with chemical transport models support this assumption; for

example, in (Chai etal., 2006) it has been shown that ozone error correlations decrease follow, on

average, an exponential decay curve. Sub-optimal Kalman filters based on covariance models that75

impose an exponential decay of correlations with distances have been used in the assimilation of

chemical constituents (Khattatov et al., 1999; Pierce et al., 2007).

In the troposphere, ozone is an important greenhouse gas and a major pollutant, which adversely

impacts air quality. Its distribution is highly heterogeneous, reflecting the combined influence of at-

mospheric transport and local chemical sources and sinks. Until recently, observations of the three-80

dimensional structure of tropospheric ozone have been limited. The Tropospheric Emission Spectrom-

eter (TES) satellite instrument, launched in 2004, produced the first continuous, global profile retrievals

of tropospheric ozone. Similar observations are now available from other satellite instruments, such

as the Infrared Atmospheric Sounding Interferometer (IASI). Assimilating these data into atmospheric

models provides a powerful means to obtain an improved understanding of the processes controlling85

tropospheric ozone. Parrington et al. (2008) was the first to assimilate the TES ozone profile retrievals,

but they did not account for horizontal correlations in the background error.

We propose here a computationally efficient approach for constructing (background) error covari-

ances that account for spatial correlations in both horizontal and vertical directions, and assess its

impact on the assimilation of tropospheric ozone profiles from TES. The construction is based but not90
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restricted to the ansatz of exponential decay of error correlations. The correlation lengths in the latitu-

dinal, longitudinal, and vertical directions can be specified according to the application requirements.

Due to the large number of state variables an explicit representation of the full background covariance

matrix is impractical. The proposed strategy constructs a multi-dimensional correlation matrix from

tensor products of one-dimensional correlation matrices. This avoids the explicit construction and stor-95

age of full covariance matrices, and allows the needed linear algebra operations to be performed very

efficiently.

The paper is organized as follows. Section 2 reviews variational data assimilation techniques, and

Section 3 presents the GEOS-Chem global chemical transport model. The algorithm for constructing

multidimensional covariance matrices is discussed in Section 4. Section 5 presents assimilation results100

of TES ozone profiles with the global chemical transport model GEOS-Chem, and illustrates the benefits

of nondiagonal covariances in both three and four dimensional variational data assimilation settings.

2 Variational data assimilation

Variational methods solve the data assimilation problem in an optimal control framework (Sasaki, 1958;

Le Dimet and Talagrand, 1986; Courtier and Talagrand, 1987; Lions, 1971). Specifically, they attempt to105

find the control variable values (e.g., initial conditions) which minimize the discrepancy between the

model forecast and observations; the minimization is constrained by the governing dynamic equations.

In this discussion, for simplicity of presentation, we focus on discrete models (in time and space) where

the initial conditions are the control variables.

Data assimilation combines the following three sources of information.110

1. The apriori, or background state xb represents the best estimate of the true state xt available

before any measurements are taken. This estimate is assumed unbiased, and the random back-

ground (estimation) errors εb are typically assumed to have a normal probability density with a

background error covariance matrix B
εb = xb −xt ∈N (0,B). (1)

2. The model encapsulates our knowledge about physical and chemical laws that govern the evolu-

tion of the system. The model evolves an initial state x0 ∈Rn at the initial time t0 to future state

values xi ∈Rn at future times ti,

xi =Mt0→ti (x0) . (2)

The size of the state space in realistic chemical transport models is very large. For example, a

GEOS-Chem simulation at the 2◦x2.5◦ horizontal resolution has n∈O
(
108) variables.

3. Observations xobs
i ∈Rm of the state are taken at times ti, 1= 1,··· ,N

xobs
i =H(xi)+ εobs

i . (3)
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The observation operator H maps the state space onto the observation space. In many practical

situations H is a highly nonlinear mapping (as is the case, e.g., with satellite observation opera-

tors). Usually the observations are sparsely distributed, and the number of observations is small115

compared to the dimension of the state space, m ≪ n.

The observations are corrupted by measurement and representativeness errors εobs
i . The observa-

tion errors at each time are assumed to be independent of background errors, and independent

of the observation errors at other times. They are typically assumed to have a normal distribution

with mean zero and covariance Ri,

εobs
i ∈N (0,Ri). (4)

Based on these three sources of information data assimilation computes the posterior estimate xa of

the true state; xa is called the “analysis”.

2.1 Three dimensional variational (3D-Var) data assimilation

In the 3D-Var data assimilation the observations (3) are considered successively at times t1,··· ,tN. The

background state (i.e., the best state estimate at time ti) is given by the model forecast, starting from

the previous analysis (i.e., best estimate at time ti−1):

xb
i =Mti−1→ti

(
xa

i−1
)

.

The discrepancy between the model state xi and observations at time ti, together with the departure of

the state from the model forecast xb
i , are measured by the 3D-Var cost function:J(xi) =

1
2

(
xi−xb

i

)TB−1
(

xi−xb
i

)
+

1
2

(
H(xi)−xobs

i

)TR−1
i

(
H(xi)−xobs

i

)
(5)

While in principle a different background covariance matrix should be used at each time, in practice

the same matrix is re-used throughout the assimilation window. The 3D-Var analysis is computed as

the state which minimizes (5)

xa
i = argmin J(xi). (6)

Typically a gradient-based numerical optimization procedure is employed to solve (6). The gradient

∇J of the cost function (5) is

∇J(xi) =B−1
(

xi−xb
i

)
+
(
H′(xi)

)TR−1
i

(
H(xi)−xobs

i

)
(7)

Note that the gradient requires computation of the linearized observation operator H′ about the current120

state.

Preconditioning is often used to improve convergence of the numerical optimization problem (6). A

change of variables is performed, for example, by shifting the state and scaling it with the square root

of covariance:

x̂i =B1/2
(

xi −xb
i

)
, (8)

5



The optimization is then carried out on the new variables x̂i.

2.2 Four dimensional variational (4D-Var) data assimilation

In strongly-constrained 4D-Var data assimilation all observations (3) at all times t1,··· ,tN are simulta-

neously considered. The control parameters are the initial conditions x0; they uniquely determine the125

state of the system at all future times via the model equation (2).

The discrepancy between model predictions and observations at all future times t1,··· ,tN, together

with the departure of the initial state from the background state, are measured by the 4D-var cost

function: J(x0) =
1
2

(
x0−xb

0

)TB−1
(

x0−xb
0

)
+

1
2

N

∑
i=1

(
H(xi)−xobs

i

)TR−1
i

(
H(xi)−xobs

i

)
(9)

Note that the departure of the initial conditions from the background is weighted by the inverse back-

ground covariance matrix, B−1, while the differences between the model predictions H(xi) and obser-

vations xobs
i are weighted by the inverse observation error covariances, R−1

i .

The 4D-Var analysis is computed as the initial condition which minimizes (9) subject to the model

equation constraints (2)

xa
0 = argmin J(x0) subject to(2). (10)

The model (2) propagates the optimal initial condition (9) forward in time to provide the analysis at130

future times, xa
i =Mt0→ti

(
xa

0

)
.

The optimization problem (10) is solved numerically using a gradient-based technique. The gradient

of (9) reads

∇J(x0) =B−1
(

x0−xb
0

)
+

N

∑
i=1

(
∂xi

∂x0

)T (
H′(xi)

)TR−1
i

(
H(xi)−xobs

i

)
(11)

The 4D-Var gradient requires not only the linearized observation operator H′, but also the transposed

derivative of future states with respect to the initial conditions. The 4D-Var gradient can be obtained

effectively by forcing the adjoint model with observation increments, and running it backwards in time.

The construction of an adjoint model requires considerable effort, time, and know-how.135

3 GEOS-Chem

In this paper we specifically consider GEOS-Chem (http://geos-chem.org), a global three-dimensional

chemical transport model (CTM) driven by assimilated meteorological fields from Goddard Earth Ob-

serving System(GEOS-4) at the NASA Global Modeling and Assimilation Ofice (GMAO). The model

was first described in Bey et al. (2001). GEOS-Chem accounts in detail for emissions from both nat-140

ural and anthropogenic sources, for gas phase chemistry, aerosol processes, long range transport of
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pollutants, troposphere-stratosphere exchanges, etc. GEOS-Chem is widely used by research groups

world-wide for performing global atmospheric chemistry studies.

The GEOS-Chem Adjoint system (http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_

Adjoint) has been developed through a joint effort of groups at Virginia Tech, University of Colorado,145

Caltech, Jet Propulsion Laboratory, and Harvard (Henze et al., 2007; Singh et al., 2009a,b; Eller et al.,

2009). The system can perform adjoint sensitivity analyses and 4D-Var chemical data assimilation.

Inverse modeling studies with GEOS-Chem adjoint are presented in (Kopacz et al., 2009; Henze et al.,

2009).

4 Construction of the background error covariance matrix150

A correct characterization of the background errors is necessary for obtaining a meaningful analysis,

i.e., for the success of the data assimilation procedure. Under the usual assumption, the background

errors are normally distributed where their probability density is described by the background state

xb and the background error covariance matrix B. In variational data assimilation both xb and B
enter directly into the formulation of the cost function; errors in their specification directly impact the155

analysis result (Daescu, 2008).

A non-diagonal background error covariance matrix allows the information from local observations

to spread out in space to contribute to corrections of state variables in neighboring locations; similarly,

it allows observations of certain components of the state vector to contribute to corrections of other

components. These contributions are more prominent in case of 3D-Var since state variables are cor-160

rected every subsequent observation interval. The spread of information results in a smooth analysis

state, and allows different sets of observations to complement each other. In case of 4D-Var, the state

variables are corrected only at the start of the assimilation window using information from all observa-

tions combined. The spreading of information is achieved through background error covariance matrix

and transport of adjoint sensitivities.165

Despite these advantages, most chemical data assimilation studies to date have employed diagonal

background covariances. Little work has been devoted to date to modeling off-diagonal terms (Chai

etal., 2006; Constantinescu et al., 2007a). This is due to a number of practical difficulties that arise

in the construction of background covariance matrices. The “true” state is, fundamentally, unknown,

and so are the “true” errors; surrogate states have to be used to mimic forecast errors. Ensembles can170

be employed to estimate error correlations; however, the number of ensemble members is necessarily

very small and only low rank approximations of the covariance matrix can be obtained. Localization

is often employed to remove spurious correlations and to improve the rank of the resulting matrix

(Gaspari and Cohn, 1999). The large number of state variables make the construction and storage of

full covariance matrices impractical.175

We next discuss the proposed approach to constructing a background error covariance matrix B that
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accounts for both vertical and horizontal correlations without explicitly constructing the full covariance

matrix. We explain the construction of the matrix in the two-dimensional case, i.e., for capturing

horizontal correlations; the extensions to correlations in three dimensions and to correlations among

multiple state variables are immediate. Our target application is global chemical data assimilation180

using GEOS-Chem.

Consider a uniform latitude-longitude grid and denote by x the longitude and by y the latitude level.

A grid point (xi,yj) has longitude coordinate xi, i= 1,. . .,nx, and latitude coordinate yj, i = 1,. . .,ny. The

state vector contains the state values at all gridpoints ordered latitude-first:

[
(x1,y1),··· ,(x1,yny),(x2,y1),··· ,(x2,yny),(xnx ,y1),··· ,(xnx ,yny)

]
(12)

4.1 Directional error correlation matrices185

The one-dimensional correlation between errors at two locations (xi,yk) and (xj,yk) situated at the

same latitude yk is modeled as

(C̃k
x

)
i,j
= corr

(
(xi,yk),(xj,yk)

)
= e

−
dist((xi,yk),(xj,yk))

2

ℓ2
x ; i, j= 1,··· ,nx ; k = 1,··· ,ny ; (13)

where ℓx is the correlation distance in the longitude direction. For a uniform lat-lon grid the distance

between xi and xj depends only on min(|i− j|,nx−|i− j|). This distance also depends on the yk; for this

reason equation (13) defines a different longitudinal correlation matrix C̃k
x ∈Rnx×nx for each latitude

yk. Due to the periodicity along each latitude circle the point x1 is strongly correlated with both x2 and

xnx , etc. The periodicity is captured by the distance function in (13).190

Similarly, the one-dimensional correlation between errors at two locations (xk,yi) and (xk,yj) situated

at the same longitude xk is modeled as

(C̃k
y

)
i,j
= corr

(
(xk,yi),(xk,yj)

)
= e

−
dist((xk,yi),(xk,yj))

2

ℓ2
y , i, j= 1,··· ,ny ; k = 1,··· ,ny ; (14)

where ℓy is the correlation distance in the latitude direction. Equation (14) defines a single latitudinal

correlation matrix C̃y ∈Rny×ny . For a uniform lat-lon grid this correlation matrix is the same for each

longitude xk; consequently the superscript k is dropped. To simplify the construction the correlations

due to the periodicity along a meridional circle are ignored. Otherwise, error correlations across

the poles would lead to correlations between errors at all longitudes; such cross-correlations are not195

captured by (14).

The cost function and gradient calculations described in equations (5), (7), (9), and (11) require the

inverse of the background error covariance matrix; this involves the inverses of the correlation matrices

in longitudinal and latitudinal directions. The construction of the directional correlation matrices C̃x

and C̃y does not guarantee that they are non-singular. To avoid a possible singularity we take a convex
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combination between the identity matrix and tensor product correlations as follows:Ck
x = θx Inx×nx +(1−θx) C̃k

x , (15)

and Ck
y = θy Iny×ny +

(
1−θy

) C̃k
y . (16)

The above procedure brings a shift in the spectrum and ensures the positive definiteness of Cx and Cy.

In all our experiments both θx and θy are chosen to be equal to 0.2.

The longitudinal correlation matrix between all the points on the two-dimensional grid (12) can be

constructed from the one-dimensional longitudinal correlation matrices as follows

C1:ny
x ⊗Iny×ny =







(C1
x

)
1,1 0 ··· 0

0
(C2

x

)
1,1 ··· 0

...
...

. . .
...

0 0 ···
(Cny

x

)
1,1




···




(C1
x

)
1,nx

0 ··· 0

0
(C2

x

)
1,nx

··· 0
...

...
. . .

...

0 0 ···
(Cny

x

)
1,nx




...
. . .

...


(C1
x

)
nx ,1 0 ··· 0

0
(C2

x

)
nx,1 ··· 0

...
...

. . .
...

0 0 ···
(Cny

x

)
nx ,1




···




(C1
x

)
nx ,nx

0 ··· 0

0
(C2

x

)
nx ,nx

··· 0
...

...
. . .

...

0 0 ···
(Cny

x

)
nx,nx







With some abuse of notation we extend the use of the Kronecker product symbol ⊗ in the above

equation in order to highlight the structure of the two-dimensional longitudinal correlation matrix.200

Similarly, the latitudinal correlation matrix between all the points on the two-dimensional grid (12)

can be constructed from the one-dimensional latitudinal correlation matrices as follows

Inx×nx ⊗Cy =







(Cy
)

1,1

(Cy
)

1,2 ···
(Cy

)
1,ny(Cy

)
2,1

(Cy
)

2,2 ···
(Cy

)
2,ny

...
...

. . .
...

(Cy
)

ny,1

(Cy
)

ny,2 ···
(Cy

)
ny,ny




···




0 0 ··· 0

0 0 ··· 0
...

...
. . .

...

0 0 ··· 0




...
. . .

...



0 0 ··· 0

0 0 ··· 0
...

...
. . .

...

0 0 ··· 0




···




(Cy

)
1,1

(Cy

)
1,2 ···

(Cy

)
1,ny(Cy

)
2,1

(Cy

)
2,2 ···

(Cy

)
2,ny

...
...

. . .
...

(Cy
)

ny,1

(Cy
)

ny,2 ···
(Cy

)
ny,ny







The structure of the one-dimensional correlation matrices is represented in Figure 1. The longitudinal

correlation Ck
x is represented at latitude yk = 20◦N; note that due to the periodicity along each latitude
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Fig. 1. Mesh representation of the one-dimensional longitudinal and latitudinal correlation matrices. The latitude-

longitude model grid resolution is 4◦ × 5◦ (about 400Km × 500Km near the equator) and the correlation lengths

are ℓx = 1500Km and ℓy = 1200Km.

circle not only the elements near the diagonal, but also the elements in the corners of the matrix have

non-zero values. The latitudinal correlation Cy does not account for periodicity (along each meridian

the grids 1 and ny correspond to the South and to the North pole, respectively).205

Figure 2 represents contour lines of the longitudinal correlation Cx for points at different latitudes.

The correlation length ℓx is short (top panel), medium (middle panel), and large (bottom panel). Note

that the same correlation length ℓx translates into a larger number of correlated grid points at higher

latitudes.
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Fig. 2. Contour lines of the longitudinal correlation Cx for points at different latitudes. The correlation length ℓx

is short (top panel), medium (middle panel), and large (bottom panel). Note that the same correlation length ℓx

translates into a different number of correlated grid points depending on the latitude.

4.2 Two-dimensional covariance matrices210

Formally the full background error correlation matrix C∈Rnxny×nxny (which accounts for both latitu-

dinal and longitudinal correlations) is constructed via the following relationC=
(C1:ny

x ⊗Iny×ny

)
·
(Inx×nx ⊗Cy

)
. (17)

Note that this (huge) matrix is never explicitly formed. One needs to form and store only ny one-

dimensional longitudinal correlation matrices (13) and a single one-dimensional latitudinal correlation

matrix (14). Note that the diagonal entries of the tensor product matrix (17) are all equal to one. The

tensor product matrix (17) is not symmetric.

A symmetric version of the two-dimensional correlation matrix can be constructed as follows. Any

symmetric positive definite matrix C has a matrix square root C1/2 such thatC=C1/2CT/2.

The matrix square root is not uniquely defined; in particular it can be symmetric or not depending

on the decomposition method used as described in equations (21) and (22). Let
(Inx×nx ⊗Cy

)1/2 be a
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square root of the longitudinal correlation matrix. The symmetric two-dimensional correlation matrix

can be constructed as:Csym =
(Inx×nx ⊗Cy

)1/2
·
(C1:ny

x ⊗Iny×ny

)
·
(Inx×nx ⊗Cy

)T/2 . (18)

Let σi,j be the standard deviation of the error at location (xi,yj) and

Σ=diag1≤i≤nx,1≤j≤ny
σi,j

the diagonal matrix with all standard deviations at all grid points ordered according to (12). The two-215

dimensional covariance matrix is constructed from the correlation matrix (17) by scaling it from left

and right with the diagonal matrix of standard deviations ΣB=Σ ·C ·Σ=Σ ·
(C1:ny

x ⊗Iny×ny

)
·
(Inx×nx ⊗Cy

)
·Σ. (19)

Similarly, a symmetric version of the covariance matrix can be constructed from the symmetric cor-

relation (18) as follows:Bsym =Σ ·Csym ·Σ=Σ ·
(Inx×nx ⊗Cy

)1/2
(C1:ny

x ⊗Iny×ny

)
·
(Inx×nx ⊗Cy

)T/2
·Σ. (20)

4.3 Efficient covariance matrix function calculations220

The symmetric positive definite one-directional longitudinal correlation matrix has a matrix square

root C1/2
y . A symmetric square root, the inverse of the symmetric square root, and the matrix inverse

can be obtained via the singular value decomposition (SVD)Cy =UΘUT,
(Cy

)r
=UΘrUT, for r ∈

{
1
2

,−
1
2

,−1
}

. (21)

while a nonsymmetric square root can be obtained via a Cholesky decompositionCy =LyLT
y , C1/2

y =Ly. (22)

By the properties of the Kronecker product we have that the square root, the inverse square root, and

the inverse of the two-dimensional longitudinal correlation matrix can be constructed in terms of the

same matrix functions applied to the one dimensional longitudinal correlations:

(Inx×nx ⊗Cy

)r
= Inx×nx ⊗

(Cy

)r for r ∈

{
1
2

,−
1
2

,−1
}

. (23)

Consequently, the symmetric covariance (20) can be implemented asBsym =Σ ·
(Inx×nx ⊗

(Cy
)1/2

)
·
(C1:ny

x ⊗Iny×ny

)
·
(Inx×nx ⊗

(Cy
)T/2

)
·Σ

using either of the one-dimensional square roots.
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Similarly, different powers of each one-dimensional latitudinal correlation matrix can be obtained

via a singular value decomposition:C1:ny
x =VΓVT,

(C1:ny
x

)r
=VΓrVT , for r ∈

{
1
2

,−
1
2

,−1
}

.

By the properties of the extended Kronecker product we have that the square root, the inverse square

root, and the inverse of the two-dimensional latitudinal correlation matrix can be constructed in terms

of the same matrix functions applied to the one dimensional latitudinal correlations:

(C1:ny
x ⊗Iny×ny

)r
=
(C1:ny

x

)r
⊗Iny×ny for r ∈

{
1
2

,−
1
2

,−1
}

. (24)

We now use these relations to build functions of the covariance matrices. The inverse of the back-

ground covariance is needed in the formulation of the variational cost function. The inverse of the

non-symmetric covariance (19) isB−1 =Σ−1 ·
(Inx×nx ⊗

(Cy
)−1

)
·

((C1:ny
x

)−1
⊗Iny×ny

)
·Σ−1. (25)

The inverse of the symmetric covariance (20) matrix is

(Bsym)−1 =Σ−1 ·
(Inx×nx ⊗

(Cy
)−T/2

)((C1:ny
x

)−1
⊗Iny×ny

)
·
(Inx×nx ⊗

(Cy
)−1/2

)
·Σ−1. (26)

Finally, the symmetric covariance (20) has a (non-symmetric) matrix square root

(Bsym)1/2 =Σ ·
(Inx×nx ⊗

(Cy

)1/2
)
·

((C1:ny
x

)1/2
⊗Iny×ny

)
. (27)

This is built out of tensor products involving the square roots of the one-dimensional correlation

matrices. The inverse of the square root matrix (27) is

(Bsym)−1/2 =

((C1:ny
x

)−1/2
⊗Iny×ny

)
.
(Inx×nx ⊗

(Cy
)−1/2

)
·Σ−1· (28)

4.4 Efficient linear algebra operations involving the covariance matrix

Matrix vector operations involving B can be performed effectively by exploiting its structure. Consider

a vector of concentrations (or concentration errors) ui,j - indexed by latitude and longitude, but stored

as a state vector with the convention (12).225

Consider the non-symmetric covariance matrix. The covariance matrix-vector product v =B ·u can

be computed in stages. Each stage produces a temporary result which is a two-dimensional vector.

Expression Computation

α =Σ ·u αi,j = σi,jui,j, for i = 1,··· ,nx, j= 1,··· ,ny.

β=
(Inx×nx ⊗Cy

)
·α βi,1:ny =Cy ·αi,1:ny, for i = 1,··· ,nx.

γ=
(C1:ny

x ⊗Iny×ny

)
·β γ1:nx,j =Cj

x ·β1:nx,j, for j= 1,··· ,ny.

v =Σ ·γ vi,j = σi,j γi,j, for i = 1,··· ,nx, j= 1,··· ,ny.

(29)
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Similarly the inverse covariance matrix-vector product v =B−1 ·u can be computed as follows

Expression Computation

α =Σ−1 ·u αi,j = ui,j/σi,j, for i = 1,··· ,nx, j= 1,··· ,ny.

β=
(C1:ny

x ⊗Iny×ny

)−1
·α SolveCj

x ·β1:nx,j = α1:nx,j, for j= 1,··· ,ny.

γ=
(Inx×nx ⊗Cy

)−1
·β SolveCy ·γi,1:ny

= βi,1:ny
, for i = 1,··· ,nx.

v =Σ−1 ·γ vi,j = γi,j/σi,j, for i = 1,··· ,nx, j= 1,··· ,ny.

(30)

Similar procedures can be developed for the symmetric covariance time vector products.

The square root (27) times vector product v = (Bsym)1/2 u is computed as:230

Expression Computation

α =

((C1:ny
x

)1/2
⊗Iny×ny

)
·u γ1:nx,j =Cj

x ·β1:nx,j, for j= 1,··· ,ny

β=
(Inx×nx ⊗

(Cy
)1/2

)
·α βi,1:ny

=C1/2
y ·αi,1:ny

, for i = 1,··· ,nx

v =Σ ·β vi,j = σi,j γi,j, for i = 1,··· ,nx, j= 1,··· ,ny.

(31)

All the above implementations are based on repeated operations involving the one-dimensional

covariance matrices and their square roots. These operations are very efficient since all the linear

algebra operations (matrix-vector multiplication, SVD, Choesky factorization, the solution of linear

systems) are performed on small dimensional matrices (nx ×nx or ny ×ny).

5 Numerical experiments235

For numerical experiments, we employ GEOS-Chem v7-04-10 adjoint code (Singh et al., 2009b), capable

of performing both 3D-Var and 4D-Var data assimilations with real data. We assimilate Tropospheric

Emission Spectormeter (TES) satellite ozone profile retrievals into the model and validate the generated

analyses through an independent observation dataset provided by direct ozone profile measurements

from Ozonesondes. The numerical optimization method used in all experiments is the limited mem-240

ory bound-constrained BFGS (Zhu et al., 1997). This quasi-Newton approach has become the “gold

standard” in solving large scale chemical data assimilation problems (Sandu et al., 2005).

5.1 Experimental setting

Simulations with GEOS-Chem v7 adjoint can be carried out at 4◦×5◦ and 2◦×2.5◦ resolutions. We

have used 4◦×5◦ resolution in all our experiments. There are 46 x 72 latitude-longitude grid boxes245

at this resolution, and 55 vertical levels; near the equator and at ground level each grid box covers an

area of about 400 Km × 500 Km. The current GEOS-Chem model does not capture well the dynamics

of the upper troposphere and of the stratosphere. Therefore, we performed data assimilation for only

the first 23 model levels (for up to about 50 hPa). The model has been modified to use the linearized

14



ozone (linoz) scheme for a better estimation of ozone exchanges at troposphere-stratosphere boundary.250

This scheme is going to be used in the next release of the standard GEOS-Chem model.

The 3D-Var data assimilation experiments were performed over the months of July and August 2006,

starting at 00:00(GMT) on July 1st. The TES satellite data was read once every 4 simulation hours; the

observation operator called at model time t (hours) reads in all the measurements collected within the

interval t−2 (hours) to t+2 (hours). 3D-Var data assimilation treats all observations in this interval as255

instantaneous, and assimilates them in the same optimization run. In all our 3D-Var experiments, we

performed 8 iterations per analysis since the cost function decreased significantly within the first few

iterations. It is important to note that 3D-Var does not involve any model adjoint calculations; gradients

require only the adjoint of the observation operator. The optimization adjusts ozone concentrations.

The 4D-Var data assimilation experiments were performed over a 5 day assimilation window starting260

at 00:00(GMT) on August 1st, 2006 and ending at 00:00(GMT) on August 6th of the same year. The

background initial conditions were generated through a free GEOS-Chem model run. There were

12 optimization iterations performed in order to improve the ozone initial condition. Each iteration

during 4D-Var assimilation includes a forward model and a backward model adjoint run. TES satellite

profile retrievals are read every 4 hours during the model adjoint run, and the cost function and adjoint265

gradients accumulate the impact of all 4 hour data sets throughout the assimilation window.

NOTE: The TES data can be biased by as much as 10% (Nassar et al., 2008). We removed this bias as

estimated by (Nassar et al., 2008) before assimilating the data.

5.1.1 Computational costs

As described in Section 1, the construction of the background error covariance matrix B impacts the270

result of the data assimilation. If one considers no correlation among different model grid points,

or among different chemical species, B turns out to be diagonal. However, this approximation is

inaccurate as the ozone errors are highly correlated spatially (Constantinescu et al., 2007a,c,d) and

correlated to errors in other chemical species; this correlation is not discussed in this paper. In Section 4,

we have introduced an efficient methodology to construct a non-diagonal background error covariance275

matrix, B. Its inverse, B−1, needed in 3D-Var (5) and in 4D-Var (9) cost function formulations, can be

obtained either via a Cholesky decomposition or via a singular value decomposition. (Note that by the

“computation of the inverse” we mean the solution of a linear system).

Table 1 illustrates the computational cost of data assimilation compared to the cost of free running

model for a 24 hour simulation. All the simulations are performed on a Dell Precision T5400 worksta-280

tion with 2 quadcore Intel(R) Xeon(R) processors with clock speed 2.33GHz and a RAM of 16GB shared

between the two processors. Performing 3D-Var with a non-diagonal error covariance matrix whose

inverse is computed by Cholesky decomposition is only about 1.4% more expensive than the 3D-Var

with a diagonal covariance matrix. The calculation of the inverse via the Cholesky decomposition is
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considerably more efficient than the calculation via a singular value decomposition, as expected.285

3D-Var framework is built on top of GEOS-Chem v7 package which uses Sparse Matrix Vectorized

GEAR (SMVGEAR) solver for chemistry. However, to construct the adjoint of chemistry required

by the 4D-Var, we implemented KPP solver (Damian et al., 2002) into GEOS-Chem which not only

provides a suite of high performance chemical solvers to choose from but also generates automatically

the continuous and discrete adjoint codes (Daescu, 2000, 2003; Sandu et al., 2003). A detailed discussion290

on interfacing KPP with GEOS-Chem and comparison with native SMVGEAR solver for accuracy and

computational performance is presented in (Eller et al., 2009). As pointed out in (Henze et al., 2007),

the computational cost of Rosenbrock solver increases significantly with the tolerance levels; higher

tolerances use smaller internal time steps requiring more computation. In our experiments, we have

set RTOL=10−3 and ATOL=10−2 to achieve moderate to high accuracy.295

The 4D-Var assimilation is considerably more expensive than the 3D-Var. The use of the non-diagonalB (with Cholesky decomposition) in 4D-Var causes a minimal to zero increase in the computational

time when compared to the diagonal B case.

Table 1. Timing results for GEOS-Chem free model run, 3D-Var and 4D-Var data assimilations with diagonal and

non-diagonal B for a 24 hour simulation starting July 1st, 2006.

Experiment Description CPU Time

Free model run, SMVGEAR chemistry solver 2 min 50 sec

Free model run, KPP chemistry solver 3 min 18 sec

3D-Var with diagonal B 3 min 57 sec

3D-Var with non-diagonal B, Cholesky 4 min 00 sec

3D-Var with non-diagonal B, SVD 9 min 38 sec

4D-Var with diagonal B (per model run) 16 min 51 sec

4D-Var with non-diagonal B, Cholesky (per model run) 16 min 51 sec

5.1.2 Tropospheric Emission Spectrometer (TES) observations

TES (Beer et al., 2001), one of four science instruments aboard NASA’s Aura satellite, measures the300

infrared-light energy (radiance) emitted by Earth’s surface, and by the chemical tracers in the atmo-

sphere (http://tes.jpl.nasa.gov). Vertical profiles of chemical concentrations are retrieved from the

radiance measurements using an off-line inversion process. In this work we assimilate the retrieved

ozone vertical profiles. Figure 3 shows the location of TES profiles for two days.

A-priori information about the vertical concentration profile of the species of interest is needed305

to solve the retrieval inverse problem (the prior information does not come from the measurement).

Let xprior be the prior vertical ozone concentration profile (in volume mixing ratio units), and let
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zprior = logxprior. Let zradiance (=logxtrue) be the atmospheric profile as resulting directly from the

radiances.

The vertical ozone profile retrieval can be expressed according to the formula

ẑ= zprior +A
(

zradiance−zprior
)
+Gη, x̂= exp(ẑ). (32)

Here A is the averaging kernel matrix, G is the gain matrix, and η is the spectral measurement error310

(assumed to have mean zero and covariance Sη). More details can be found in (Bowman et al., 2002;

Jones et al., 2003; Worden et al., 2004).

The corresponding TES observation operator 3 is linear with respect to the logarithm of the concen-

trations, but nonlinear with respect to the concentration profile:

H(x) = zprior+A
(

log(L(x))−zprior
)

where L is an interpolation operator that transforms x from the GEOS-Chem N-level vertical grid to

the TES profile retrieval P-level grid.

For this reason several chemical data assimilation studies based on TES retrieved profiles (Jones et

al., 2003; Bowmann et al., 2006; Parrington et al., 2009) have opted to perform the suboptimal Kalman

filtering step in the logarithm of the concentrations:

logxa = logx f +K
(

ẑ−H
(

x f
))

.

For variational data assimilation the forcing calculation is carried out in concentrations. For this

reason, an adjoint of the observation operator needs to be derived to update the gradients as described

in equations (7) and (11)

(H′(x))T ·v =

(
∂

∂x
(A log(L(x)))

)T

·v =

(
∂L

∂x

)T

·




(Lx)−1
0 0 ··· 0

0 (Lx)−1
1 ··· 0

...
...

. . .
...

0 0 ··· (Lx)−1
P



·AT ·v

Here, (H′(x))T is a matrix and v =R−1
(
H(x)−xobs

)
. The TES averaging kernel A is usually a non-315

symmetric matrix, and the result of AT ·v is fed to the interpolation operator to construct the diagonal

matrix with the i-th element being 1/(Lx)i. The term (∂L/∂x)T is the adjoint of the interpolation

operator and brings entities from the TES profile retrieval domain back to the GEOS-Chem model

domain.

5.1.3 Ozonesonde observations320

For validation, we use the ozonesonde profiles measured by the INTEX Ozonesonde Network Study

2006 (IONS-6) (http://croc.gsfc.nasa.gov/intexb/ions06.html (Thompson et al., 2007a, 2007b)) for the
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Fig. 3. Ozonesonde sounding stations (triangles) used during IONS06 campaign and AURA/TES satellite trajec-

tory snapshots (dots) plotted over the global ozone distribution on August 1st, 2006.

month of August, assuming that these measurements provide values close to the true state of the

atmosphere. The ozonesonde observations are not used in data assimilation, and therefore provide

an independent data set against which the analysis results are validated. There are 418 ozonesondes325

launched from 22 stations across North America as shown in the Figure 3. A detailed description of

the number of ozonesondes launched per station with longitude and latitude information can be found

in (Parrington et al., 2008).

5.2 Impact of non-diagonal background error covariance in 3D-Var assimilation

In order to demonstrate the benefits of including spatial correlations in the background error covari-330

ance matrix, we first compare the tropospheric ozone concentrations generated through 3D-Var anal-

ysis against the ozonesonde observations. The left panel of Figure 4 shows the forecast, the analysis

and the ozonesonde ozone concentrations averaged over all ozonesonde launches in July and August

2006. The model ozone fields are interpolated to the space-time location of each ozonesonde launch for

comparison. The center panel of Figure 4 shows the mean relative errors in model predicted ozone con-335

centrations (the relative differences between the forecast/analysis profiles and the ozonesonde profiles),

averaged over all ozonesonde launches. The rightmost panel provides an estimate of the variability

of ozonesonde against the variability of ozone concentration predicted through different assimilation
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Ozonesonde
3D−VAR diagonal B
3D−VAR full B, lx=1500Km
3D−VAR full B, lx=1000Km
3D−VAR full B, lx=500Km
Free model run

Fig. 4. The impact of non-diagonal background error covariances in 3D-Var data assimilation. Left panel: mean

ozone concentrations at ozonesonde locations for 3D-Var analyses and free model trajectories. Center panel:

relative mean errors of predicted ozone concentrations with respect to ozonesonde measurements. Right panel:

standard deviation of absolute values of errors with respect to ozonesonde measurements. The data is averaged

over all ozonesonde launches. These plots were generated from 2 months simulation from 00:00 GMT July 1st to

23:00 GMT August, 2006 and compared against ozonesonde data available for the month of August.

techniques.

In all our experiments, correlation lengths in latitudinal direction varied in proportion with correla-340

tion lengths in longitudinal direction. A value of 500 for ℓx implicitly indicates ℓy is 400, and refers to

correlation between two neighboring grid boxes both in East/West and North/South directions.

The results indicate that 3D-Var is sensitive to the correlation length used in the construction of

the background error covariance matrix (a zero correlation length corresponds to a diagonal matrix).

Note that the assimilation results using a non-diagonal B with higher correlation length are superior345

to those using a diagonal B in the lower and mid troposphere. Above 180 hPa, however, the errors

in the assimilated ozone fields are larger for the non-diagonal case. This could be attributed to the

fact that a uniform correlation length across all vertical levels is only a very coarse approximation of

the real error correlations. Higher correlation lengths might be smearing off the ozone in the upper

troposphere leading to an overestimate.350
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(a) Absolute difference between the 3D-Var analysis using di-

agonal B (ℓx = 0 Km) and the free model run

(b) Absolute difference between the 3D-Var analysis using

non-diagonal B (ℓx = 500 Km) and the free model run

(c) Absolute difference between the 3D-Var analysis using non-

diagonal B (ℓx = 1000 Km) and the free model run

(d) Absolute difference between the 3D-Var analysis using

non-diagonal B (ℓx = 1500 Km) and the free model run

(e) Absolute difference between the 3D-Var analyses using di-

agonal B and non-diagonal B (ℓx = 1000 Km)

(f) Relative difference between the 3D-Var analyses using di-

agonal B and non-diagonal B (ℓx = 1000 Km)

Fig. 5. Differences in global ozone concentrations at 23:00 GMT on August 31, 2006 averaged over the first

10 GEOS-Chem vertical levels. Panels (a)-(d): differences between the 3D-Var analysis fields and the model

forecast (solution without data assimilation); the analyses use different correlation lengths between 0 Km and

1,500 Km. Panels (e)-(f): absolute and relative differences between 3D-Var analyses using diagonal and non-

diagonal background covariance matrices.
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To further understand the effect of using non-diagonal background error covariance matrices in

3D-Var we consider the corrections obtained with different correlation lengths (i.e., the differences

between the assimilated ozone fields and forecast, or the non-assimilated ozone fields). Panels (a)-(d)

of Figure 5 show the global spatial distribution plots of these differences. The assimilation with non-

diagonal covariance matrices generate much smoother analyses; note that the point-wise values of the355

increments is smaller, and that the corrections are distributed over larger areas. Panels (e)-(f) of Figure

5 compare directly the 3D-Var analyses obtained using a diagonal B and a non-diagonal B with a

correlation length of 1000 Km. The corrections in the non-diagonal case are smoother.

5.3 Impact of non-diagonal background error covariance in 4D-Var assimilation

We now study the effects of using non-diagonal background error covariance matrix in 4D-Var data360

assimilation. We compare the analyses ozone concentrations generated by 4D-Var with different back-

ground error correlation lengths against the ozonesonde observations. The left panel of Figure 6

shows the forecast, analysis and ozonesonde measured ozone concentrations averaged over the two

months assimilation window. The model ozone fields are interpolated to the space-time location of

each ozonesonde launch for comparison. The center panel shows the relative errors of model pre-365

dictions with respect to ozonesonde data, averaged over all ozonesonde launches. The right panel

provides the standard deviations of these errors.

The results indicate that 4D-Var is also sensitive to the structure of the background error covariance

matrix. The use of non-diagonal correlations can lead to improved analyses. The best analysis is

obtained with a correlation length of 500 Km (about one grid cell near the equator). Note that 4D-Var370

accounts for all the data available within the assimilation window.

To better understand the impact of different background error correlation lengths on 4D-Var assim-

ilation, we present in Figure 7 the differences in ozone concentrations generated by the free model

run and by the 4D-Var assimilation using diagonal and non-diagonal B. The use of a non-diagonal B
with a properly-chosen correlation length not only provides a better estimate but also helps generate a375

smoother analysis. The panels (e)-(f) of Figure 7 compare directly the 4D-Var analyses obtained using

a diagonal B and a non-diagonal B with a correlation length of 500 Km; the large localized corrections

over North America provided by the diagonal B are smoothened out when the non-diagonal B is

employed.

5.4 Determining the correlation length through experiments380

The correlation length is a very important parameter that impacts the quality of the assimilation when

using non-diagonal error covariance matrix. The value of the correlation length depends on various

factors such as the lifetime of the tracer under consideration, the grid resolution, the pressure level,

and the wind velocity. We propose a method to determine experimentally a value of the correlation
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Fig. 6. The impact of non-diagonal background error covariances on 4D-Var data assimilation. The results shown

are for a single 5-day assimilation window from 00:00 GMT August 1st to 00:00 GMT August 6th, 2006. Left panel:

mean ozone concentrations at ozonesonde locations for 4D-Var analyses and free model trajectories. Center panel:

relative mean errors of predicted ozone concentrations with respect to ozonesonde measurements. Right panel:

standard deviation of absolute values of errors with respect to ozonesonde measurements.

length that is appropriate for the model and data at hand.385

Recall the construction of one dimensional correlation matrices in equations (13) and (14). Our aim

is to determine the number of grid cells (in each direction) where the errors are correlated. For this we

use adjoint sensitivity analysis. Specifically, we initialize the adjoint variable to 1 in a specific cell at the

end of a given window (and to zero everywhere else), perform a backwards adjoint simulation, and

analyze the adjoint fields at the beginning of the window. The error in the specific cell is correlated390

with errors in those grid cells where the adjoint values are above 1/e. The length of the time window

depends on the time scale of the model under consideration.

Here we consider a time window of 8 hours. We run the forward GEOS-Chem model starting at

July 1st, 00:00 GMT for 20 hours. The adjoint variable for ozone at 20:00 GMT are initialized to 1 in

a subset of the grid points ((i, j) chosen such that i mod10= 1 and j mod10 = 1). Adjoint variables395

for all other grid points and species are initialized to zero. The gap in the initialization helps avoid

the interactions between adjoint “plumes” initialized at different locations. The ozone adjoint variable
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(a) Absolute difference between the 4D-Var analysis using di-

agonal B (ℓx = 0 Km) and the free model run

(b) Absolute difference between the 4D-Var analysis using

non-diagonal B (ℓx = 500 Km) and the free model run

(c) Absolute difference between the 4D-Var analysis using non-

diagonal B (ℓx = 1000 Km) and the free model run

(d) Absolute difference between the 4D-Var analysis using

non-diagonal B (ℓx = 1500 Km) and the free model run

(e) Absolute difference between the 4D-Var analyses using di-

agonal B and non-diagonal B (ℓx = 500 Km)

(f) Relative difference between the 4D-Var analyses using di-

agonal B and non-diagonal B (ℓx = 500 Km)

Fig. 7. Differences in global ozone concentrations at 00:00 GMT on August 06, 2006 (end of assimilation window)

averaged over the first 10 GEOS-Chem vertical levels. Panels (a)-(d): differences between the 4D-Var analysis fields

and the model forecast (solution without data assimilation); the analyses use different correlation lengths between

0 Km and 1,500 Km. Panels (e)-(f): absolute and relative differences between 4D-Var analyses using diagonal and

non-diagonal background covariance matrices.
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(a) Adjoint ozone variables are initialized to one in selected

grid cells

(b) Adjoint ozone variables spread after 8 hours of backward

sensitivity run

Fig. 8. Ground level ozone adjoint variable values are initialized to one on July 1st 2006, 20:00 GMT, every tenth

grid point in longitudinal and latitudinal directions. An 8 hour backward adjoint integration spreads the adjoint

fields, and helps identify grid cells where ozone errors are correlated.

field is analyzed at 12:00 GMT to find out the number of grid cells where the value is greater than or

equal to 1/e. In our current setup, we use the same correlation length for all pressure levels and thus

consider the spread only at ground level.400

The procedure can be easily extended to considering different correlation lengths for different vertical

levels and for different geographic areas.

Figure 8 shows that the ozone adjoint variables have spread (on average) over one to two grid cells

in both longitudinal and latitudinal direction. For the 4◦×5◦ model resolution each grid box is of size

400Km × 500Km near the equator. The adjoint sensitivity analysis indicates that the correlation lengths405

should be chosen in the ranges of ℓx ∈ [500Km,1000Km] and ℓy ∈ [400Km,800Km] respectively. This

confirms the best correlation lengths empirically observed in the data assimilation results reported in

Figures 4 and 6.

6 Conclusions

This paper presents an efficient methodology to construct non-diagonal background error covariance410

matrices for data assimilation. The two- or three- dimensional covariance matrices are not formed ex-

plicitly. Rather, multi-dimensional correlations are represented by tensor products of one dimensional

correlation matrices along longitudinal and latitudinal directions. The technique can be easily extended

to include correlations in the vertical direction as well. Highly efficient linear algebra operations are

obtained by performing successive matrix-vector products, Cholesky decompositions, etc. with one-415

dimensional correlation matrices. The correlation lengths are important parameters that need to be

specified for each directional correlation. The performance of the data assimilation system depends on
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a correct specification of the correlation lengths. We propose an adjoint sensitivity analysis approach

to guide the choice of proper correlation lengths; the approach implicitly accounts for factors such as

chemical activity, grid resolution, etc.420

The proposed methodology can model non-isotropic error correlations, since different correlation

lengths can be used for different directions. Moreover, different correlation lengths can be used in

different parts of the computational domain. The covariances can be recomputed periodically (e.g., at

the beginning of each assimilation window) after re-evaluating the correlation lengths estimates. The

model does not account for correlations across different variables, e.g., for correlations among error in425

different chemical species.

The approach to construct non-diagonal covariance matrices has been tested using the 3D-Var and

4D-Var data assimilation frameworks developed for GEOS-Chem. The experiments assimilate obser-

vations from TES satellite ozone profile retrievals, and validate the results against an independent data

set provided by IONS ozonesondes. The change of the covariance matrix formulation in data assimila-430

tion from diagonal to non-diagonal adds only a negligible computational overhead. At the same time,

the inclusion of spatial correlations with appropriately chosen correlation lengths leads consistently to

improved analyses in both the 3D-Var and the 4D-Var settings.

Future work will compare the proposed background covariances against other modeling methods

available in the literature. We will also consider the vertical error correlations which can help spread435

the information from higher altitudes, where the TES sensitivity is greater, to lower altitudes, where

accurate ozone predictions are of interest from an air quality perspective.

Acknowledgements. This work has been supported by NASA through the ROSES-2005 AIST project. The authors

would like to thank Mark Parrington and Paul Hamer for providing processed TES data and for their help with

the data visualization script.440

25



References

Akella, S., and Navon, I. M.: Different approaches to model error formulation in 4D-Var: a study with high

resolution advection schemes, Tellus A , Vol 61A, 112Ű128, 2009.
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