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Accurate estimation of the axial position of a molecule using a single lateral image remains a challenge in fluorescent single
particle tracking. Here, a principled algorithm for the Bayesian estimation of the axial position of a molecule in three-dimensional
astigmatism-based particle tracking is proposed. This technique uses the data from a calibration image set to derive the position
without assuming a functional form for the abberated defocusing curve. Using a calibration image set from forty 57 nm beads, the
axial position is calculated, and the error associated with position estimation is discussed. This method is compared to previously

published algorithms.
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1. Introduction

Light microscopy using fluorescent probes has led to numer-
ous discoveries in biology and has become a standard tool for
biological scientists. In the last several decades, techniques
that monitor the position of a single fluorescent molecule,
herein referred to as single particle tracking (SPT), have
found applications from quantifying the motion of single
molecular motors to analyzing the spatial distribution of
membrane associated complexes in cells; see, for example, [1,
2]. More recently, SPT has been combined with fluorescent
photoswitching to achieve a localization-based imaging
technique that allows for the recording of microscopy images
at better than diffraction limited resolution [3-5].

While SPT in two dimensions is somewhat straightfor-
ward, three-dimensional (3D) localization of a fluorescent
molecule from a single lateral-section image has remained
difficult. Some of these methods use information from
two different focal planes [6-8]. The majority of these
algorithms, however, perform axial localization from a single
image and use the change in lateral width of the fluorescent
image with axial position. These include techniques that
estimate position using maximum-likelihood methods [9].
However, due to the approximate axial symmetry of the 3D

point spread function (PSF), it is often difficult to distinguish
particles above the object plane from those below it. As a
result, several methods have been proposed to break this
symmetry [10-13].

One class of popular techniques uses a cylindrical optic to
separate the axial focus of the two lateral dimensions creating
an elliptical PSE. These astigmatism-based techniques are
straightforward to implement by adding a single optical
element in the imaging path. However, the estimation of the
axial position from these techniques is not straightforward.
Indeed, a number of different techniques have been proposed
for estimation of the axial position. All of these techniques
use a user-defined parameterization of the defocusing curve
which is then fit to a calibration data set [10, 11]. These
functions, which are at best based on an idealized model
of the imaging system, often include ad hoc terms to
account for spherical and chromatic aberrations that are
not present in the model. While these methods often yield
satisfactory localization results, they are prone to systematic
errors associated with the choice of model and aberration
parameterization and make estimation of the localization
error difficult.

An alternative methodology is to use the calibration
data as representative of the population of all possible



molecular images from different heights. This data set
can then be thought of as an estimate of the probability
distribution that relates parameters of the measured image
to the axial position. The approach presented here uses
Bayesian estimation to calculate the expectation value of
the axial position given this probability distribution and the
measured lateral widths of an elliptical image. This procedure
generates a likelihood function of the axial position given
the data, which allows for a statistical understanding of the
uncertainty in the localization. Information theoretical has
been previously used to discuss the limits of lateral particle
localization [14].

2. Materials and Methods

Experimental measurements were carried out on a Nikon
(Tokyo, Japan) TE2000 inverted microscope. Fluorescence
excitation was achieved by focusing a 473 nm diode laser
(Dragon Lasers (ChangChun, China)) onto the back aper-
ture of a 100x magnification, 1.49 N.A. objective lens
(Nikon (Tokyo, Japan)). Emission light was projected onto
an EMCCD camera (Andor Technology, Belfast, Northern
Ireland) using a 2.5x projection lens, yielding a pixel size
of approximately 80 nm in the recorded image. To create
an astigmatism, a 1m focal length cylindrical lens was
placed between the projection lens and the camera, which
resulted in a focal separation of ~100 nm between the x
and y axes. The sample was mounted on a two-axis piezo
stage while the objective lens was moved via a separate
piezo drive (Mad City Labs, Madison, Wis, USA). Data
acquisition software to control the stages, camera, and
excitation laser was written in LabView (National Instru-
ments, Austin, Tex, USA). All data and image analyses were
performed in Igor Pro (Wavemetrics, Lake Oswego, Ore,
USA).

For each field of fluorescent molecules to be analyzed, a
series of images was recorded at different axial positions. For
these experiments, 57 nm Dragon green fluorescent beads
(Bangs Labs) were adhered to a coverglass surface in a fluid
cell, similar to that described previously [15]. Between each
image in the series, the objective was moved by 10 nm. This
resulted in an axial separation of the images of 7.5 nm due
to the focal shift inherent in the imaging system. This value
is measured using the optical trap as an interferometer as
described in [15, 16]. All axial positions in this paper have
been corrected for the focal shift. A total of 40 individual
beads were analyzed.

To calculate the width of a fluorescent spot in the
two lateral dimensions, each bead image was fit to a
two-dimensional elliptical Gaussian using a Levenberg-
Marquardt algorithm to minimize the chi-square:

I(x,y) = Iy +Ae—((X—Xo)/Zof)—((y—yo)/zoj)) (1)

where Ij is the background offset, A is the peak intensity,
(0, o) is the lateral center of the peak, and (ox, 0,) are the
lateral widths of the peak.

The probability function p(oy, 0y | 2), see Section 3, was
created by binning the data at each z-value in 0.04 pixel
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bins in (oy,0,) space. To ensure a continuous probability
function and to compensate for a finite data set, we smoothed
plox, 0, | z) for each z with a Gaussian kernel 15 bins
in width, yielding a smoothed function with 0.6 pixel
resolution.

3. Bayesian Estimation of the Axial Position

We wish to estimate the most likely z-position of a molecule
given a pair of image widths, (oy,0,). This procedure
amounts to calculating the posterior probability, p(z |
0x,0y), given a calibration image set taken at known z-
positions. Bayes’ theorem allows us to relate the posterior
probability distribution to the calibration data via

_ plona, | 9p(@)
P(Z | O, Oy) = P(O'x>f7y) > (2)

where p(ox, 0y | 2) is the probability distribution measured
from the calibration image set. For this work, we will assume
a flat prior probability distribution, p(z). The normalization
term, p(0x,0,) = >, p(0x, 0y | 2), represents the probability
of measuring a pair of widths (oy,0,) summed over all
heights. Using a Bayesian approach, we estimate the expec-
tation value of z, herein referred to as zg, using the posterior
probability

Zp = Zz X p(z | o, 0). (3)

Because this approach is derived from knowledge of the
probability distribution, we can estimate the error on zp
in several ways. One method is to calculate the standard
deviation (SD) via

SD = Z(z— 23)2 X p(z | ox,0y). (4)

Another method of reporting the error is to use credibility
intervals (CIs) which specify a posterior probability interval.
For example, an 80% credibility interval for the parameter z
of a—b means that the posterior probability that z lies in the
interval from a to b is 0.8.

4. Results

Figure 1(a) shows a typical bead image at 5 different z-
positions and demonstrates the astigmatism. As expected,
the x-width is minimized at a different z-position than the
y-width due to the presence of the cylindrical lens in the
imaging path (see Figure 1(b)). Our estimation of the axial
position of a particle uses the two lateral widths and attempts
to infer the z-position. It is therefore convenient to display
the data with the two lateral widths as the independent
variables and the z-position as the dependent variable.
Figure 1(c) shows the data of 1b plotted in this way.

By binning the data in Figure 1(c), we can estimate the
probability function p(oy, 0, | z) as shown in Figure 2(a). In
addition, we can calculate the total probability distribution of
measuring a pair of widths, p(oy,0,) (see Figure 2(b)). This
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FIGURE 1: Variation in the lateral bead profile with axial position. (a) Five images of the same 57 nm beam taken at different axial positions
demonstrate the astigmatism. (b) The x- and y-widths (x: red +, y: blue X) for each height calculated by fitting the bead image to (1). Solid
lines are a fit of the width data to the defocusing curve described in (5). (c¢) Two-dimensional width plot of the same data plotted in (b).
Color scale represents the z-position. Letters denote the location of points in the (oy, 0,) plane analyzed and tabulated in Table 1. The solid

line is data from the same fit as for (b).
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F1GURE 2: Calibration probability distributions. (a) 2D plots of p(oy, 0, | 2) at three different axial positions. (b) Total probability function
p(oy, 0y) of measuring a pair of widths (o, 0,). The lateral size of each image is 5 pixels.

function is useful for evaluating the validity of a measured
pair of widths in light of the calibration data set and can be
used to identify spurious data during an experiment.

We chose four points in the oy, 0, plane to demonstrate
this algorithm (labeled A-D in Figure 1(c)). Points A—C
generally represent positions below, at, and above the focal
plane, respectively. Point D does not lie within the range
spanned by the calibration data set and is an example of a
spurious data point. Figure 3 shows the posterior probability
distributions for each of these points. The expectation
value, 80% credibility interval, the standard deviation, and

p(ox,0y) of points A-C are shown in Table 1. Credibility
intervals are calculated symmetrically about the expectation
value with respect to the posterior probability.

While the posterior distributions for points A-C are
easily interpreted (see Figure 3(a)), the distribution for point
D is difficult to interpret on its own because this pair of lateral
widths is not well represented by the calibration data set
(see Figure 3(b)). However, because p(ox, 0,) for point D is
0.27 x 10~*, more than an order of magnitude lower than the
values from points A-C, this point can be readily identified
as an outlier.
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TaBLE 1: Localization results for points A—D from Figure 1(c). zp: position estimate using the Bayesian algorithm, z,;: position estimate using
the method of Huang et al. [12], CI: credibility interval, SD: standard deviation.

Point zp (nm) z4 (nm) 80% CI (nm) SD (nm) ploy,0y) X 1074
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FIGURE 3: Posterior probability distributions for points A-D from
Figure 1(c).

5. Comparison with Previous Techniques
for Axial Estimation

Several techniques have been used previously for axial esti-
mation which rely on a parameterized fit of the microscope
defocusing curve [10-12]. One of the most recent examples
was presented by Huang et al. [12] for use in localization-
based microscopy. Those authors use a fit to the change in
lateral width as a function of z-position and then calculate,
for a given (oy, 0) pair, the closest point within the fit in the
(0, 0y)-plane.

Z position (nm)
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Distance to fit (px)

O 1 1 1 1

0 100 200 300 400
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FIGURE 4: Distance plots using the method of Huang et al. [12] for
points A-D using the calibration data displayed in Figure 1(c).

To compare the Bayesian estimation described here to
this algorithm, we fit our data with the same function used
in [12] (see Figure 1, solid lines)

wo-alis (F2) a7 +a(52)'

For a given (oy,0y), a modified geometric distance in the
(0x,0y)-plane from this point to the fit value for each
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Figure 5: Comparison of the Bayesian and distance estimation
methods. (a) Residual errors calculated from a jackknife analysis of
the calibration data (see text, Bayesian method: red circles, distance
method: black squares). Error bars are standard deviations. (b)
zp — z4 for different points in the (oy,0,) plane. Differences are in
nm (color scale).

z-position is calculated using

2 2
S e T S R

The z-position that corresponds to the minimum of this
distance function is chosen as the true position, referred
to herein as z;. The distance functions for points A-D are
shown in Figure 4, and the calculated z; for each point is
listed in Table 1.

This fit-based technique has several drawbacks. First, the
defocusing curved used in the fit is chosen by hand, and
corrections for aberrations are added ad hoc as high-order

polynomial terms. Systematic deviations of the data from
this curve will give rise to systematic errors in calculating
z4. Additionally, while the value of the minimum of the
distance function and the width of this minimum are related
to the localization error, they do not give a probabilistic
estimate of the error that corresponds to the distribution
of widths measured at different z-positions. Finally, the
evaluation of spurious data using the distance function, such
as Figure 4(b), is difficult.

In order to compare these two methods, we used two
different metrics. Figure 5(a) shows a jackknife analysis of
the two methods performed on the entire calibration data
set. Briefly, for each of the 40 calibration beads, the difference
between the estimated and actual z-positions was calculated
using the other 39 beads for calibration of each of the two
methods. The average and standard deviations of these errors
are plotted as a function of z-position. By this measure, the
two techniques do equally as well. As expected, the standard
deviations calculated from the probability function (~50 nm,
see Table 1) are similar in magnitude to those derived from
the jackknife analysis. These errors are distinct from those
measured by localizing a single particle many times as they
include both measurement uncertainty and the uncertainty
caused by the distribution of widths from different particles.

The Bayesian method does slightly worse at the very low-
est and highest z-positions where the posterior distribution
is not fully sampled. A more complex algorithm that fits
the shape of the posterior probability distribution removes
this error and recovers a similar residual to the distance
method. In general, the calibration data at the edges is under
represented for both methods, and therefore it is best to limit
experimental samples to a smaller range than the calibrated
one.

We additionally examined the difference between zp and
zq for a range of points in the (o, 0,) plane (see Figure 5(b)).
The distance method deviates from the Bayesian value by up
to 20 nm, with regions of systematic difference between the
two techniques.

6. Conclusion

Our Bayesian method of axial position estimation offers two
main advantages over previous techniques. First, it allows a
probabilistic estimate of the localization error not afforded
by previously described techniques. Second, it facilitates the
identification of spurious data points that might otherwise
be included in data analysis.

While the algorithm presented here describes a Bayesian
method for estimating axial particle position, it does not
attempt to correct for the effect of optical aberrations on
particle localization. We find that using a high-numerical-
aperture objective, a large systematic error is induced in axial
localization above the focal plane [17]. Further studies will
be necessary to develop a robust method to correct for these
errors.

Single-particle tracking has become an important tech-
nique in numerous fields of biology. The recent implementa-
tion of these techniques for super-resolution 3D imaging has
the potential to extend our knowledge of cellular processes



on the nanometer level. The axial-localization technique
presented here should prove useful as these imaging methods
become more quantitative and less descriptive.
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