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The development of neuronal excitability involves the coordinated
expression of different voltage-gated ion channels. We have char-
acterized the expression of two sensory neuron-specific
tetrodotoxin-resistant sodium channel � subunits, Nav1. (SNS/
PN3) and Nav1.9 (SNS2/NaN), in developing rat lumbar dorsal root
ganglia (DRGs). Expression of both Nav1.8 and Nav1.9 increases
with age, beginning at embryonic day (E) 15 and E17, respectively,
and reaching adult levels by postnatal day 7. Their distribution is
restricted mainly to those subpopulations of primary sensory neu-
rons in developing and adult DRGs that give rise to unmyelinated
C-fibers (neurofilament 200 negative). Nav1.8 is expressed in a
higher proportion of neuronal profiles than Nav1.9 at all stages
during development, as in the adult. At E17, almost all Nav1.8-
expressing neurons also express the high-affinity NGF receptor

TrkA, and only a small proportion bind to IB4, a marker for c-ret-
expressing (glial-derived neurotrophic factor-responsive) neurons.
Because IB4 binding neurons differentiate from TrkA neurons in
the postnatal period, the proportion of Nav1.8 cells that bind to IB4
increases, in parallel with a decrease in the proportion of Nav1.8–
TrkA co-expressing cells. In contrast, an equal number of Nav1.9
cells bind IB4 and TrkA in embryonic life. The differential expres-
sion of Nav1.8 and Nav1.9 in late embryonic development, with
their distinctive kinetic properties, may contribute to the develop-
ment of spontaneous and stimulus-evoked excitability in small
diameter primary sensory neurons in the perinatal period and the
activity-dependent changes in differentiation they produce.
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Primary somatosensory neurons show three specific temporal
patterns of action potential firing in development (Fitzgerald,
1987; Meister et al., 1991; Fitzgerald and Fulton, 1992). During
the period of neurite outgrowth in early embryonic development,
dorsal root ganglion (DRG) neurons are electrically inexcitable
(Fitzgerald, 1987). This is followed by a period of low-frequency
spontaneous activity at embryonic day (E) 16–E20, largely coin-
ciding with peripheral target innervation (E14–E19) (Fitzgerald,
1987; Meister et al., 1991; Fitzgerald and Fulton, 1992). Finally,
after the formation of central synapses and peripheral terminals,
the spontaneous activity is replaced by higher frequency sensory-
evoked activity at which time the neurons adapt to a more
differentiated pattern of excitability (Fitzgerald, 1987; Meister et
al., 1991). This activity contributes to selective gene expression
(Dietzel, 1995; Spitzer et al., 1995; Fields, 1996) promoting neu-
ronal differentiation of both primary sensory (Gu and Spitzer,
1995; Brosenitsch et al., 1998) and spinal cord neurons (Holliday
and Spitzer, 1990).

The sodium currents of DRG neurons are divided into two

types on the basis of their sensitivity to tetrodotoxin (TTX)
(Waxman et al., 1999). All primary sensory neurons express a low
activation threshold, fast-inactivating, TTX-sensitive (TTXs)
current (Kostyuk et al., 1981; Caffrey et al., 1992; Catterall, 1992;
Roy and Narahashi, 1992). Small DRG neurons also display a
number of high activation threshold, slowly activating and inac-
tivating TTX-resistant (TTXr) currents (TTX-R1, R2, R3)
(McLean et al., 1988; Roy and Narahashi, 1992; Elliott and
Elliott, 1993; Arbuckle and Docherty, 1995; Rush et al., 1998). In
DRG neurons, the TTXs current is mediated by one or more of
the following sodium channel �-subunits known, according to the
new standardized nomenclature (Goldin et al., 2000), as Nav1.1
(rat I), Nav1.2 (rat IIa), Nav1.3 (rat III), Nav1.7 (PN-1/hNE)
(Toledo-Aral et al., 1997; Cummins et al., 1998), and Nav1.6
(NaCh6/SCN8A/PN4) (Black et al., 1996; Waxman et al., 1999;
Tzoumaka et al., 2000), whereas the TTXr current is mediated by
two sensory neuron-specific sodium channels, Nav1.8 (SNS/PN3)
(Akopian et al., 1996; Sangameswaran et al., 1996) and Nav1.9
(SNS2/NaN) (Dib-Hajj et al., 1998b, 1999; Tate et al., 1998; Fjell
et al., 2000). The ratio of the TTXs/TTXr current will affect
excitability by influencing action potential kinetics, including ac-
tivation threshold, rate of rise, peak amplitude, duration, and
capacity to fire repetitively (Rush el al., 1998). In the adult DRG,
Nav1.8 is expressed in both A- and C-fiber neurons (Amaya et al.,
2000; Renganathan et al., 2000), whereas Nav1.9 is preferentially
expressed in C-fiber neurons (Tate et al., 1998; Amaya et al.,
2000; Fjell et al., 2000). Both channels are strongly implicated in
the molecular mechanisms of nociception (Okuse et al., 1997;
McCleskey and Gold, 1999).
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Nav1.3 has a developmentally regulated pattern of expression,
peaking at E17 and downregulated by birth (Waxman et al., 1994;
Felts et al., 1997). The expression of both Nav1.6 and Nav1.7
increase postnatally, whereas the Nav1.2 and Nax (NaG)
�-subunits, which are expressed in large DRG neurons, are con-
stitutively expressed throughout development (Felts et al., 1997).
We have now investigated the onset and pattern of expression of
the TTXr sodium channels Nav1.8 and Nav1.9 in late embryonic
and early postnatal periods.

MATERIALS AND METHODS
Time-mated pregnant Sprague Dawley rats were used for all procedures
in accordance with the United Kingdom Animals (Scientific Procedures)
Act (1986) and following Massachusetts General Hospital animal care
guidelines. Rats were designated postnatal day (P) 0 on the day of
parturition.

Tissue preparation. For embryonic tissue, time-mated pregnant rats
were terminally anesthetized with CO2 and exsanguinated, and the
embryos were harvested and collected in cold PBS. For Northern blot
analysis, all lumbar DRGs were removed from two rat litters per age
category (E15, E17, E19, and P0) and processed for RNA extraction. For
immunohistochemistry, the L4 and L5 DRGs were dissected from over-
night post-fixed [4% paraformaldehyde in 0.1 M phosphate buffer (PB),
pH 7.4] whole embryos (E15, E17, and E19). DRGs (L4, L5) were
dissected from neonatal (P0 and P7) and adult animals after they were
killed with intraperitoneal injection of sodium pentobarbital (200 mg/kg)
(Duphar) and transcardiac perfusion with 4% paraformaldehyde in 0.1 M
PB. DRGs were post-fixed overnight and cryoprotected with 20% sucrose
for 3 hr.

Northern blot analysis. Total RNA was extracted from homogenized
tissue samples by acid phenol extraction according to the technique of
Chomczynski and Sacchi (1987). The RNA (15 �g per sample) was
separated on 1.5% formaldehyde–agarose gels and blotted onto Hybond
N� nylon membranes. RNA markers ranging from 0.24 to 9.5 kb (Life
Technologies, Gaithersburg, MD) were used to determine transcript size.
Filters were hybridized in a solution containing 50% formaldehyde, 5�
SSC, 5� Denhardt’s solution, 1% SDS, and 100 �g/ml sheared herring
sperm DNA at 42°C. The filters were washed in 0.1� SSC and 0.1% SDS
at 42°C. Nav1.8 (650 bp), Nav1.9 (500 bp), and cyclophilin (240 bp) probes
were prepared as described in Costigan et al. (1998) and Amaya et al.
(2000). A 50 ng sample of each probe was radiolabeled by incorporation
of 50 �Ci of [ 32P]dCTP and separated from unincorporated nucleotides
on Sephadex G-50 columns. At least two independent Northern blots
obtained from RNA that was extracted from different pools of animals
were used for each observation.

Immunocytochemistry. For colocalization of Nav1.8 or Nav1.9 with IB4
(isolectin B4 from Griffonia simplicifolia) or the A-fiber marker NF200,
sections were blocked for 1 hr at room temperature with PBS containing
0.3% Triton X-100 (Tx-100; Sigma, St. Louis, MO) and 20% normal goat
serum (Vector Laboratories, Burlingame, CA). Embryonic tissue was
pretreated with 3% hydrogen peroxidase (Sigma) for 30 min to reduce
endogenous peroxidase background. Primary antibody incubations with
rabbit polyclonal antibodies against Nav1.8 or Nav1.9 (1:500 and 1:750
dilutions, respectively) (Amaya et al., 2000) and the mouse monoclonal
antibody NF200 (1:200; Sigma) or biotin-conjugated IB4 (40 �g/ml;
Sigma) were performed in PBS containing 0.1% Tx-100 overnight at 4°C.
Secondary antibody incubation with CY3-conjugated anti-rabbit IgG
(1:300; Jackson ImmunoResearch, West Grove, PA) and FITC-
conjugated anti-mouse IgG (1:200; Vector Laboratories) or FITC-
congugated avidin (1:200; Vector Laboratories) was performed in PBS
containing 0.1% Tx-100 for 3 hr at room temperature after three 10 min
washes with PBS.

For colocalization of Nav1.8 or Nav1.9 and TrkA, sections were immu-
nostained using red-direct tyramide signal amplification (TSA-red; NEN,
Boston, MA). The technique enables double labeling with two antibodies
raised in the same host animal without cross-reactivity (Michael et al.,
1997). Sections were incubated with primary antibodies Nav1.8 (1:1500)
or Nav1.9 (1:3000) in TNB buffer (0.1 M Tris-buffered saline, pH 7.4,
containing 1% blocking reagent) overnight at 4°C, followed by three 5
min washes in wash buffer (0.1 M Tris, pH 7.5, 0.15 M NaCl, 0.05% Tween
20) and secondary antibody incubation with biotin-conjugated anti-rabbit
antiserum (1:100; Vector Laboratories) in TNB buffer for 2 hr at room
temperature. After washing (three 5 min washes in wash buffer), sections

were incubated with streptavidin-HRP (1:100 in TNB buffer) followed by
incubation with flurophore tyramide (1:50 in amplification diluent) for
7–10 min at room temperature. After three washes in TSA wash buffer,
sections were incubated with TrkA (1:750, generously provided by Louis
Reichardt, University of California at San Francisco) in PBS containing
0.1% Tx-100 at 4°C overnight and processed as for secondary antibody
incubation as mentioned above, except using FITC-conjugated anti-
rabbit secondary antibody (1:200, Vector Laboratories). Fluorescent
images were captured by use of a digital (Nikon Spot) camera, except
where confocal microscopy (Leica, Nussloch, Germany) was used for high
magnification of embryonic tissue images.

For comparative purposes, duplicate slides were prepared by collecting
consecutive 10 �m sections on sequential slides, allowing different anti-
body combinations to be tested on the same DRG. Sections collected on
an individual slide were equally spaced throughout the ganglion (L4) as
follows: every 40 �m for E15–E19, 100 �m for P0, and 1200 �m for
P7–adult. The first section to be placed on the first slide was chosen
randomly in each case.

Data analysis. Nav1.8 and Nav1.9 colocalization with each neuronal
marker was performed by computer analysis using Freehand (Macrome-
dia), which enabled positively immunostained cell profiles (cells with a
clearly identifiable nucleus) for each antibody to be marked and counted,
and overlaying the two images was used to count double-labeled cells.
Total cell profiles were determined by enhancing the brightness of the
green (FITC) image and counting all cell profiles not previously marked
as being single or double immunostained. For analysis only of the E17
age category, the image of the entire DRG was divided into four equal
quarters, and one quarter was counted at random. The first section to be
photomicrographed for each age category was selected at random, and
four to six sections evenly spaced throughout the DRG were counted
(n � 5 per age category).

Change in expression of the neuronal markers (TrkA, IB4, and
NF200) and Nav1.8 or Nav1.9 in the DRG during development is pre-
sented as the proportion of positive profiles per total cell profiles. This
was determined as follows: the percentage of positive immunostained
profiles per section was averaged for each animal (5–6 sections per
animal). Five separate averages (n � 5 animals) were expressed as the
mean and SEM to give the final values. No statistically significant
variance was found by the ANOVA paired test of the values for TrkA,
IB4, and NF200, when expressed as percentage of total profiles, between
the two data sets obtained from independent experiments (Nav1.8 or
Nav1.9 at different ages). Therefore, these essentially identical data sets
were pooled (Table 1, % neuronal marker in the total cell population).

RESULTS
Developmental expression of Nav1.8 and Nav1.9 in
the DRG
Changes in Nav1.8 and Nav1.9 mRNA and protein expression in
rat lumbar DRGs were analyzed at late embryonic (E15, E17,
E19) and early neonatal stages (P0) of development.

An 8.0 kb Nav1.8 mRNA transcript was detected at low levels
in lumbar DRGs at E15. At this stage, no Nav1.9 transcript could
be seen. At E17, however, both an Nav1.8 and an Nav1.9 mRNA
transcript (7.5 kb) were detectable in the DRG (Fig. 1). A second
alternatively spliced Nav1.8 transcript of 9.5 kb, similar to that
previously described in the adult (Amaya et al., 2000) could be
seen by E17 and at all later stages, which was not present at E15.
The relative amount of both the Nav1.8 and Nav1.9 mRNA
transcripts increased from E17 to P0 (Fig. 1).

The proportion of DRG neuronal profiles expressing Nav1.8
and Nav1.9 protein was assessed at developmental stages E17, P0,
P7, and P21, as well as in the adult (Amaya et al., 2000). While a
few Nav1.8-labeled profiles could be seen in E15 DRGs (data not
shown), Nav1.9-labeled profiles could not be detected until E17,
which indicates a coordinated temporal pattern of expression of
messenger mRNA with protein expression for both Nav1.8 and
Nav1.9. At E17, �25% of DRG neurons expressed Nav1.8, and
this increased to �50% (adult levels) by P7 (Fig. 2A). The
proportion of Nav1.9-positive neuronal profiles increased from
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�20% at E17 to �40% (adult levels) at P7 (Fig. 2A). At all
developmental ages, significantly fewer neurons express Nav1.9
than Nav1.8 (E17 to P0, p � 0.01; P7 to adult, p � 0.005; ANOVA
test) (Fig. 2A).

Developmental expression of Nav1.8 and Nav1.9 in
neuronal subpopulations
Co-expression of Nav1.8 and Nav1.9 with markers of different
neuronal subpopulations was studied in the developing DRG.
These included TrkA (to identify NGF-responsive, small and
medium diameter, peptide-containing neurons) (McMahon et al.,
1994; Averill et al., 1995; Molliver et al., 1995), IB4 [to identify
nonpeptide containing, glia-derived neurotrophic factor (GDNF)
responsive small diameter neurons] (Plenderleith et al., 1988;
Plenderleith and Snow, 1993), and neurofilament (NF200; to
identify large diameter cells with myelinated axons) (Price, 1985;
Lawson and Waddell, 1991; Lawson et al., 1993).

Although the proportion of NF200-positive profiles increased
from 21% at E17 to adult levels by P7 (Table 1), the proportion of
Nav1.8-expressing neurons that co-expressed this marker was low
at all stages of development (11% at E17 and 13% at P7), which
is comparable with adult levels of 18% (Fig. 2B, Table 1). A very

small proportion of Nav1.9-expressing cells (�9%) were found to
co-express NF200 at all ages, indicating that this ion channel, as
in the adult (Tate et al., 1998; Amaya et al., 2000; Fjell et al.,
2000), is predominantly found in cells destined to have unmyeli-
nated axons.

At E17, Nav1.8 was found mainly in TrkA-positive neurons
(�80%) with only 13% IB4-positive cells. The proportion of
Nav1.8 cells that were IB4-positive increased postnatally, reach-
ing adult levels of 45% at P21. This was accompanied by a parallel
decrease in the proportion of Nav1.8-positive cells also expressing
TrkA, so that eventually Nav1.8 is equally represented in both sets
of neurons (Fig. 2B, Table 1). As reported previously, the pro-
portion of TrkA-positive cells in the total population decreased
from 80% at E17 to 45% at P21, whereas that of IB4 increased
from 15 to 40% over this time (Table 1) (Bennett et al., 1996).

Typical examples of Nav1.8 co-expression with TrkA are shown
in Figure 3, illustrating the transition from the majority of Nav1.8-
expressing cells being TrkA-positive at E17 to �40% colocaliza-
tion at P21. As in the adult (Amaya et al., 2000), all medium
diameter Nav1.8-positive cells were TrkA-positive, although this
does not hold true for the reverse situation; some medium TrkA-
positive cells did not co-express Nav1.8. In contrast to the Nav1.8
population, many Nav1.9-positive neurons were also IB4-positive
at E17 (Fig. 2B, Table 1), although the overall IB4-positive
population is low at this stage (15%). The proportion of Nav1.9–
IB4 co-expressing cells reached adult levels at P0, despite the fact
that the upregulation of IB4 to adult levels is only reached at P7
(Table 1). Figure 4 shows representative illustrations of the pat-
tern of colocalization of Nav1.9 with the three different markers at
developmental ages E17, P0, and P7. As in the adult, all Nav1.9
profiles possess a small diameter at all ages, unlike Nav1.8 in
which �20% of the cells have medium-sized diameters.

DISCUSSION
The expression of voltage-gated ion channels is fundamental to
neuronal excitability and, therefore, to spontaneous and stimulus-
evoked activity in primary sensory neurons. The regulation of ion
channel expression may be influenced by both intrinsic develop-

Table 1. The expression of Nav1.8 and Nav1.9 within sensory neuronal subtypes in the DRG with increasing development

Neuronal
marker Age category

% neuronal marker in
total cell population

% Nav1.8 in neuronal
marker population

% Nav1.9 in neuronal marker
population

TrkA E17 79.5 (�1.0) 78.8 (�1.3) 55.0 (�3.0)
P0 78.6 (�0.6) 63.0 (�3.5) 48.9 (�2.5)
P7 60.2 (�3.2) 51.1 (�2.0) 43.7 (�2.6)
P21 45.3 (�1.8) 41.8 (�2.6) 43.4 (�3.5)
Adult 42.0 49.2 (�5.3) 45.5 (�6.0)

IB4 E17 15.0 (�0.8) 13.4 (�1.9) 44.1 (�3.1)
P0 28.2 (�0.8) 21.4 (�2.8) 64.8 (�3.8)
P7 42.3 (�1.2) 31.5 (�1.6) 60.5 (�1.3)
P21 39.3 (�1.2) 45.2 (�1.8) 59.9 (�1.7)
Adult 40.0 55.0 (�6.7) 59.8 (�6.0)

NF200 E17 21.2 (�1.7) 11.0 (�1.4) 0.83 (�2.2)
P0 35.7 (�1.0) 14.5 (�1.6) 8.62 (�2.0)
P7 42.4 (�1.5) 12.1 (�2.6) 6.64 (�1.4)
P21 47.0 (�1.9) 13.0 (�1.8) 2.64 (�0.5)
Adult 40.0 18.4 (�2.7) 0 (�0)

The change in expression of the neuronal markers (TrkA, IB4, and neurofilament NF200) in the DRG during development is represented as a proportion of positive profiles
from the total cell profile population. The change in the distribution of Nav1.8 and Nav1.9 expression within each neuronal subtype is represented as a proportion of Nav1.8
and Nav1.9 positive profiles within the total neuronal marker profile population. Each value represents the mean percentage of positive profiles from 10 animals per age
category for the % neuronal marker column, and 5 animals per age group for the Nav1.8 and Nav1.9 columns, with the SEM between animals in parentheses.

Figure 1. The developmental regulation of Nav1.8 and Nav1.9 expression
in embryonic DRG. Northern blot analysis of Nav1.8 (top) and Nav1.9
(middle) �-subunit mRNA transcripts in lumbar DRG between develop-
mental ages E15 and P0. Cyclophilin mRNA (CYC, bottom) is a loading
control.
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mental signals, such as time-dependent changes in transcription
factors, and extrinsic developmental events, such as changes in
neurotrophic factor expression, so that the distribution of ion
channels may differ within the developing and mature nervous

systems. In this study, we characterized the developmental ex-
pression of two TTXr sensory neuron-specific sodium channels,
Nav1.8 (SNS) and Nav1.9 (SNS2), within defined neuronal popu-
lations of the DRG.

Nav1.8 is the first TTXr sodium channel to be expressed, at
E15, before both its larger putative alternatively spliced transcript
and Nav1.9, which becomes detectable only at E17. The distribu-
tion of Nav1.9 in small C-fiber neurons (Dib-Hajj et al., 1998a;
Amaya et al., 2000) may explain its later onset of expression
compared with Nav1.8, because C-fiber cells develop later than
larger A-fiber neurons (Altman and Bayer, 1984). The level of
expression of both Nav1.8 and Nav1.9 increased with increasing
development, reaching adult levels by P7, with a higher propor-
tion of total neuronal profiles expressing Nav1.8 than Nav1.9 at all
stages in development. Nav1.9, as in the adult, is effectively
restricted to small diameter sensory neurons at all stages, whereas
Nav1.8 is expressed mainly in small diameter DRG neurons but in
some medium-sized NF200-positive neurons as well. By P21, both
Nav1.8 and Nav1.9 exhibit similar distribution patterns to that
found in the adult (Amaya et al., 2000).

Nav1.8 and Nav1.9 appear to be regulated by
distinct mechanisms
Despite similar and largely overlapping distribution patterns of
both the TTXr channels in small diameter adult sensory neurons
(Amaya et al., 2000), the expression of Nav1.8 and Nav1.9 within
defined neuronal subpopulations differed substantially in early
development. At E17, Nav1.8 is expressed mostly in TrkA-
positive, NGF-responsive neurons, with little expression in the
IB4-binding population. Since TrkA neurons differentiate into
IB4-positive, c-ret-expressing GDNF-responsive neurons at the
time of birth (Bennett et al., 1996; Molliver and Snider, 1997;
Molliver et al., 1997), the proportion of Nav1.8 colocalization
within this IB4-binding population increases proportionally, with
a simultaneous relative decrease in TrkA–Nav1.8-expressing neu-
rons. In contrast, at the onset of Nav1.9 expression at E17,
approximately half of the Nav1.9-positive population co-express
IB4, although only a very small minority of total DRG neurons
are IB4-positive at this time. The remaining half colocalize with
TrkA, which is the neuronal population that constitutes the vast
majority of small diameter sensory neurons at this stage (Bennett
et al., 1996; Molliver and Snider, 1997). This difference in the
embryonic distribution pattern of Nav1.8 and Nav1.9 suggests that
the cellular pattern of expression of each channel is likely to be
controlled by distinct promoter regions, responding to different
transcription factors in the late embryonic period.

In the adult, there is evidence to suggest an NGF- and GDNF-
dependent regulation of Nav1.8 (Hinson et al., 1997; Dib-Hajj et
al., 1998a; Fjell et al., 1999a,b) and Nav1.9 (Fjell et al., 1999c;
Cummins et al., 2000), respectively, although both channels are
expressed by TrkA and IB4-positive cells (Amaya et al., 2000). At
the time of IB4-positive (GDNF-responsive) cell differentiation
(at E17), these neurons express Nav1.9 before Nav1.8. The onset
of Nav1.9 expression at E17 coincides, moreover, with the release
of GDNF from Schwann cells between E14 and E16 (Wright and
Snider, 1996) (Fig. 5). Nav1.8 expression at E15 coincides with the
beginning of A- and C-fiber distal target innervation (Molliver
and Snider, 1997). This suggests that Nav1.8 may be regulated by
target-derived neurotrophic factors (Dib-Hajj et al., 1998a; Fjell
et al., 1999a,b,c) (Fig. 5) because NGF expression begins in the
skin at time of innervation (Thoenen et al., 1988; Elkabes et al.,
1994). Both Nav1.8 and Nav1.9 are downregulated in the adult by

Figure 2. Quantitative analysis of Nav1.8 and Nav1.9 protein expression
levels through embryonic and neonatal development. A, The percentage
of Nav1.8- or Nav1.9-positive cell profiles as a proportion of the total
number of DRG neuronal profiles in the developing DRG. Error bars
represent SEM. (*p � 0.01, **p � 0.001, for values for Nav1.8 vs Nav1.9;
ANOVA paired test). Levels of SNS and SNS2 protein expression are
significantly different ( p � 0.001; ANOVA) from E17 to P7, compared
with adult Nav1.8 and Nav1.9 expression. B, The proportion of the Nav1.8-
and Nav1.9-positive profiles expressed in neuronal subpopulations ex-
pressing NF 200, TrkA, and IB4 binding, with increasing development.
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peripheral axotomy (Dib-Hajj et al., 1998b; McCleskey and Gold,
1999) but not by rhizotomy (Sleeper et al., 2000), supporting the
hypothesis of a regulatory mechanism arising from peripheral
target-derived signals.

Role of Nav1.8 and Nav1.9 in sensory neurons
during development
The earliest electrophysiological recordings of TTXr currents
have been from E17 rat DRG neurons (Ogata and Tatebayashi,

1992), fetal mouse, and cultured fetal human DRG neurons
(Orozco et al., 1988; Caviedes et al., 1990). When Nav1.8 sodium
channels are first expressed in rat lumbar DRG at E15, sensory
neurons are electrically inexcitable (Fig. 5). However, the char-
acteristic fast repriming kinetics of Nav1.8 (Rush et al., 1998;
Waxman, 1999; Waxman et al., 1999; Renganathan et al., 2000),
which allows sustained action potential firing during prolonged
depolarization, may mean that it contributes to the observed

Figure 3. Distribution of Nav1.8 changes with phe-
notypic changes in the developing DRG. Double im-
munocytochemistry of Nav1.8 labeled (red), TrkA la-
beled ( green), and composite image ( far right panel )
showing double labeled ( yellow) DRG cells at specific
developmental ages. Scale bars, 50 �m.

Figure 4. Distribution of Nav1.9 in subpopula-
tions of DRG neurons through development. Im-
munoreactivity of cells positive for Nav1.9 (red),
marker population ( green), or both ( yellow) (com-
posite image) in Nav1.9 colocalization studies with
TrkA (lef t), IB4 (middle), and NF200 (right) in
DRG neurons at developmental ages E17, P0, and
P7. Scale bars, 50 �m.
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Figure 5. A summary of significant events defining rat DRG sensory neuron development. A schematic representation showing a time scale of
developmentally regulated events of a typical DRG is illustrated from embryonic age 11 (E11) to postnatal age 21 (P21) and in adult animals (lef t to right
of the diagram; not to scale). This is an attempt to correlate the major changes that occur in the developing DRG, with particular emphasis on acquisition
of neuronal electrical excitability and changes in the expression of voltage-gated sodium channels (VGSCs). The expression of the sodium channels may
be regulated by the developmental expression of specific neurotrophic factors. The top (shaded) panel illustrates the distinct patterns of electrical activity
in the developing DRG, marking the period of developmentally regulated ectopic spontaneous discharge from E16 to E20, and the earliest detection of
a TTX-resistant (TTXr) sodium current. The second panel outlines key developmental events, including the birth of specific neuronal subpopulations;
the large light A-cell population (future A fibers) are born from E11.5 to E14.5, in advance of the birth of small, dark C-cell neurons (giving rise to
C-fibers) which occurs later at E13.5–E16.5. A third unidentified subpopulation of putative nonpeptide-containing neurons (RT97-negative and
IB4-negative) are generated between E14 and E15. Almost immediately after neuronal birth, the onset of axon outgrowth begins from E14 onward,
followed by peripheral innervation of both A- and C-fibers simultaneously from E14 and central target innervation from E15 or E18 for A- and C-fibers,
(Figure legend continues.)
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spontaneous activity in DRG neurons between E16 and E20
(Fitzgerald, 1987; Meister et al., 1991; Fields, 1998). Although the
role of this period of spontaneous activity remains unclear, it
spans the period of peripheral target innervation (Jackman and
Fitzgerald, 2000), C-fiber central target innervation and synap-
togenesis (Jackman and Fitzgerald, 2000), and has been sug-
gested to play an important role in promoting neuronal differen-
tiation (Gu and Spitzer, 1997), activity-dependent regulation of
specific genes (Holliday and Spitzer, 1990; Dutton et al., 1993;
Fields, 1996, 1998), and the stabilization of synapses (Greensmith
and Vrbova, 1996). Furthermore, the onset of expression of
Nav1.8 coincides with the period of time when sodium channel
�1-subunit mRNA is upregulated (Zur et al., 1995), which may
contribute to the regulation and stability of the functional sodium
channel (Catterall, 2000). However, as Nav1.8 null mutant mice
display no obvious evidence of developmental abnormalities
(Akopian et al., 1999; Cummins et al., 1999), it is possible that
Nav1.8 contributes only slightly (Matsuda et al., 1978), if at all, to
the differentiation of primary sensory neurons and the spinal
neurons they innervate. A transgenic knockdown of Nav1.9 and
double knockouts will help establish whether TTXr sodium cur-
rents play a role in the maturation of the peripheral nervous
system.

TTXr sodium currents have been shown to contribute to the
initiation of action potential depolarization in immature neurons
(Orozco et al., 1988), so expression of Nav1.8 and Nav1.9 in
embryonic and neonatal sensory neurons may contribute to the
capacity of these neurons to conduct electrical signals to the spinal
cord. In the adult, the TTXr sodium currents in the peripheral
terminals of nociceptors contribute to the regulation of the
excitability of the terminals. Inflammatory mediators such as
Prostaglandin E2 (PGE2), for example, appear to contribute to
peripheral sensitization by a PKA-dependent phosphorylation of
Nav1.8, increasing the sodium current density (Jeftinija, 1994,
England et al., 1996; Gold et al., 1996, 1998; Tanaka et al., 1998;
Gold, 1999). The contribution of TTXr sodium channels to
injury- and inflammatory-induced pain hypersensitivity at early
developmental stages remains to be examined.

Reciprocal regulation of TTXr sodium channels
and Nav1.3
The onset of Nav1.9 expression at E17 correlates with the start of
embryonic Nav1.3 sodium channel downregulation (Waxman et
al., 1994; Felts et al., 1997). The opposite pattern occurs after
adult peripheral nerve injury in which downregulation of both
Nav1.8 and Nav1.9 is accompanied by a simultaneous upregula-
tion of Nav1.3 (Waxman et al., 1994; Rizzo et al., 1995; Black et
al., 1997, 1999; Cummins and Waxman, 1997). Our data are in
agreement with the findings by Black et al. (1997), suggesting
reciprocal developmental and injury-induced regulation of Nav1.8
and Nav1.9 with Nav1.3. Future studies directed toward the iso-

lation and functional analysis of transcriptional promoter regions
from Nav1.3, Nav1.8, and Nav1.9 genes may shed light on potential
mechanisms that underlie this reciprocal regulation.

Conclusions
Figure 5 illustrates the relative timing of key events in the devel-
oping rat lumbar DRGs, including electrical activity, target in-
nervation, exposure to growth factors, and sodium channel ex-
pression. This figure is an attempt to correlate the major changes
that occur in the developing DRG, with particular emphasis on
the link between the acquisition of neuronal electrical excitability
and the expression of specific voltage-gated sodium channels
(VGSCs). Expression of the VGSCs may be controlled by the
developmental expression of specific neurotrophic factors that
may regulate the differentiation of the neurons. Responsiveness
of the neurons to these neurotrophic factors is contingent on
expression of their cognate receptors. Key events, including birth
of different subsets of neurons, natural cell death, axonal out-
growth, and peripheral and central target innervation are illus-
trated. The transcriptional regulation of the sodium channels,
their expression only in particular subsets of neurons, their spe-
cific contribution to the electrical activity of immature neurons,
and the consequence of this for differentiation is still poorly
understood. Nevertheless, elucidation of the differential develop-
mental patterns of expression of these channels, including Nav1.8
and Nav1.9, will provide a basis for beginning to understand the
onset and maturation of excitability in primary sensory neurons.
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