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Abstract
Subgrid-scale variability is one of the main reasons why parameterizations are needed in large-
scale models. Although some parameterizations started to address the issue of subgrid variability
by introducing a subgrid probability distribution function for relevant quantities, the spatial
structure has been typically ignored and thus the subgrid-scale interactions cannot be accounted
for physically. Here we present a new statistical-physics-like approach whereby the spatial
autocorrelation function can be used to physically capture the net effects of subgrid cloud
interaction with radiation. The new approach is able to faithfully reproduce the Monte Carlo 3D
simulation results with several orders less computational cost, allowing for more realistic
representation of cloud radiation interactions in large-scale models.
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1. Introduction

Parameterizations in a global climate model (GCM) are
designed to describe the ‘collective effects’ of processes that
occur at scales smaller than GCM grid sizes (Randall
et al 2003). Parameterizations of many processes such as
radiation transfer and autoconversion employ the assumption of
independent column approximation (ICA), i.e., there is no
interaction between subcolumns and the grid-average effects
depend only on the probability distribution function (PDF) of
relevant variables (Pincus et al 2003). ICA approaches use one-
point statistical information (e.g., PDF), called subgrid varia-
bility in this letter and structural information (e.g., spatial
organization and arrangement) that can be characterized by
multi-point statistics is generally ignored. However, coherent
structures have been found at scales ranging from droplet

clusters to organized cloud, and have complex interactions with
radiation, dynamical processes, and mesoscale environment
systems (Kostinski and Shaw 2001, Marshak et al 2005,
Feingold et al 2010). Failure to include subgrid cloud and
convection structures can lead to inadequate simulations of
large-scale features (Lin et al 2011). It has been found that
ignoring cloud spatial organization tends to underestimate or
overestimate the domain-average radiation fluxes dependent on
many factors, e.g., solar angle and cloud geometry (Zuidema
and Evans 1998, Barker et al 1999, Scheirer and Macke 2003,
Davis and Mineev-Weinstein 2011, Hogan and Shonk 2013).

Given the detailed cloud field, the radiation field can be
found by numerically solving the 3D transport equation
(Evans 1998). In many applications, the knowledge of 3D
cloud field is unavailable or expensive to obtain. It is often
difficult to draw any theoretical conclusion based on the 3D
approach: there could be numerous configurations of 3D
cloud field that will give statistically similar radiation char-
acteristics (Anisimov and Fukshansky 1992). Besides these,
numerically solving the 3D problem is too expensive to use in

Environmental Research Letters

Environ. Res. Lett. 9 (2014) 124022 (7pp) doi:10.1088/1748-9326/9/12/124022

Content from this work may be used under the terms of the
Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

1748-9326/14/124022+07$33.00 © 2014 IOP Publishing Ltd1

mailto:dhuang@bnl.gov
http://stacks.iop.org/ERL/9/124022/mmedia
http://dx.doi.org/10.1088/1748-9326/9/12/124022
http://creativecommons.org/licenses/by/3.0
judywms
Typewritten Text
BNL-107327-2015-JA



practical applications. In climate models, it is a standard
practice to employ the ICA assumption, i.e., divide the
domain into two (clear and cloudy) or more subcolumns
(Pincus et al 2003, Shonk and Hogan 2008) and indepen-
dently calculate the radiation flux within each subcolumn.

Previous efforts on parameterization of 3D cloud-radia-
tion interaction in large-scale models have focused on binary
medium or oversimplified closure assumptions (Anisimov
and Fukshansky 1992, Vainikko 1973, Titov 1990, Pomran-
ing 1996, Tompkins and Di Giuseppe 2007, Stephens 1988,
Kassianov and Veron 2011, Hogan and Shonk 2013). Here
we present a new statistical physics-like simulation approach
that makes a direct connection between the statistical char-
acterization of cloud structure and the statistical moments of
the radiation field by properly averaging the 3D equation. The
unknowns of the resultant statistical radiative transport (SRT)
equations are actually the statistical moments of the radiation
field, and the model inputs are some statistical moments of the
3D medium structure. In this letter, we show that a spatial
correlation function can serve as the key to statistically
describing cloud–radiation interactions.

2. Basic theory and method

To examine what structural information is needed for the
transport problem, let us consider radiation transfer in a
cloudy atmosphere vertically confined within [0, 1] where the
top is at z= 0. The monochromatic radiance at r= (x, y, z) in
direction Ω μ φ= ( , ) is denoted by I(r, Ω), where μ is the
cosine of the zenith angle and φ is the azimuth angle. The
solar radiance field satisfies the 3D radiative transfer equation
of integral form (Chandrasekar 1950):
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where Ω μ′ = + ′ −z zr r ( )/ , I(rb, Ω) is the incoming solar
radiance at the upper boundary for downward directions
(μ< 0) and is the surface reflection for upward directions
(μ> 0); σ(r) and ω0(r) are respectively the cloud extinction
coefficient and single scattering albedo; and p(r, Ω′, Ω) is the
scattering phase function. The second term on the left-hand
side is the path extinction and the first term on the right-hand
side is the source due to scattering. Note that the extinction
coefficient is normalized with regard to the depth of the
atmosphere layer and its integral over [0, 1] corresponds to
the optical depth of the cloudy atmosphere. The interval of
integral is given by E= [0, z] for downward directions and
E= [z, 1] for upward directions. Here we trintroduce the
ergodic hypothesis, which implies that the ansport processes
should possess certain translational invariance in spatial
coordinate and thus lead to the equality of ensemble and
spatial averages (Titov 1990, Rybicki 1965). It is feasible to

assume that the deterministic transfer equation is valid for
each member of the ensemble system. Therefore, statistics is
introduced only to account for the lack of knowledge about
the detailed structure of the cloud, not about the equations
governing the transport processes.

We further assume that the scattering phase function p and
single scattering albedo ω0 depend only on height z. Let <···>
denote the horizontal or ensemble average, the vertical profile
of horizontally-averaged radiance can be obtained after
applying the notations
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This averaging process is conceptually similar to the
Reynolds averaging widely used in fluid dynamics (Rey-
nolds 1895). The domain-average radiance Ī is now explicitly
presented in equation (2) but the equation is not closed since a
new variable Ū still needs to be determined. The variable Ū is
the mean product of radiance and extinction coefficient and,
with the assumption of horizontally-invariant single scatter
albedo, radiation absorption A at any level can be readily
found by: ∫ Ω Ωω= − π

⎡⎣ ⎤⎦A z z U z( ) 1 ( ) ¯ ( , )d0 4
. Multiplying

equation (1) with σ(r) and performing the horizontal average
again, we obtain an equation for Ū :
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To solve this equation, we can either truncate the higher
order terms at certain point, or introduce independent
hypotheses of closure to determine the higher order terms in
terms of the lower order ones. Here the second approach is
used. We modified the standard Intercomparison of 3D
Radiation Codes (I3RC) community Monte Carlo model
(Cahalan et al 2005, Pincus and Evans 2010) to compute and
record 3D radiance field. Based on the analysis of Monte
Carlo simulations with a variety of cloud cases (the supple-
mentary material, available at stacks.iop.org/ERL/9/124022/
mmedia provides some details on how the closure is derived),
the higher order term Ωσ σ ′ ′Ir r r( ) ( ) ( , ) can be approxi-
mated in two steps:
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2 3

σ σ ′r r( ) ( ) is the spatial covariance function of cloud
extinction coefficients at levels z and z′ along the direction Ω
and, with an appropriate normalization, it becomes the spatial
autocorrelation function. For the rest of this letter, the
terms covariance and autocorrelation are interchangeable.
The correlation function provides a measure of the spatial
structure of cloud extinction coefficient. ′ =f z( )1

σ σ′ ′ ′ ′ + Δ ′ + Δ ′x y z x x y y zinf { ( , , ) ( , , ) : Δ ∈ ∞x [0, ],
Δ ∈ ∞y [0, ]}, i.e., the minimum autocorrelation at level z'.
The coefficients f2 and f3 depend only on the horizontal
average (σ̄) and variance (V) of cloud extinction coefficient in
the corresponding layer: σ′ = ′f z z( ) 2 ¯ ( ),2 and ′ =f z( )3

σ σ σ′ − ′ = ′ − ′V z z z( ) ¯ ( ) (r ) 2 ¯ ( )2 2 2 . It can be verified that,
for binary media, equations (4a) and (4b) will converge to the
closure scheme of Titov (1990) that was specifically designed
for binary media. To accurately calculate the direct (unscat-
tered) radiation, knowledge about the PDF of extinction
coefficient may also be needed.

Given the closure scheme of equation (4), the weighted
mean radiation field ΩU z¯ ( , ) can be determined by analyti-
cally or numerically solving the 1D Volterra integral
equation (3) and then the mean radiation field ΩI z¯ ( , ) can be
readily obtained through equation (2).

It can be seen from equations (3) and (4) that the term
Ωσ σ ′ ′Ir r r( ) ( ) ( , ) is the key to describing the interaction

between the 3D radiation and cloud fields; the function
σ σ ′r r( ) ( ) serves as a direct linkage between the mean
radiation field and 3D cloud structure and encapsulates infor-
mation of the 3D cloud structure across various spatial scales.
Figure 1 shows an example of spatial correlation function for a
3D cloud field simulated by a large eddy simulation model
(Pincus and Evans 2010). When the separation distance is zero,
the cloud field at r′= r perfectly correlates with itself, i.e.,
σ σ σ′ = +V zr r( ) ( ) ( ) ¯ (z)2 . The correlation function
approaches the asymptote σ σ ′z¯ (z) ¯ ( ), i.e., statistically inde-
pendent, once the separation distance becomes large enough.
The decorrelation length is related to mean cloud size in the x-
dimension in this example. It should be noted that the corre-
lation function can also be smaller than σ σ ′z¯ (z) ¯ ( ) if the
properties are negatively correlated.

3. Numerical results

To evaluate the new approach, we perform a suite of numerical
simulations using a discrete ordinate method for angular dis-
cretization (Bass et al 1986). The angular discretization uses an
equal-area Carlson quadrature scheme and therefore both the
latitudinal and longitudinal variations are represented by the
discrete ordinates. The spatial (vertical) discretization is chosen
to make the mean optical depth of each layer not exceeding 1.
Equation (3) is now converted to a system of linear equations
with the vertical and angular discretizations. To use efficient
solvers like DISORT (Stamnes et al 1988), further simplifica-
tions of equation (3) will be required. Since the purpose of this

letter is to demonstrate the viability of the SRT approach, further
simplification and numerical optimization will be the topic of a
future research. A successive order approximation is used to
simulate multiple scattering where the lower order scattering
serves as the source for the higher order calculation (Shabanov
et al 2000). For the zero-order radiation calculation, the source
function is set to be unit which corresponds to a collimate
incident beam without any diffuse component. The first-order
scattering is then determined with the source function based on
the zero-order solution. This process is repeated until the solu-
tion converges with a prescribed criteria. For the medium with a
very large optical thickness, a large number of vertical layers
may be needed and the successive order approximation method
can be tedious. For all simulations performed in this research, we
assume perfect knowledge about the cloud spatial correlation
functions so that the accuracy of the second order closure
scheme (equation (4)) can be evaluated against the full 3D
Monte Carlo results (Barker et al 1999).

To examine the impacts of ignoring cloud structure,
called 3D effects here, we also compare the SRT results with
two widely-used approximation methods: Plane-parallel
approximation (PPA) and ICA (Barker et al 1999, Oreo-
poulos and Barker 1999, Barker and Davis 2005). The PPA
approach assumes plane parallel geometry with each layer
taking horizontal mean optical properties and ignores the
horizontal fluctuations. The ICA approach assumes no net
horizontal transport of particles or photons between columns
so that the mean radiation characteristics can be obtained by
solving a1D deterministic transport equation for each column
and averaging the resultant solutions.

The first group of simulations are based on an idealized
checkerboard-like medium as shown in figure 2(a); this case is
notoriously challenging for 1D transport models since its
exaggeration of 3D transport effects (Wiscombe 2005). The
optical thickness of the black and white cells is 18 and 0. The
aspect ratio of each individual cell, defined as the ratio of the
horizontal dimension to the vertical dimension, varies from 0.01
to 100 for different simulations. The medium is illuminated
from above by collimated light at 0° or 30° zenith angles. The
lateral boundary condition is assumed to be periodic and the
lower boundary is ideally black. The single scattering albedo of
the medium is 1. We adopt Henyey–Greenstein scattering here
to represent the scattering phase function (Henyey and Green-
stein 1941) and the asymmetry parameter is set to 0.85.

An aspect ratio value of 1.0 is used to obtain the two
examples of spatial correlation function shown in figure 2(b).
Unlike the stratocumulus cloud shown in figure 1, the spatial
correlation function of the checkerboard medium is periodic
and does not vanish with increasing distance. The correlation
function is also capable of describing the anisotropic struc-
tures of the medium since it indicates quite different patterns
along different directions.

For the 0° illumination, the scene albedo simulated by the
3D Monte Carlo method approaches 0.210 at the small aspect
ratio limit and 0.292 at the large aspect ratio limit (figure 2(c)).
For the 30° illumination, the scene albedo ranges from 0.310 to
0.449 for various aspect ratios (figure 2(d)). As expected,
neither ICA nor PPA solutions show any dependence on the

3
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aspect ratio. The scene albedos by the PPA and ICA approa-
ches are 0.383 and 0.296 for the 0° illumination, and 0.445 and
0.310 for the 30° illumination. The PPA albedos are always
higher than others, owing to the Jensen’s inequality for convex
functions (Jensen 1906). The resulting albedo bias from PPA
and ICA varies with aspect ratio and is up to 70% of the true
albedo of the checkerboard medium.

In contrast, the SRT albedos follow closely with the 3D
Monte Carlo curves over the entire range of aspect ratio,
suggesting that the SRT faithfully represents the dependence
of horizontal transport effects on aspect ratio. For the 0°
illumination, the SRT solutions successfully reproduce the
reduction of albedo that is due to radiative channeling and
often found at small illumination angles, i.e., horizontal
transport enhances the domain-average transmission (and
suppresses reflection) relative to the ICA solutions (Davis and
Marshak 2010). For a higher illumination angle, the net effect
of horizontal transport is to reduce transmission (and enhance
reflection) and as a result both the 3D and SRT solutions
asymptote the PPA solutions at small aspect ratio limit. The
horizontal transport effects are most evident when the aspect
ratios are small and the discrepancy between SRT and ICA
results decreases with increasing aspect ratio. When the hor-
izontal dimension of each cell is much larger than its vertical
dimension, the net effect of horizontal transport become
negligible and the SRT solutions asymptote those of the ICA

regardless of illumination angle. We find that whether hor-
izontal transport enhances or suppress the scene albedo
depends on many factors, including vertical and horizontal
arrangement, horizontal fluctuation of optical properties of the
medium, scattering phase function, and illumination angle.

The second group of simulations are for a cumulus cloud
system simulated by the DARMA model (Ackerman
et al 1995) shown in figure 3(a). Figure 3(b) shows the spatial
autocorrelation functions of the cloud extinction at level
z= 0.5 for two horizontal directions. It can be seen that the
cumulus cloud appears to be statistically isotropic despite its
large spatial variability. Using the more realistic cloud field
may provide a better estimate of 3D effects in real world
clouds. The single scattering albedo of cloud droplet is 1.0
and the scattering phase function is the same as the first case.
Boundary conditions are the same as in the first case. To
illustrate the dependence of horizontal transport on cloud
structure, we vary the cloud aspect ratio from 0.01 to 100 to
represent different levels of horizontal transport effects and
keep other cloud properties fixed. Apparently, the PPA and
ICA results do not depend on cloud aspect ratio. For the 0°
illumination, the SRT solutions successfully reproduce the
reduction of albedo with increasing horizontal transport but
the SRT approach seems to slightly overestimate the scene
albedo compared to the 3D results (figure 3(c)). For the 30°
illumination, horizontal transport tends to enhance the scene

Figure 1. Spatial autocorrelation function of a stratocumulus cloud. (a) 3D rendering of the isosurface at extinction coefficient value of 20; (b)
a horizontal cross section of the 3D cloud extinction coefficient field at z= 0.6; and (c) the spatial autocorrelation function of this cross section
along the x direction.
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albedo, as suggested by figure 3(d). As expected, both the
SRT and 3D results converge to the ICA results when cloud
aspect ratio becomes very large.

The third group of simulations are for the stratocumulus
cloud system shown in figure 1. The single scattering albedo of
cloud droplet is 0.98 and the scattering phase function is the
same as the first case. The incidental radiation is collimated
light of 0° zenith angle. Boundary conditions are the same as in
the first case. The scene albedos calculated using the SRT and
the reference 3D Monte Carlo approaches are respectively
0.230 and 0.229, while the cloud absorptance from the SRT
and 3D approach is 0.223 and 0.225. The accuracy of the SRT
calculation is within 1% of the reference value, while the ICA
and PPA result in −5% and 10% errors for this stratocumulus
case. It can be seen from these three examples that the mag-
nitude of 3D transport effects varies with many factors,
including illumination angle, horizontal fluctuation, and shape
of the spatial correlation function (Barker et al 1999).

To evaluate if SRT is able to accurately simulate the
dependence of radiative fluxes on illumination angle, we
computer the reflectance (normalized upward fluxes at the
upper boundary) as a function of solar zenith angle. The result
for transmittance (normalized downward fluxes at the lower
boundary) is not shown here since it complements with
reflectance for a non-absorptive medium. It can be seen from

figure 4 that, for the checkboard case, the SRT agrees extre-
mely well with the full 3D calculations. The difference
between 3D and ICA indicates the magnitude of 3D effects. At
small solar angles (<18°), the 3D effects reduce the domain-
average reflectance by up to 20%, primarily due to photon
leaking from clouds to the clear region. For large solar angles,
the 3D effects actually enhance the domain-average reflectance
by up to 80%. The enhancement of reflectance increases with
solar angle and is mainly due to cloud side illumination effects
(Hogan and Shonk 2013). The SRT approach very accurately
reproduces the 3D effects for all the examined solar angles.

Lastly, the computational cost for the new approach is
evaluated and compared with the conventional 1D approa-
ches. To assure fair comparisons, the PPA and ICA approa-
ches also use the same solver as the SRT, in other words,

ΩU z¯ ( , ) is set to be Ωσ z I z¯ ( ) ¯ ( , ) in equation (2) for the PPA
and ICA approaches. The computational cost of the ICA
approach is linearly proportional to the number of sub-
columns used to represent the horizontal heterogeneity. For
the tested cloud cases, the SRT approach is 2–3 times more
expensive than the PPA approach while the ICA approach with
100 subcloumns is 30–50 times more expensive than the SRT
approach. Depended on the number of photon used in the
Monte Carlo simulation, the computational cost of the full 3D
approach can be several orders more than the PPA approach.

Figure 2. Visualization of the checkerboard medium (a), its autocorrelation functions along the x, diagonal, and z directions (b). Scene
albedos are calculated with various aspect ratios using the 3D Monte Carlo, SRT, PPA, and ICA approaches for 0° (c) and 30° (d)
illumination angles.
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4. Summary

In this letter a new approach is presented to represent unre-
solved cloud structure in the radiation parameterization. By
using a statistical-physics-like concept, we develop a simple

1D statistical transport theory that naturally utilizes a two-
point spatial correlation function to describe subgrid-scale
interactions that are traditionally only captured by computa-
tionally expensive 3D models. The proposed spatial correla-
tion function encodes the most important information about
the spatial arrangement and morphology of clouds and
therefore introduces the dependence of radiation field on the
3D structure. Comparison studies of three types of transport
media representing checker board, cumulus clouds, and
stratocumulus clouds show that the statistical theory is cap-
able of quantitatively capturing the properties of 3D transport
models with several orders less computational costs, e.g.,
enhancement or suppression of reflection by allowing hor-
izontal transport. In practice the 1D stochastic transport
transfer approach are expected to lead to a reduction of the
computational burden compared to the brute-force Monte
Carlo approach, and a significant increase of accuracy com-
pared to the widely used approximation methods. Also
noteworthy is that the spatial correlation function appears to
be much smoother than the cloud field, indicating that the
correlation function should be readily parameterized using
point process models or stochastic geometry (Stoyan
et al 1995).

It is also important to account for other sources of error
such as unresolved temporal variability and spectral resolu-
tion in order to develop an accurate cloud radiative transfer

Figure 3. Visualization of a cumulus cloud (a), its horizontal autocorrelation functions along the x and diagonal directions (b). Scene albedos
are calculated with various aspect ratios using the 3D Monte Carlo, SRT, PPA, and ICA approaches for 0° (c) and 30° (d) illumination angles.

Figure 4. The scene albedo calculated using different approaches as a
function of solar zenith angle. The checkboard cloud case with an
aspect ratio of 1 is used to for the simulations.
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parameterization (Pincus and Stevens 2013). Further simpli-
fication and evaluation of this approach at other spectral
regions and broadband calculations will be the topic of our
future work. It should be noted that the new approach
developed in this study holds great promise to account for
cloud structure in other cloud-related parameterizations.
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