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Abstract

Starting from the developed generalized point process model of 1/f noise (B. Kaulakys et al,

Phys. Rev. E 71 (2005) 051105) we derive the nonlinear stochastic differential equations for the

signal exhibiting 1/fβ noise and 1/xλ distribution density of the signal intensity with different

values of β and λ. The processes with 1/fβ are demonstrated by the numerical solution of the

derived equations with the appropriate restriction of the diffusion of the signal in some finite

interval. The proposed consideration may be used for modeling and analysis of stochastic processes

in different systems with the power-law distributions, long-range memory or with the elements of

self-organization.
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I. INTRODUCTION

The entirely uncorrelated in time stochastic signals exhibit white noise – the power spec-

tral density S(f) as a function of the frequency f is constant, while the Brownian motion

of the signal intensity without correlations between increments results in 1/f 2 and in the

Lorentzian power spectra. The widespread occurring signals and processes with 1/f spec-

trum (see, e.g. [1–5] and references therein) cannot be understood and modeled in such a

way.

“1/f noise” is a type of stochastic processes which power spectral density at low fre-

quencies behaves like S(f) ∼ 1/fβ, where the exponent β is close to 1. In contrast to the

Brownian motion and 1/f 2 noise generated by the linear stochastic equation, simple systems

of differential equations, even linear stochastic equations, generating signals with 1/f noise

are not known.

Recently, starting from the simple point process model of 1/f noise [6, 7], we derived the

nonlinear stochastic differential equation

dx

dts
= x4 + x5/2ξ(ts) (1)

for the signal intensity x generating processes with pure 1/f noise and the inverse cubic,

P (x) ∼ 1/x3, distribution of the signal intensity [8]. Here ts is the scaled time and ξ(ts) is

a Gaussian white noise satisfying the standard condition

〈ξ(ts)ξ(t′s)〉 = δ(ts − t′s) (2)

with the brackets 〈. . .〉 denoting the averaging over the realizations of the process.

The aims of this paper are the derivation of the class of the stochastic nonlinear differential

equations exhibiting 1/fβ noise and 1/xλ distribution density of the signal with different

values of the exponents β and λ and the numerical demonstration of the proposed model

for generation of the long-range fractal processes.

II. THE MODEL

We start from the point process as a sequence of correlated pulses or series of events

I(t) = a
∑

k

δ(t − tk). (3)
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Here δ(t) is the Dirac δ-function and a is a contribution to the signal or current of one pulse

at the time moment tk. We consider the stochastic multiplicative process for the interevent

time τk = tk+1 − tk [5, 9]

τk+1 = τk + γτ 2µ−1

k + στµ
k εk, (4)

where the (average) interevent time fluctuates due to the random perturbation by a sequence

of uncorrelated normally distributed random variables {εk} with zero expectation and unit

variance, σ denotes the standard deviation of this white noise and γ ≪ 1 is a coefficient of the

nonlinear damping. It has been shown analytically and numerically [5, 9] that the process

(3) and (4) may generate signals with the power-law distributions of the signal intensity and

1/fβ noise.

Transformation of Eq. (4) to the Itô stochastic differential equation in k-space is

dτk

dk
= γτ 2µ−1

k + στµ
k ξ(k). (5)

Transition from the occurrence number k to the actual time t according to the relation

dt = τkdk yields
dτ

dt
= γτ 2µ−2 + στµ−1/2ξ(t). (6)

The standard transformation [10] of the variable from τk to the averaged over the time

interval τk intensity of the signal x = a/τk by analogy with Ref. [8] yields the stochastic

nonlinear differential equation

dx

dt
= (σ2 − γ)

x4−2µ

a3−2µ
+

σx5/2−µ

a3/2−µ
ξ(t). (7)

Introducing the scaled time

ts =
σ2

a3−2µ
t (8)

and the new parameters

η =
5

2
− µ, Γ = 1 − γ

σ2
(9)

we obtain the class of Itô stochastic differential equations

dx

dts
= Γx2η−1 + xηξ(ts). (10)

Eqs. (10), as far as it corresponds to the analyzed in Refs. [5, 9] point process (3)-(4), should

generate the signals with the power-law distributions of the signal intensity,

P (x) ∼ 1

xλ
, λ = 2(η − Γ), (11)
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FIG. 1: Typical examples of the solutions of Eqs. (14) and (15): a) with the parameters Γ = 0.75,

η = 2, and κ = 0.1 and b) with the parameters Γ = −0.2, η = 1.5, and κ = 0.01.

and 1/fβ noise,

S(f) ∼ 1

fβ
, β = 2 − 2Γ + 1

2η − 2
. (12)

According to the general theory [10] the exponentially restricted diffusion with the dis-

tribution densities

P (x) ∼ 1

xλ
exp

{

−
(xmin

x

)m

−
(

x

xmax

)m}

(13)

should generate the stochastic differential equations

dx

dts
=

m

2

(

xm
min

xm+1−2η
− xm−1+2η

xm
max

)

+ Γx2η−1 + xηξ(ts), (14)

where m is some parameter.

III. NUMERICAL ANALYSIS

For the numerical solution of Eq. (14) we can take the integration steps from the equation

xη
i

√
hi = κxi, with κ ≪ 1 being a small parameter. This corresponds to the case when the

change of the variable xi in one step is proportional to the value of the variable. As a result,

we obtain the system of equations

xi+1 = xi + κ2xi

[

Γ +
m

2

(

xm
min

xm
i

− xm
i

xm
max

)]

+ κxiεi,

ti+1 = ti +
κ2

x2η−2

i

. (15)
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FIG. 2: a) Numerically simulated distribution density of the variable x according to Eqs. (15), open

circles, compared with the expected distribution density (11), solid line; and b) power spectral

density, obtained from the numerical solution of Eq. (15), open circles. Solid line in b) represents

the analytical power spectral density slope (12). Parameters used are xmin = 1, xmax = 103, m = 1,

Γ = 0.75, η = 2, and κ = 0.1. The signal was calculated from Nx = 106 points and averaged over

n = 100 realizations. c) and d) represent the distribution density and the power spectral density,

respectively, with the parameters m = 1, Γ = −0.2, η = 1.5, and κ = 0.01.

In figure 1 the typical examples of the signals as solutions of Eqs. (14) and (15) are shown.

The distribution densities P (x) of the variable x, obtained by the numerical simulation of

Eq. (15), are shown in figures 2 a) and c). The power spectral densities S(f) are shown in fig-

ures 2 b) and d). Numerical simulation of distribution densities and power spectral densities

are in good agreement with approximate expressions, Eq. (11) and Eq. (12), respectively.
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IV. CONCLUSIONS

We derived and analyzed a class of stochastic nonlinear differential equations for the

signal exhibiting 1/fβ noise and 1/xλ distribution density of the signal in any desirable

wide range of frequency and of the signal intensity. The proposed technique may be used for

modeling of the stochastic processes in different systems (e.g., in financial systems [9, 11, 12]

and the Internet [13, 14]) with the power-law statistics of the signal characteristics.
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