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Abstract

Let G be a subgroup of Homeo, (S!). An exotic circle of G is a subgroup of G which
is conjugate to SO(2) in Homeo, (S') but not conjugate to SO(2) in G. The existence
of exotic circles shows that the subgroup G is far from being a Lie group. Let r > 1 be an
integer, 7 = +00 or r = w. In this paper, we prove that the subgroup P"(S!) of Homeo (S')
consisting of piecewise class P C" homeomorphisms of the circle has no exotic circles. However,
we show that there exist exotic circles of a particular subgroup (denoted Py (S')) of P7(S') and
we determine the conjugacy classes of all exotic circles in P} (S!). In particular, for the group
PL,(S") consisting of piecewise linear homeomorphisms we give a simple proof of Minakawa’s

Theorems in [7], [6].
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1. INTRODUCTION

Let Homeo, (S') denote the group of orientation-preserving homeomorphisms of the circle
and SO(2) denote the group of rotations of S'. Let G be a subgroup of Homeo (S'). A
topological circle of G is a subgroup of G which is conjugate to SO(2) in Homeo, (S!). An
exotic circle of G is a topological circle of G which is not conjugate to SO(2) in G. The
existence of exotic circles shows that the topological subgroup G is very far from being a Lie
group (cf. [6], [8]). The following Corollary is a consequence of Theorem 4 of Montgomery and
Zipping (cf. [8], Theorem 4, p. 212):

Corollary 1.1. (cf. [6]) For every integer r>1,r =00, or r=w, Diff}(S') has no exotic

circles.

To consider general groups of piecewise circle homeomorphisms, we prove the following more
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precise result. Let Dif f, (S') denote the group of C'-diffeomorphisms which derivative of

bounded variation on S'. Then:
Corollary 1.2. Dif fi7PV(SY) has no exotic circle.
The proof uses the following classical result.

Theorem 1.3. ([10]) If g is a measurable function defined on the interval (0,1), and if, for
every T € (0,1), g(t+7)—g(t) is of bounded variation on the interval (0,1 —7) then g is

of bounded variation on (0,1).

Proof of Corollary 1.2. Let S =hoSO(2)oh™" be a topological circle of Dif f{T"(S")
where h € Homeoy(S'). Welet f=hoR,oh ™!, a € S'. By Corollary 1.1, h € Dif f1(S").
Hence, Dh >0 and (Dfoh)Dh = DhoR,. So, log Dho R, —log Dh =logDf oh. We let
g = log Dh. We identify f,g, and h to their lifts on [0,1]. So, ¢ is a measurable function on
[0,1] and satisfies g(z + a) — g(z) =logDf o h. Since Df is of bounded variation on [0, 1],
and h € Homeoy (S'), by Theorem 1.3, g is of bounded variation on [0, 1]. Therefore, Dh is
of bounded variation and h € Dif f{5V(S1). O

Let PL,(S') denote the subgroup of Homeo, (S') consisting of piecewise linear homeomor-
phisms. Minakawa [6],[7] showed that PL,(S') has exotic circles and obtained the conjugacy

classes of all exotic circles of PL(S'):

Minakawa’s Theorem ([6],[7]). Let 0 € R} >0, o #1 and denote by h, the homeomor-
phism of S! defined by

!
hﬂ@:i_yxemm

Then the topological circles S, = h, 0 SO(2) o h,! are exotic circles of PL,(S!) and every

exotic circle of PL,(S') is conjugate in PL, (S') to one of the S,.
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In this paper, we consider the general case: piecewise class P C" (r > 1, r = 400 or r = w)
homeomorphisms of the circle with break point singularities, that is maps f that are C" except
at some singular points in which the successive derivatives until the order r on the left and on
the right exist. These piecewise classes P C" homeomorphisms of the circle form a group noted
Pr(S1) which contains PL(S') (cf. [1]). The aim of this paper is to show that P7(S!) has
no exotic circles, and that, there exist exotic circles of a subgroup (denoted PJ(S')) of P"(S%).
Moreover, we determine the conjugacy classes of all exotic circles in Pj(S'). In the case of
PL,(S'), we give a simple proof of the classification of all exotic circles of PL(S') up to PL
conjugacy obtained by Minakawa in [7], [6].

2. CLASS P C" HOMEOMORPHISMS OF THE CIRCLE

Denote by S! = R/Z the circle and p: R — S! the canonical projection. Let f be an
orientation preserving homeomorphism of S'. The homeomorphism f admits a lift f R— R
that is an increasing homeomorphism of R such that po f = fop. Conversely, the projection of
such a homeomorphism of R is an orientation preserving homeomorphism of S'. Let z € S'.
We call orbit of x by f the subset Of(x) = {f"(x):n € Z},

Historically, the dynamic study of circle homeomorphisms was initiated by H. Poincaré (][9],

1886). He introduced the rotation number of a homeomorphism f of St as p(f) = ninioo%(mod 1).
Poincaré showed that this limit exists and does not depends on x and the lift f of f.
We say that f is semi-conjugate to the rotation R,(f) if there exists an orientation preserving

surjective continuous map h:S! — S of degree one such that ho f = R,(f) o h.

Poincaré’s theorem. Let f be a homeomorphism of S! with rotation number p(f)

irrational. Then f is semi-conjugate to the rotation R,(f).

A natural question is whether the semi-conjugation h could be improved to be a conjugation,
that is A to be an homeomorphism. In this case, we say that f is topologically conjugate to

the rotation R,s). In this direction, A. Denjoy ([2]) proved the following:

Denjoy’s theorem([2]). Every C2-diffeomorphism f of S! with irrational rotation number

p(f) is topologically conjugate to the rotation R,y).

Other classes of circle homeomorphisms commonly referred to as the class P homeomorphisms

are known to satisfy the conclusion of Denjoy’s theorem (see [4]; [3], chapter VI).

Definition 2.1. Let f be an orientation preserving homeomorphism of the circle. The homeo-
morphism f is called of class P if it is derivable except in finitely or countable points called
break points of f in which f admits left and right derivatives (denoted, respectively, by D f_

and Df,) and such that the derivative Df :S' — R%  has the following properties:
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- there exist two constants 0 < a < b < +o0o such that:
a < Df(x) <b, for every x where Df exists, a < Dfi(c) <b, and a < Df_(c) <b at
the break point c.
- log Df has bounded variation on S*

Denote by

- of(c) = gﬁgg called the f-jump in c.
- C(f) the set of break points of f.

- 7ms(f) the product of f-jumps in the break points of f : 7,(f) = [[ of(c).
ceC(f)

- V=Varlog Df the total variation of log Df. We have

P
= Z Vare, e log(Df) + [log(of(c;)| < +oo
7=0

where cg,c1,c2,...,¢p, are the break points of f with cp41 := ¢p. In this case, V is the total

variation of log Df, logDf_, logDf,.

Among the simplest examples of class P homeomorphisms, there are:

- (C?-diffeomorphisms,

- Piecewise linear (PL) homeomorphisms. An orientation preserving circle homeomorphism f
is called PL if f is derivable except in many finitely break points (c;)1<j<, of S' such that

the derivative Df is constant on each |c¢;, ¢it1].

Definition 2.2. We say that f has the (D)-property (cf. [5

I
each orbit is equal to 1 i.e. 7s(f)(c) = II of(x) = 1.
z€C(f)NOy(c)

[7]) if the product of f-jumps on

In particular, if f has the (D)-property then 7s(f) = 1. Conversely, if 7s(f) =1 and if
all break points belong to a same orbit then f has the (D)-property.
If f is a (PL) homeomorphism, always we have m(f) = 1. Therefore, a PL homeomorphism

[ satisfies the (D)-property if all its break points are on the same orbit.

Proposition 2.3. Let f, g be two circle orientation preserving C'-homeomorphisms. Then

ms(go f) = ms(g)ms(f)-

Proof. Let ¢ € S*. We have oy0f(c) = 04(f(c))os(c). So,
[T owr@= T og(f(e)os(o).

ceC(gof) ceC(gof)
Since C(go f) C C(f)U f~1(C(g)) and Jgof(c) =1 for every c€ SN\C(go f),

m(gof)= [ oo(f(e)os(c) 11 og(f(c))os(c)
ceC(f) cef~1(C(@I\C(f)
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Corollary 2.4. (Invariance of ms by piecewise C-conjugation). Let f, g be two circle

orientation preserving C'-homeomorphisms. If f and g are bi-piecewise C' conjugated then

Ws(f) - WS(g)'

Definition 2.5. Let » > 1 be an integer, r = 400, or r = w. A class P circle homeomorphism
is called of piecewise class P C" if f is C" except in a finitely many points called singular
points and in which the successive derivatives of f until the order r on the left and on the right

exist.

Denote by
- S(f) the set of singular points of f.

- P"(S') the set of class P C" circle homeomorphisms (r > 1 integer, r = +o00, or r = w).

One can check that P7(S') is a group.
Notice that if =1, S(f)=C(f).

The set S(f) of singular points is partitioned into finite subsets S;(f) which are supported
by disjoints orbits:

S(f) =I5

i=1
where S;(f) =S(f)NO¢(c;i), ¢ € S(f) and Of(ci)i<i<p are on distinct orbits.

Definition-Notation. The set M;(f) = {z;, f(x;), .., fNU®)(2;)} is called the envelope of
Si(f) (1 <i<p) where N(f,z;) €N, w;, fNU*)(2;) € S(f) and

S(f)NM;i(f) = S(f) N Oy(z;) = Si(f).
Definition 2.6. Let r > 1 be an integer. Let f € P"(S!). We say that f has the (D, )-property
it N2+l is 7 on ay, for i=1,..,p.

Notice that if N(f,z;) =0 for some ¢ then z; is the unique singular point in its orbit and

the (D, )-property is not satisfied.



Remark 1. In the case r =1, the (D,)-property is equivalent to the (D )-property. For every

Il e @=1= ] os).

deM;(f) deS;(f)

1=1,..,p,

Indeed, N+l i 1 on w;, i =1,..,p means that

N(f,z:)
opsspri(e) =1=]] ope)= [1 os(P@).
c€Si(f) Jj=0

in other words: f satisfies the (D)-property.

Proposition 2.7. ([1], Corollary 2.8). Let f, g € P"(SY) (r >1 be a real, r = 400 orr =w)
with irrational rotation numbers that are rationally independent. If fog=go f then f and

g have (D, )-property.

Theorem 2.8. ([1], Theorem 2.1) Let r > 1 be areal, 7 =+occ or r=w and f € P"(Sh)
with irrational rotation number. Then the following properties are equivalent:

i) f is conjugated in PT(S') to a CT-diffeomorphism,

it) f has the (D, )-property,

i) f is conjugated to a C"-diffeomorphism by a piecewise polyndomial homeomorphism

K € Pr(SY)

Proposition 2.9. ([1], Lemma 5.1) Let f € Dif f(S') with irrational rotation number and
let g€ Pr(SY). If fog=gof then g€ Diffr(S").

Our main results are the following:

Theorem 2.10. Let r > 1 be an integer, r = +o0 or r = w. Then PT(S') has no exotic

circles.

Let PI(S!) denote the subgroup of P"(S') consisting of class P C" circle homeomorphisms
f with 7s(f) = 1. Then:

Theorem 2.11. Let r > 1 be an integer, r = +00 orr =w, 0 € R} >0, o0 # 1 and let
hy € P7(SY) with one break point c such that oy, (c) = o. Then:

i) S, =hy0S0(2)oh,t CPI(SY) is an evotic circle of P (S').

ii) Two exotic circles Sy = h10SO(2)ohy!, Sy =hyoSO(2)ohy' of PI(S') are conjugated
in PT(SY) if and only if ms(h1) = ms(ha).

iii) Every exotic circle of Py (S') is conjugate in P (S') to one of the S,.
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3. NO EXOTIC CIRCLE OF P (S%)

Lemma 3.1. Let S = hoSO(2)oh™! be a topological circle of P"(S), h € Homeo,(S1).

Then every element of S with irrational rotation number has the (D, )-property.

Proof. Let f € S with irrational rotation number o € S!, that is f=ho R,oh™! € P"(S!).
Let g =hoRgo h~' with @ irrational such that «, 3 are rationally independent. Since
fog=gof, by Proposition 2.7, f and g have the (D, )-property. O

Proof of Theorem 2.10.

Let S =hoSO(2)oh™t C P(S') where h € Homeo,(S'). Take f € S with irrational
rotation number 3 € S'. By Lemma 3.1, f has the (D,)-property. Hence, by Theorem 2.8,
there exists a polynomial homeomorphism K € P"(S') such that F = KofoK ™! € Dif f7(S").
Now for every g=hoRsoh €S, G=KogoK !=(Koh)oR,o(Koh)™!ePr(sh.
Since GoF = F oG, by Proposition 2.9, G € Dif f7(S*). It follows by Corollary 1.1, that
Koh=ue€Diff(S"). Hence, if r>2,r=400 or r=w, h=K 'oue P(S).

If r=1 then G € PY(SY)NDiffL(SY), so, G € Dif fLHBV(S"). By Corollary 1.2, we have
Koh=uc¢ Dz’fffrBV(Sl). Hence h = K~!owu € P(S!). This completes the proof. [J

4. EXISTENCE OF EXOTIC CIRCLES OF Pj(S1)

In this section, r > 1 is an integer, r = +o00 or r = w. Let us consider the set
PL(SY) ={f € P"(S") : ms(f) = 1}.

Lemma 4.1. PI(S') is a subgroup of P"(S!).

Proof. Let us consider the map s : P"(S!) — R*; f — 74(f). Since 7s(go f) = ms(g9)ms(f)
by Proposition 2.3, 75 is a group’s homomorphism. Its kernel Ker w5 = PI(S!) is then a
subgroup of P (S1). O

Lemma 4.2. Let 0 € R{\{1} and h, € P"(S') with one break point ¢ such that oy (c) =o.
Then S, = hy 0 SO(2)oh, ! is an exotic circle of Py (St).

Proof. Letting f = hy, o Ryoh;! € S,. Then f € P"(S') and has exactly two break points
c1 and ¢y = f(c1) and the product of f-jumps: 7(f) =oy(c1)os(c2) =1, hence f € P{(S).
Therefore, S, C P{(S!). Since ms(hy) = opn,(c) =0 # 1, h, ¢ PI(S!). This completes the
proof. O

Proof of Theorem 2.11. Assertion i) follows from Lemma 4.2.
Assertion ii): Let Sy = hyoSO(2)ohy! and Sy = hy 0 SO(2) 0 hy ' be two exotic circles of
Pr(Sh).



Suppose that 7s(h1) = 7s(ha). Then Sy = LoSjoL~! where L = hgohl_l. Since S7 and S
are topological circles of P"(S'), so, by Theorem 2.10, L € P"(S!). Moreover, by Proposition

2.3,
_ ms(h)
ms(L) = ) 1.

Hence, L € P{(S') and then S; and Sy are conjugated in Py (S1).

Conversely, suppose that S; and S are conjugated in Py (S!), thatis Sy =LoSjoL™!
where L € P(S'). Let a € S! be irrational. We have

LohjoRgohito L™ =hyoRyohyt,

hence,
hfloL_lohgoRa :Raohf1 o L™ o hs.
Since « is irrational, hy ' o L1 o hy must belong to SO(2), so hy'oL 'ohy = Rs for some
B € S'. Thus, we have
L:hgoRglohl_1 :Tohgohl_1
where T = hy oR[;1 ohy' €Sy Since L,T € Pj(S'), haohyt € P](SY), so ms(haohi') =1,
that is 7Ts(h1) = 7Ts(h2).

Assertion iii): Let S = ho SO(2)oh~! be an exotic circle of PJ(S'). By Theorem 2.10,
h € Pr(S') but h ¢ Pj(S!). Hence ms(h) =0 # 1. Since 75(hy) = op,(c) = 0 =7s(h), S is
conjugated in P (S!) to S, by Assertion ii). This completes the proof. [J

5. THE PL CASE

In this section, we consider the group PL,(S!) and we give a new proof of Minakawa

classification of all exotic circles of PL(S%).

Lemma 5.1. Let h € Homeo, (S'). Then S =hoSO(2)oh™! is an exotic circle of PLy (S')

if and only if there exists A\ € R* and a subdivision co,c1,...,cp—1 of St such that

h(SC) = %6)@, + ﬂi, x E]Cz;l,ci[

where o; € R, 3; € R are constants.

Proof. Suppose that S is an exotic circle of PL,(S'). Since PL,(S') C P>(S!) then by
Theorem 2.10, h € P>®(S!). Welet f = hoR,oh ! with a € S!' irrational. The set
R=YS(f) N R (S(f)) N S(h) is finite and partitioned S* into segments [c;_1,¢;], 1 <i<p
(¢p = cp). So, f(h(x)) = ki, forevery = € [¢;_1,¢;[. Differentiating the relation foh = hoR,, we
obtain successively k; Dh(x) = Dh(Ry(z)) and k;D*h(z) = D*h(R4(z)) for every x €]c;_1,¢l.

Hence
D?h(z)  D?*h(Ra(x))
Dh(z) gh(Ra(w))’




Letting

25(2) .
11)):((1)) if € S"\{co, s Cp—1}
{ D?h (e1)

p(x) = .
Dhitcy) W T =¢i

then we have po R, = ¢ on S!. Since ¢ € L?(S') and R, is ergodic with respect to the
Haar measure m (« is irrational), ¢ is constant m a.e.; that is there exists a subset E in S*
with m(E) = 0 such that o(x) =\ for every z € S'\E. Since h ¢ PL,(S'), X\ # 0. We have
% =\ for every = €]c;—1,¢;[\E. Since %2}? is continuous on |¢;—1,¢[ and |¢i—1,¢[\E is
dense in |c;—1, ¢, %2}? =\ on |¢_1,¢| for every i. The resolution of the differential equation
D2h(z) = ADh(z), x €]c;—1,¢;[ implies that there exist two constants «; € R%, 8; € R such

that
s
h(z) = Xle’\x + Gi, © €]ci—1, ¢l
Conversely, we let h(z) = e’ + 3;,  €]c;1,¢;[ where a; € R%,3; € R are constants.

Then for every § € S', x €]¢;_1,¢;[, we have

hoRsoh™'(z)=ho st(%log( A (x = 5:)))

a;
= h(s log(a—i(:c —Bi)) +96) = a—ze/\ (x = Bi) + 5
Therefore, S C PL,(S') and since h ¢ PL,(S'), S is an exotic circle of PL,(S'). This

completes the proof. O

Remark 2. Let h, € Homeo,(S') as in Lemma 5.1 with one break point 0 such that
hs(0) =0 and op,(0) = 0. Then
o? -1
hg(.%') = i, T € [0,1[
Indeed, by Lemma 5.1,

ho(z) = 22 + 8, z € [0,1].

A
Since hy(0) =0 and h,(1) =1, we have = ﬁ and o = —ﬁ. Hence,
-1 1 M — 1
ho(@) = 1—er' ot l—er e —1°

gf—1
o—1"

hence e* =0 and hy(z) =

Proof of Minakawa’s Theorem. Under the hypothesis of Minakawa’s Theorem, S, =
hy 0 SO(2) o ;! is an exotic circle of PL,(S') by Remark 2.

Now let S =hoSO(2)oh™! be an exotic circle of PL(S'). By Theorem 2.10, h € P> (S1).
Letting 75(h) =0, we have S=LoS,0L™! where L =hoh;! and ms(L) = 1. Let’s show
that L € PL,(SY):



By Lemma 5.1, there exists A € R* and a subdivision ¢o,c1,...,cp—1 of 51 such that
a;

h(z) = § e+ B, x €lei_1,¢;[ where «; € R%, B; € R are constants. One can suppose that

co =0 by replacing h with ho R, since
S=hoSO(2)oh™ =hoReoS0(2)oR,'oh™"

For ¢+=1,....,p—1, we have

(c:) = Dh_(c;) ;e e
Tr\G) = Dth(CZ) N Oéi+16)‘ci N Oéi+17
and \
D_h(0 D_h(1 ape
Q) — DPO) _ Don(1) oyt
D+h(0) D+h(0) a1
Hence,

ms(h) = 0,(0) [ onle)

1<i<p—1
A . A
_ Qpe 1—[ (67 _ Qape ﬂ _ e}\
(65} 1§i§p71ai+1 a1 ap

So, ms(h) =€ =0. Since A\ #0, o # 1.
It follows that h(z) = 250" + fi; @ €lci—1,¢[. On the other hand, we have ot (z) =

L_Jog((c — 1)z +1). We compute

log o
_ Q;
hohy'(z) = @((J —Da + 1)+ 6.
Moreover, 10050 (0 —1) >0, hence L € PL,(S'). This completes the proof. [J
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