
Available at: http://publications.ictp.it IC/2007/084

United Nations Educational, Scientific and Cultural Organization
and

International Atomic Energy Agency

THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

EXOTIC CIRCLES OF A REMARKABLE GROUP OF PIECEWISE
GENERALIZED (NON LINEAR) CIRCLE HOMEOMORPHISMS

Abdelhamid Adouani1

Bizerte Preparatory Engineering Institute, 7021 Zarzouna, Tunisia

and

Habib Marzougui2

Department of Mathematics, Faculty of Sciences of Bizerte, 7021 Zarzouna, Tunisia
and

The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy.

Abstract

Let G be a subgroup of Homeo+(S1). An exotic circle of G is a subgroup of G which

is conjugate to SO(2) in Homeo+(S1) but not conjugate to SO(2) in G. The existence

of exotic circles shows that the subgroup G is far from being a Lie group. Let r ≥ 1 be an

integer, r = +∞ or r = ω. In this paper, we prove that the subgroup Pr(S1) of Homeo+(S1)

consisting of piecewise class P Cr homeomorphisms of the circle has no exotic circles. However,

we show that there exist exotic circles of a particular subgroup (denoted Pr
1(S1)) of Pr(S1) and

we determine the conjugacy classes of all exotic circles in Pr
1 (S1). In particular, for the group

PL+(S1) consisting of piecewise linear homeomorphisms we give a simple proof of Minakawa’s

Theorems in [7], [6].
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1. Introduction

Let Homeo+(S1) denote the group of orientation-preserving homeomorphisms of the circle

and SO(2) denote the group of rotations of S1. Let G be a subgroup of Homeo+(S1). A

topological circle of G is a subgroup of G which is conjugate to SO(2) in Homeo+(S1). An

exotic circle of G is a topological circle of G which is not conjugate to SO(2) in G. The

existence of exotic circles shows that the topological subgroup G is very far from being a Lie

group (cf. [6], [8]). The following Corollary is a consequence of Theorem 4 of Montgomery and

Zipping (cf. [8], Theorem 4, p. 212):

Corollary 1.1. (cf. [6]) For every integer r ≥ 1, r = ∞, or r = ω, Diff r
+(S1) has no exotic

circles.

To consider general groups of piecewise circle homeomorphisms, we prove the following more

precise result. Let Diff1+BV
+ (S1) denote the group of C1-diffeomorphisms which derivative of

bounded variation on S1. Then:

Corollary 1.2. Diff1+BV
+ (S1) has no exotic circle.

The proof uses the following classical result.

Theorem 1.3. ([10]) If g is a measurable function defined on the interval (0, 1), and if, for

every τ ∈ (0, 1), g(t + τ) − g(t) is of bounded variation on the interval (0, 1 − τ) then g is

of bounded variation on (0, 1).

Proof of Corollary 1.2. Let S = h ◦SO(2) ◦ h−1 be a topological circle of Diff1+BV
+ (S1)

where h ∈ Homeo+(S1). We let f = h ◦ Rα ◦ h−1, α ∈ S1. By Corollary 1.1, h ∈ Diff1
+(S1).

Hence, Dh > 0 and (Df ◦ h)Dh = Dh ◦ Rα. So, log Dh ◦ Rα − log Dh = log Df ◦ h. We let

g = log Dh. We identify f, g, and h to their lifts on [0, 1]. So, g is a measurable function on

[0, 1] and satisfies g(x + α) − g(x) = log Df ◦ h. Since Df is of bounded variation on [0, 1],

and h ∈ Homeo+(S1), by Theorem 1.3, g is of bounded variation on [0, 1]. Therefore, Dh is

of bounded variation and h ∈ Diff1+BV
+ (S1). �

Let PL+(S1) denote the subgroup of Homeo+(S1) consisting of piecewise linear homeomor-

phisms. Minakawa [6],[7] showed that PL+(S1) has exotic circles and obtained the conjugacy

classes of all exotic circles of PL+(S1):

Minakawa’s Theorem ([6],[7]). Let σ ∈ R
⋆
+ > 0, σ 6= 1 and denote by hσ the homeomor-

phism of S1 defined by

hσ(x) =
σx − 1

σ − 1
, x ∈ [0, 1[.

Then the topological circles Sσ = hσ ◦ SO(2) ◦ h−1
σ are exotic circles of PL+(S1) and every

exotic circle of PL+(S1) is conjugate in PL+(S1) to one of the Sσ.
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In this paper, we consider the general case: piecewise class P Cr (r ≥ 1, r = +∞ or r = ω)

homeomorphisms of the circle with break point singularities, that is maps f that are Cr except

at some singular points in which the successive derivatives until the order r on the left and on

the right exist. These piecewise classes P Cr homeomorphisms of the circle form a group noted

Pr(S1) which contains PL+(S1) (cf. [1]). The aim of this paper is to show that Pr(S1) has

no exotic circles, and that, there exist exotic circles of a subgroup (denoted Pr
1 (S1)) of Pr(S1).

Moreover, we determine the conjugacy classes of all exotic circles in Pr
1 (S1). In the case of

PL+(S1), we give a simple proof of the classification of all exotic circles of PL+(S1) up to PL

conjugacy obtained by Minakawa in [7], [6].

2. class P Cr
homeomorphisms of the circle

Denote by S1 = R/Z the circle and p : R −→ S1 the canonical projection. Let f be an

orientation preserving homeomorphism of S1. The homeomorphism f admits a lift f̃ : R −→ R

that is an increasing homeomorphism of R such that p◦ f̃ = f ◦p. Conversely, the projection of

such a homeomorphism of R is an orientation preserving homeomorphism of S1. Let x ∈ S1.

We call orbit of x by f the subset Of (x) = {fn(x) : n ∈ Z},

Historically, the dynamic study of circle homeomorphisms was initiated by H. Poincaré ([9],

1886). He introduced the rotation number of a homeomorphism f of S1 as ρ(f) = lim
n−→+∞

f̃n(x)−x
n

(mod 1).

Poincaré showed that this limit exists and does not depends on x and the lift f̃ of f .

We say that f is semi-conjugate to the rotation Rρ(f) if there exists an orientation preserving

surjective continuous map h : S1 −→ S1 of degree one such that h ◦ f = Rρ(f) ◦ h.

Poincaré’s theorem. Let f be a homeomorphism of S1 with rotation number ρ(f)

irrational. Then f is semi-conjugate to the rotation Rρ(f).

A natural question is whether the semi-conjugation h could be improved to be a conjugation,

that is h to be an homeomorphism. In this case, we say that f is topologically conjugate to

the rotation Rρ(f). In this direction, A. Denjoy ([2]) proved the following:

Denjoy’s theorem([2]). Every C2-diffeomorphism f of S1 with irrational rotation number

ρ(f) is topologically conjugate to the rotation Rρ(f).

Other classes of circle homeomorphisms commonly referred to as the class P homeomorphisms

are known to satisfy the conclusion of Denjoy’s theorem (see [4]; [3], chapter VI).

Definition 2.1. Let f be an orientation preserving homeomorphism of the circle. The homeo-

morphism f is called of class P if it is derivable except in finitely or countable points called

break points of f in which f admits left and right derivatives (denoted, respectively, by Df−

and Df+) and such that the derivative Df : S1 −→ R
⋆
+ has the following properties:
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- there exist two constants 0 < a < b < +∞ such that:

a < Df(x) < b, for every x where Df exists, a < Df+(c) < b, and a < Df−(c) < b at

the break point c.

- log Df has bounded variation on S1

Denote by

- σf (c) := Df
−

(c)
Df+(c) called the f -jump in c.

- C(f) the set of break points of f .

- πs(f) the product of f -jumps in the break points of f : πs(f) =
∏

c∈C(f)

σf (c).

- V = V ar log Df the total variation of log Df . We have

V : =

p∑

j=0

V ar[cj ,cj+1] log(Df) + | log(σf (cj)| < +∞

where c0, c1, c2, ..., cp are the break points of f with cp+1 := c0. In this case, V is the total

variation of log Df , log Df−, log Df+.

Among the simplest examples of class P homeomorphisms, there are:

- C2-diffeomorphisms,

- Piecewise linear (PL) homeomorphisms. An orientation preserving circle homeomorphism f

is called PL if f is derivable except in many finitely break points (ci)1≤i≤p of S1 such that

the derivative Df is constant on each ]ci, ci+1[.

Definition 2.2. We say that f has the (D)-property (cf. [5], [7]) if the product of f -jumps on

each orbit is equal to 1 i.e. πs(f)(c) =
∏

x∈C(f)∩Of (c)

σf (x) = 1.

In particular, if f has the (D)-property then πs(f) = 1. Conversely, if πs(f) = 1 and if

all break points belong to a same orbit then f has the (D)-property.

If f is a (PL) homeomorphism, always we have πs(f) = 1. Therefore, a PL homeomorphism

f satisfies the (D)-property if all its break points are on the same orbit.

Proposition 2.3. Let f, g be two circle orientation preserving C1-homeomorphisms. Then

πs(g ◦ f) = πs(g)πs(f).

Proof. Let c ∈ S1. We have σg◦f (c) = σg(f(c))σf (c). So,

πs(g ◦ f) =
∏

c∈C(g◦f)

σg◦f (c) =
∏

c∈C(g◦f)

σg(f(c))σf (c).

Since C(g ◦ f) ⊂ C(f) ∪ f−1(C(g)) and σg◦f (c) = 1 for every c ∈ S1\C(g ◦ f),

πs(g ◦ f) =
∏

c∈C(f)

σg(f(c))σf (c)
∏

c∈f−1(C(g))\C(f)

σg(f(c))σf (c)
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= πs(f)
∏

c∈C(f)

σg(f(c))
∏

c∈f−1(C(g))\C(f)

σg(f(c))

= πs(f)
∏

c∈f−1(C(g))

σg(f(c)) = πs(f)πs(g).

�

Corollary 2.4. (Invariance of πs by piecewise C1-conjugation). Let f, g be two circle

orientation preserving C1-homeomorphisms. If f and g are bi-piecewise C1 conjugated then

πs(f) = πs(g).

Definition 2.5. Let r ≥ 1 be an integer, r = +∞, or r = ω. A class P circle homeomorphism

is called of piecewise class P Cr if f is Cr except in a finitely many points called singular

points and in which the successive derivatives of f until the order r on the left and on the right

exist.

Denote by

- S(f) the set of singular points of f .

- Pr(S1) the set of class P Cr circle homeomorphisms (r ≥ 1 integer, r = +∞, or r = ω).

One can check that Pr(S1) is a group.

Notice that if r = 1, S(f) = C(f).

The set S(f) of singular points is partitioned into finite subsets Si(f) which are supported

by disjoints orbits:

S(f) =

p∐

i=1

Si(f)

where Si(f) = S(f) ∩ Of (ci), ci ∈ S(f) and Of (ci)1≤i≤p are on distinct orbits.

Definition-Notation. The set Mi(f) = {xi, f(xi), .., f
N(f,xi)(xi)} is called the envelope of

Si(f) (1 ≤ i ≤ p) where N(f, xi) ∈ N, xi, fN(f,xi)(xi) ∈ S(f) and

S(f) ∩ Mi(f) = S(f) ∩ Of (xi) = Si(f).

Definition 2.6. Let r ≥ 1 be an integer. Let f ∈ Pr(S1). We say that f has the (Dr)-property

if fN(f,xi)+1 is Cr on xi, for i = 1, ..., p.

Notice that if N(f, xi) = 0 for some i then xi is the unique singular point in its orbit and

the (Dr)-property is not satisfied.
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Remark 1. In the case r = 1, the (Dr)-property is equivalent to the (D)-property. For every

i = 1, ..., p,
∏

d∈Mi(f)

σf (d) = 1 =
∏

d∈Si(f)

σf (d).

Indeed, fN(f,xi)+1 is C1 on xi, i = 1, ..., p means that

σfN(f,xi)+1(xi) = 1 =
∏

c∈Si(f)

σf (c) =

N(f,xi)∏

j=0

σf (f j(xi)),

in other words: f satisfies the (D)-property.

Proposition 2.7. ([1], Corollary 2.8). Let f, g ∈ Pr(S1) (r ≥ 1 be a real, r = +∞ or r = ω)

with irrational rotation numbers that are rationally independent. If f ◦ g = g ◦ f then f and

g have (Dr)-property.

Theorem 2.8. ([1], Theorem 2.1) Let r ≥ 1 be a real, r = +∞ or r = ω and f ∈ Pr(S1)

with irrational rotation number. Then the following properties are equivalent:

i) f is conjugated in Pr(S1) to a Cr-diffeomorphism,

ii) f has the (Dr)-property,

iii) f is conjugated to a Cr-diffeomorphism by a piecewise polynômial homeomorphism

K ∈ Pr(S1)

Proposition 2.9. ([1], Lemma 5.1) Let f ∈ Diff r
+(S1) with irrational rotation number and

let g ∈ Pr(S1). If f ◦ g = g ◦ f then g ∈ Diff r
+(S1).

Our main results are the following:

Theorem 2.10. Let r ≥ 1 be an integer, r = +∞ or r = ω. Then Pr(S1) has no exotic

circles.

Let Pr
1(S1) denote the subgroup of Pr(S1) consisting of class P Cr circle homeomorphisms

f with πs(f) = 1. Then:

Theorem 2.11. Let r ≥ 1 be an integer, r = +∞ or r = ω, σ ∈ R
⋆
+ > 0, σ 6= 1 and let

hσ ∈ Pr(S1) with one break point c such that σhσ
(c) = σ. Then:

i) Sσ = hσ ◦ SO(2) ◦ h−1
σ ⊂ Pr

1(S1) is an exotic circle of Pr
1(S

1).

ii) Two exotic circles S1 = h1 ◦SO(2)◦h−1
1 , S2 = h2 ◦SO(2)◦h−1

2 of Pr
1 (S1) are conjugated

in Pr
1 (S1) if and only if πs(h1) = πs(h2).

iii) Every exotic circle of Pr
1(S

1) is conjugate in Pr
1(S

1) to one of the Sσ.
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3. No exotic circle of Pr(S1)

Lemma 3.1. Let S = h ◦ SO(2) ◦ h−1 be a topological circle of Pr(S1), h ∈ Homeo+(S1).

Then every element of S with irrational rotation number has the (Dr)-property.

Proof. Let f ∈ S with irrational rotation number α ∈ S1, that is f = h ◦ Rα ◦ h−1 ∈ Pr(S1).

Let g = h ◦ Rβ ◦ h−1 with β irrational such that α, β are rationally independent. Since

f ◦ g = g ◦ f , by Proposition 2.7, f and g have the (Dr)-property. �

Proof of Theorem 2.10.

Let S = h ◦ SO(2) ◦ h−1 ⊂ Pr(S1) where h ∈ Homeo+(S1). Take f ∈ S with irrational

rotation number β ∈ S1. By Lemma 3.1, f has the (Dr)-property. Hence, by Theorem 2.8,

there exists a polynômial homeomorphism K ∈ Pr(S1) such that F = K◦f ◦K−1 ∈ Diff r
+(S1).

Now for every g = h ◦ Rα ◦ h−1 ∈ S, G = K ◦ g ◦ K−1 = (K ◦ h) ◦ Rα ◦ (K ◦ h)−1 ∈ Pr(S1).

Since G ◦ F = F ◦ G, by Proposition 2.9, G ∈ Diff r
+(S1). It follows by Corollary 1.1, that

K ◦ h = u ∈ Diff r
+(S1). Hence, if r ≥ 2, r = +∞ or r = ω, h = K−1 ◦ u ∈ Pr(S1).

If r = 1 then G ∈ P1(S1)∩Diff1
+(S1), so, G ∈ Diff1+BV

+ (S1). By Corollary 1.2, we have

K ◦ h = u ∈ Diff1+BV
+ (S1). Hence h = K−1 ◦ u ∈ P1(S1). This completes the proof. �

4. Existence of exotic circles of Pr
1(S1)

In this section, r ≥ 1 is an integer, r = +∞ or r = ω. Let us consider the set

Pr
1 (S1) = {f ∈ Pr(S1) : πs(f) = 1}.

Lemma 4.1. Pr
1(S1) is a subgroup of Pr(S1).

Proof. Let us consider the map πs : Pr(S1) −→ R
⋆; f 7−→ πs(f). Since πs(g ◦ f) = πs(g)πs(f)

by Proposition 2.3, πs is a group’s homomorphism. Its kernel Ker πs = Pr
1(S1) is then a

subgroup of Pr(S1). �

Lemma 4.2. Let σ ∈ R
⋆
+\{1} and hσ ∈ Pr(S1) with one break point c such that σhσ

(c) = σ.

Then Sσ = hσ ◦ SO(2) ◦ h−1
σ is an exotic circle of Pr

1(S
1).

Proof. Letting f = hσ ◦ Rα ◦ h−1
σ ∈ Sσ. Then f ∈ Pr(S1) and has exactly two break points

c1 and c2 = f(c1) and the product of f -jumps : πs(f) = σf (c1)σf (c2) = 1, hence f ∈ Pr
1 (S1).

Therefore, Sσ ⊂ Pr
1(S1). Since πs(hσ) = σhσ

(c) = σ 6= 1, hσ /∈ Pr
1(S1). This completes the

proof. �

Proof of Theorem 2.11. Assertion i) follows from Lemma 4.2.

Assertion ii): Let S1 = h1 ◦ SO(2) ◦ h−1
1 and S2 = h2 ◦ SO(2) ◦ h−1

2 be two exotic circles of

Pr
1 (S1).

7



Suppose that πs(h1) = πs(h2). Then S2 = L◦S1 ◦L−1 where L = h2 ◦h−1
1 . Since S1 and S1

are topological circles of Pr(S1), so, by Theorem 2.10, L ∈ Pr(S1). Moreover, by Proposition

2.3,

πs(L) =
πs(h1)

πs(h2)
= 1.

Hence, L ∈ Pr
1 (S1) and then S1 and S2 are conjugated in Pr

1 (S1).

Conversely, suppose that S1 and S2 are conjugated in Pr
1 (S1), that is S2 = L ◦ S1 ◦ L−1

where L ∈ Pr
1 (S1). Let α ∈ S1 be irrational. We have

L ◦ h1 ◦ Rα ◦ h−1
1 ◦ L−1 = h2 ◦ Rα ◦ h−1

2 ,

hence,

h−1
1 ◦ L−1 ◦ h2 ◦ Rα = Rα ◦ h−1

1 ◦ L−1 ◦ h2.

Since α is irrational, h−1
1 ◦L−1 ◦ h2 must belong to SO(2), so h−1

1 ◦L−1 ◦ h2 = Rβ for some

β ∈ S1. Thus, we have

L = h2 ◦ R−1
β ◦ h−1

1 = T ◦ h2 ◦ h−1
1

where T = h2 ◦R−1
β ◦ h−1

2 ∈ S2. Since L, T ∈ Pr
1(S1), h2 ◦ h−1

1 ∈ Pr
1 (S1), so πs(h2 ◦ h−1

1 ) = 1,

that is πs(h1) = πs(h2).

Assertion iii): Let S = h ◦ SO(2) ◦ h−1 be an exotic circle of Pr
1 (S1). By Theorem 2.10,

h ∈ Pr(S1) but h /∈ Pr
1 (S1). Hence πs(h) = σ 6= 1. Since πs(hσ) = σhσ

(c) = σ = πs(h), S is

conjugated in Pr
1(S1) to Sσ by Assertion ii). This completes the proof. �

5. The PL case

In this section, we consider the group PL+(S1) and we give a new proof of Minakawa

classification of all exotic circles of PL(S1).

Lemma 5.1. Let h ∈ Homeo+(S1). Then S = h ◦SO(2) ◦ h−1 is an exotic circle of PL+(S1)

if and only if there exists λ ∈ R
⋆ and a subdivision c0, c1, ..., cp−1 of S1 such that

h(x) =
αi

λ
eλx + βi, x ∈]ci−1, ci[

where αi ∈ R
⋆
+, βi ∈ R are constants.

Proof. Suppose that S is an exotic circle of PL+(S1). Since PL+(S1) ⊂ P∞(S1) then by

Theorem 2.10, h ∈ P∞(S1). We let f = h ◦ Rα ◦ h−1 with α ∈ S1 irrational. The set

h−1(S(f)) ∩ R−1
α (S(f)) ∩ S(h) is finite and partitioned S1 into segments [ci−1, ci], 1 ≤ i ≤ p

(cp = c0). So, f(h(x)) = ki, for every x ∈ [ci−1, ci[. Differentiating the relation f◦h = h◦Rα, we

obtain successively kiDh(x) = Dh(Rα(x)) and kiD
2h(x) = D2h(Rα(x)) for every x ∈]ci−1, ci[.

Hence
D2h(x)

Dh(x)
=

D2h(Rα(x))

Dh(Rα(x))
.

8



Letting

ϕ(x) = {

D2h(x)
Dh(x) if x ∈ S1\{c0, ..., cp−1}

D2h+(ci)
Dh+(ci)

if x = ci

then we have ϕ ◦ Rα = ϕ on S1. Since ϕ ∈ L2(S1) and Rα is ergodic with respect to the

Haar measure m (α is irrational), ϕ is constant m a.e.; that is there exists a subset E in S1

with m(E) = 0 such that ϕ(x) = λ for every x ∈ S1\E. Since h /∈ PL+(S1), λ 6= 0. We have
D2h(x)
Dh(x) = λ for every x ∈]ci−1, ci[\E. Since D2h

Dh
is continuous on ]ci−1, ci[ and ]ci−1, ci[\E is

dense in ]ci−1, ci[,
D2h
Dh

= λ on ]ci−1, ci[ for every i. The resolution of the differential equation

D2h(x) = λDh(x), x ∈]ci−1, ci[ implies that there exist two constants αi ∈ R
⋆
+, βi ∈ R such

that

h(x) =
αi

λ
eλx + βi, x ∈]ci−1, ci[.

Conversely, we let h(x) = αi

λ
eλx + βi, x ∈]ci−1, ci[ where αi ∈ R

⋆
+, βi ∈ R are constants.

Then for every δ ∈ S1, x ∈]ci−1, ci[, we have

h ◦ Rδ ◦ h−1(x) = h ◦ Rδ(
1

λ
log(

λ

αi
(x − βi)))

= h(
1

λ
log(

λ

αi
(x − βi)) + δ) =

αj

αi
eλδ(x − βi) + βj .

Therefore, S ⊂ PL+(S1) and since h /∈ PL+(S1), S is an exotic circle of PL+(S1). This

completes the proof. �

Remark 2. Let hσ ∈ Homeo+(S1) as in Lemma 5.1 with one break point 0 such that

hσ(0) = 0 and σhσ
(0) = σ. Then

hσ(x) =
σx − 1

σ − 1
, x ∈ [0, 1[.

Indeed, by Lemma 5.1,

hσ(x) =
α

λ
eλx + β, x ∈ [0, 1].

Since hσ(0) = 0 and hσ(1) = 1, we have β = 1
1−eλ and α = − λ

1−eλ . Hence,

hσ(x) =
−1

1 − eλ
eλx +

1

1 − eλ
=

eλx − 1

eλ − 1
.

Or

σhσ
(0) =

D(hσ)−(0)

D(hσ)+(0)

=
D(hσ)−(1)

D(hσ)+(0)
= eλ,

hence eλ = σ and hσ(x) = σx−1
σ−1 .

Proof of Minakawa’s Theorem. Under the hypothesis of Minakawa’s Theorem, Sσ =

hσ ◦ SO(2) ◦ h−1
σ is an exotic circle of PL+(S1) by Remark 2.

Now let S = h◦SO(2)◦h−1 be an exotic circle of PL+(S1). By Theorem 2.10, h ∈ P∞(S1).

Letting πs(h) = σ, we have S = L ◦ Sσ ◦ L−1 where L = h ◦ h−1
σ and πs(L) = 1. Let’s show

that L ∈ PL+(S1):
9



By Lemma 5.1, there exists λ ∈ R
⋆ and a subdivision c0, c1, ..., cp−1 of S1 such that

h(x) = αi

λ
eλx + βi, x ∈]ci−1, ci[ where αi ∈ R

⋆
+, βi ∈ R are constants. One can suppose that

c0 = 0 by replacing h with h ◦ Rc0 since

S = h ◦ SO(2) ◦ h−1 = h ◦ Rc0 ◦ SO(2) ◦ R−1
c0

◦ h−1.

For i = 1, ..., p − 1, we have

σh(ci) =
Dh−(ci)

Dh+(ci)
=

αie
λci

αi+1eλci
=

αi

αi+1
,

and

σh(0) =
D−h(0)

D+h(0)
=

D−h(1)

D+h(0)
=

αpe
λ

α1
.

Hence,

πs(h) = σh(0)
∏

1≤i≤p−1

σh(ci)

=
αpe

λ

α1

∏

1≤i≤p−1

αi

αi+1
=

αpe
λ

α1

α1

αp
= eλ

So, πs(h) = eλ = σ. Since λ 6= 0, σ 6= 1.

It follows that h(x) = αi

log σ
σx + βi, x ∈]ci−1, ci[. On the other hand, we have h−1

σ (x) =

1
log σ

log((σ − 1)x + 1). We compute

h ◦ h−1
σ (x) =

αi

log σ
((σ − 1)x + 1) + βi.

Moreover, αi

log σ
(σ − 1) > 0, hence L ∈ PL+(S1). This completes the proof. �
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