United Nations Educational, Scientific and Cultural Organization and International Atomic Energy Agency THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

EXOTIC CIRCLES OF A REMARKABLE GROUP OF PIECEWISE GENERALIZED (NON LINEAR) CIRCLE HOMEOMORPHISMS

Abdelhamid Adouani¹ Bizerte Preparatory Engineering Institute, 7021 Zarzouna, Tunisia

and

Habib Marzougui²

Department of Mathematics, Faculty of Sciences of Bizerte, 7021 Zarzouna, Tunisia and The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy.

Abstract

Let G be a subgroup of $\operatorname{Homeo}_+(S^1)$. An exotic circle of G is a subgroup of G which is conjugate to SO(2) in $\operatorname{Homeo}_+(S^1)$ but not conjugate to SO(2) in G. The existence of exotic circles shows that the subgroup G is far from being a Lie group. Let $r \ge 1$ be an integer, $r = +\infty$ or $r = \omega$. In this paper, we prove that the subgroup $\mathcal{P}^r(S^1)$ of $\operatorname{Homeo}_+(S^1)$ consisting of piecewise class $P \ C^r$ homeomorphisms of the circle has no exotic circles. However, we show that there exist exotic circles of a particular subgroup (denoted $\mathcal{P}_1^r(S^1)$) of $\mathcal{P}^r(S^1)$ and we determine the conjugacy classes of all exotic circles in $\mathcal{P}_1^r(S^1)$. In particular, for the group $PL_+(S^1)$ consisting of piecewise linear homeomorphisms we give a simple proof of Minakawa's Theorems in [7], [6].

> MIRAMARE – TRIESTE August 2007

 $^{^{1}}adouani_{-}abdelhamid@yahoo.fr$

²Regular Associate of ICTP: hmarzoug@ictp.it

1. INTRODUCTION

Let $\operatorname{Homeo}_+(S^1)$ denote the group of orientation-preserving homeomorphisms of the circle and SO(2) denote the group of rotations of S^1 . Let G be a subgroup of $\operatorname{Homeo}_+(S^1)$. A topological circle of G is a subgroup of G which is conjugate to SO(2) in $\operatorname{Homeo}_+(S^1)$. An *exotic circle* of G is a topological circle of G which is not conjugate to SO(2) in G. The existence of exotic circles shows that the topological subgroup G is very far from being a Lie group (cf. [6], [8]). The following Corollary is a consequence of Theorem 4 of Montgomery and Zipping (cf. [8], Theorem 4, p. 212):

Corollary 1.1. (cf. [6]) For every integer $r \ge 1$, $r = \infty$, or $r = \omega$, $Diff_+^r(S^1)$ has no exotic circles.

To consider general groups of piecewise circle homeomorphisms, we prove the following more precise result. Let $Diff_{+}^{1+BV}(S^1)$ denote the group of C^1 -diffeomorphisms which derivative of bounded variation on S^1 . Then:

Corollary 1.2. $Diff_+^{1+BV}(S^1)$ has no exotic circle.

The proof uses the following classical result.

Theorem 1.3. ([10]) If g is a measurable function defined on the interval (0,1), and if, for every $\tau \in (0,1)$, $g(t+\tau) - g(t)$ is of bounded variation on the interval $(0,1-\tau)$ then g is of bounded variation on (0,1).

Proof of Corollary 1.2. Let $S = h \circ SO(2) \circ h^{-1}$ be a topological circle of $Diff_{+}^{1+BV}(S^{1})$ where $h \in Homeo_{+}(S^{1})$. We let $f = h \circ R_{\alpha} \circ h^{-1}$, $\alpha \in S^{1}$. By Corollary 1.1, $h \in Diff_{+}^{1}(S^{1})$. Hence, Dh > 0 and $(Df \circ h)Dh = Dh \circ R_{\alpha}$. So, $\log Dh \circ R_{\alpha} - \log Dh = \log Df \circ h$. We let $g = \log Dh$. We identify f, g, and h to their lifts on [0, 1]. So, g is a measurable function on [0, 1] and satisfies $g(x + \alpha) - g(x) = \log Df \circ h$. Since Df is of bounded variation on [0, 1], and $h \in Homeo_{+}(S^{1})$, by Theorem 1.3, g is of bounded variation on [0, 1]. Therefore, Dh is of bounded variation and $h \in Diff_{+}^{1+BV}(S^{1})$. \Box

Let $PL_+(S^1)$ denote the subgroup of Homeo₊(S¹) consisting of piecewise linear homeomorphisms. Minakawa [6],[7] showed that $PL_+(S^1)$ has exotic circles and obtained the conjugacy classes of all exotic circles of $PL_+(S^1)$:

Minakawa's Theorem ([6],[7]). Let $\sigma \in \mathbb{R}^*_+ > 0$, $\sigma \neq 1$ and denote by h_{σ} the homeomorphism of S^1 defined by

$$h_{\sigma}(x) = \frac{\sigma^x - 1}{\sigma - 1}, \ x \in [0, 1[.$$

Then the topological circles $S_{\sigma} = h_{\sigma} \circ SO(2) \circ h_{\sigma}^{-1}$ are exotic circles of $PL_{+}(S^{1})$ and every exotic circle of $PL_{+}(S^{1})$ is conjugate in $PL_{+}(S^{1})$ to one of the S_{σ} . In this paper, we consider the general case: piecewise class $P \ C^r \ (r \ge 1, r = +\infty \text{ or } r = \omega)$ homeomorphisms of the circle with break point singularities, that is maps f that are C^r except at some singular points in which the successive derivatives until the order r on the left and on the right exist. These piecewise classes $P \ C^r$ homeomorphisms of the circle form a group noted $\mathcal{P}^r(S^1)$ which contains $PL_+(S^1)$ (cf. [1]). The aim of this paper is to show that $\mathcal{P}^r(S^1)$ has no exotic circles, and that, there exist exotic circles of a subgroup (denoted $\mathcal{P}_1^r(S^1)$) of $\mathcal{P}^r(S^1)$. Moreover, we determine the conjugacy classes of all exotic circles in $\mathcal{P}_1^r(S^1)$. In the case of $PL_+(S^1)$, we give a simple proof of the classification of all exotic circles of $PL_+(S^1)$ up to PL conjugacy obtained by Minakawa in [7], [6].

2. Class $P C^r$ homeomorphisms of the circle

Denote by $S^1 = \mathbb{R}/\mathbb{Z}$ the circle and $p : \mathbb{R} \longrightarrow S^1$ the canonical projection. Let f be an orientation preserving homeomorphism of S^1 . The homeomorphism f admits a lift $\tilde{f} : \mathbb{R} \longrightarrow \mathbb{R}$ that is an increasing homeomorphism of \mathbb{R} such that $p \circ \tilde{f} = f \circ p$. Conversely, the projection of such a homeomorphism of \mathbb{R} is an orientation preserving homeomorphism of S^1 . Let $x \in S^1$. We call *orbit* of x by f the subset $O_f(x) = \{f^n(x) : n \in \mathbb{Z}\},$

Historically, the dynamic study of circle homeomorphisms was initiated by H. Poincaré ([9], 1886). He introduced the rotation number of a homeomorphism f of S^1 as $\rho(f) = \lim_{n \longrightarrow +\infty} \frac{\tilde{f}^n(x) - x}{n} \pmod{1}$.

Poincaré showed that this limit exists and does not depends on x and the lift \tilde{f} of f.

We say that f is semi-conjugate to the rotation $R_{\rho}(f)$ if there exists an orientation preserving surjective continuous map $h: S^1 \longrightarrow S^1$ of degree one such that $h \circ f = R_{\rho}(f) \circ h$.

Poincaré's theorem. Let f be a homeomorphism of S^1 with rotation number $\rho(f)$ irrational. Then f is semi-conjugate to the rotation $R_{\rho}(f)$.

A natural question is whether the semi-conjugation h could be improved to be a conjugation, that is h to be an homeomorphism. In this case, we say that f is topologically conjugate to the rotation $R_{\rho(f)}$. In this direction, A. Denjoy ([2]) proved the following:

Denjoy's theorem([2]). Every C^2 -diffeomorphism f of S^1 with irrational rotation number $\rho(f)$ is topologically conjugate to the rotation $R_{\rho(f)}$.

Other classes of circle homeomorphisms commonly referred to as the *class* P homeomorphisms are known to satisfy the conclusion of Denjoy's theorem (see [4]; [3], chapter VI).

Definition 2.1. Let f be an orientation preserving homeomorphism of the circle. The homeomorphism f is called of *class* P if it is derivable except in finitely or countable points called break points of f in which f admits left and right derivatives (denoted, respectively, by Df_{-} and Df_{+}) and such that the derivative $Df: S^{1} \longrightarrow \mathbb{R}^{\star}_{+}$ has the following properties: - there exist two constants $0 < a < b < +\infty$ such that:

a < Df(x) < b, for every x where Df exists, $a < Df_+(c) < b$, and $a < Df_-(c) < b$ at the break point c.

- $\log Df$ has bounded variation on S^1

Denote by

- $\sigma_f(c) := \frac{Df_{-}(c)}{Df_{+}(c)}$ called the *f*-jump in *c*.

- C(f) the set of break points of f.
- $\pi_s(f)$ the product of *f*-jumps in the break points of f: $\pi_s(f) = \prod_{c \in C(f)} \sigma_f(c)$.
- $V = Var \log Df$ the total variation of $\log Df$. We have

$$V := \sum_{j=0}^{p} Var_{[c_j, c_{j+1}]} \log(Df) + |\log(\sigma_f(c_j))| < +\infty$$

where $c_0, c_1, c_2, ..., c_p$ are the break points of f with $c_{p+1} := c_0$. In this case, V is the total variation of $\log Df$, $\log Df_-$, $\log Df_+$.

Among the simplest examples of class ${\cal P}$ homeomorphisms, there are:

- C^2 -diffeomorphisms,

- Piecewise linear (PL) homeomorphisms. An orientation preserving circle homeomorphism f is called *PL* if f is derivable except in many finitely break points $(c_i)_{1 \le i \le p}$ of S^1 such that the derivative Df is constant on each $]c_i, c_{i+1}[$.

Definition 2.2. We say that f has the (D)-property (cf. [5], [7]) if the product of f-jumps on each orbit is equal to 1 i.e. $\pi_s(f)(c) = \prod_{x \in C(f) \cap O_f(c)} \sigma_f(x) = 1.$

In particular, if f has the (D)-property then $\pi_s(f) = 1$. Conversely, if $\pi_s(f) = 1$ and if all break points belong to a same orbit then f has the (D)-property.

If f is a (PL) homeomorphism, always we have $\pi_s(f) = 1$. Therefore, a PL homeomorphism f satisfies the (D)-property if all its break points are on the same orbit.

Proposition 2.3. Let f, g be two circle orientation preserving C^1 -homeomorphisms. Then $\pi_s(g \circ f) = \pi_s(g)\pi_s(f)$.

Proof. Let $c \in S^1$. We have $\sigma_{g \circ f}(c) = \sigma_g(f(c))\sigma_f(c)$. So,

$$\pi_s(g \circ f) = \prod_{c \in C(g \circ f)} \sigma_{g \circ f}(c) = \prod_{c \in C(g \circ f)} \sigma_g(f(c)) \sigma_f(c).$$

Since $C(g \circ f) \subset C(f) \cup f^{-1}(C(g))$ and $\sigma_{g \circ f}(c) = 1$ for every $c \in S^1 \setminus C(g \circ f)$,

$$\pi_s(g \circ f) = \prod_{c \in C(f)} \sigma_g(f(c)) \sigma_f(c) \prod_{c \in f^{-1}(C(g)) \setminus C(f)} \sigma_g(f(c)) \sigma_f(c)$$

$$= \pi_s(f) \prod_{c \in C(f)} \sigma_g(f(c)) \prod_{c \in f^{-1}(C(g)) \setminus C(f)} \sigma_g(f(c))$$
$$= \pi_s(f) \prod_{c \in f^{-1}(C(g))} \sigma_g(f(c)) = \pi_s(f) \pi_s(g).$$

Corollary 2.4. (Invariance of π_s by piecewise C^1 -conjugation). Let f, g be two circle orientation preserving C^1 -homeomorphisms. If f and g are bi-piecewise C^1 conjugated then $\pi_s(f) = \pi_s(g)$.

Definition 2.5. Let $r \ge 1$ be an integer, $r = +\infty$, or $r = \omega$. A class P circle homeomorphism is called of piecewise class $P \ C^r$ if f is C^r except in a finitely many points called *singular points* and in which the successive derivatives of f until the order r on the left and on the right exist.

Denote by

- S(f) the set of singular points of f.

- $\mathcal{P}^r(S^1)$ the set of class $P \ C^r$ circle homeomorphisms $(r \ge 1 \text{ integer}, r = +\infty, \text{ or } r = \omega)$. One can check that $\mathcal{P}^r(S^1)$ is a group.

Notice that if r = 1, S(f) = C(f).

The set S(f) of singular points is partitioned into finite subsets $S_i(f)$ which are supported by disjoints orbits:

$$S(f) = \prod_{i=1}^{p} S_i(f)$$

where $S_i(f) = S(f) \cap O_f(c_i), c_i \in S(f)$ and $O_f(c_i)_{1 \le i \le p}$ are on distinct orbits.

Definition-Notation. The set $M_i(f) = \{x_i, f(x_i), ..., f^{N(f,x_i)}(x_i)\}$ is called the *envelope* of $S_i(f)$ $(1 \le i \le p)$ where $N(f, x_i) \in \mathbb{N}, x_i, f^{N(f,x_i)}(x_i) \in S(f)$ and

$$S(f) \cap M_i(f) = S(f) \cap O_f(x_i) = S_i(f).$$

Definition 2.6. Let $r \ge 1$ be an integer. Let $f \in \mathcal{P}^r(S^1)$. We say that f has the (D_r) -property if $f^{N(f,x_i)+1}$ is C^r on x_i , for i = 1, ..., p.

Notice that if $N(f, x_i) = 0$ for some *i* then x_i is the unique singular point in its orbit and the (D_r) -property is not satisfied.

Remark 1. In the case r = 1, the (D_r) -property is equivalent to the (D)-property. For every i = 1, ..., p,

$$\prod_{d \in M_i(f)} \sigma_f(d) = 1 = \prod_{d \in S_i(f)} \sigma_f(d).$$

Indeed, $f^{N(f,x_i)+1}$ is C^1 on x_i , i = 1, ..., p means that

$$\sigma_{f^{N(f,x_i)+1}}(x_i) = 1 = \prod_{c \in S_i(f)} \sigma_f(c) = \prod_{j=0}^{N(f,x_i)} \sigma_f(f^j(x_i)),$$

in other words: f satisfies the (D)-property.

Proposition 2.7. ([1], Corollary 2.8). Let $f, g \in \mathcal{P}^r(S^1)$ $(r \ge 1$ be a real, $r = +\infty$ or $r = \omega$) with irrational rotation numbers that are rationally independent. If $f \circ g = g \circ f$ then f and g have (D_r) -property.

Theorem 2.8. ([1], Theorem 2.1) Let $r \ge 1$ be a real, $r = +\infty$ or $r = \omega$ and $f \in \mathcal{P}^r(S^1)$ with irrational rotation number. Then the following properties are equivalent:

- i) f is conjugated in $\mathcal{P}^r(S^1)$ to a C^r -diffeomorphism,
- ii) f has the (D_r) -property,

iii) f is conjugated to a C^r -diffeomorphism by a piecewise polynômial homeomorphism $K \in \mathcal{P}^r(S^1)$

Proposition 2.9. ([1], Lemma 5.1) Let $f \in Diff_+^r(S^1)$ with irrational rotation number and let $g \in \mathcal{P}^r(S^1)$. If $f \circ g = g \circ f$ then $g \in Diff_+^r(S^1)$.

Our main results are the following:

Theorem 2.10. Let $r \ge 1$ be an integer, $r = +\infty$ or $r = \omega$. Then $\mathcal{P}^r(S^1)$ has no exotic circles.

Let $\mathcal{P}_1^r(S^1)$ denote the subgroup of $\mathcal{P}^r(S^1)$ consisting of class $P C^r$ circle homeomorphisms f with $\pi_s(f) = 1$. Then:

Theorem 2.11. Let $r \ge 1$ be an integer, $r = +\infty$ or $r = \omega$, $\sigma \in \mathbb{R}^*_+ > 0$, $\sigma \ne 1$ and let $h_{\sigma} \in \mathcal{P}^r(S^1)$ with one break point c such that $\sigma_{h_{\sigma}}(c) = \sigma$. Then:

i) $S_{\sigma} = h_{\sigma} \circ SO(2) \circ h_{\sigma}^{-1} \subset \mathcal{P}_{1}^{r}(S^{1})$ is an exotic circle of $\mathcal{P}_{1}^{r}(S^{1})$.

ii) Two exotic circles $S_1 = h_1 \circ SO(2) \circ h_1^{-1}$, $S_2 = h_2 \circ SO(2) \circ h_2^{-1}$ of $\mathcal{P}_1^r(S^1)$ are conjugated in $\mathcal{P}_1^r(S^1)$ if and only if $\pi_s(h_1) = \pi_s(h_2)$.

iii) Every exotic circle of $\mathcal{P}_1^r(S^1)$ is conjugate in $\mathcal{P}_1^r(S^1)$ to one of the S_{σ} .

3. NO EXOTIC CIRCLE OF $\mathcal{P}^r(S^1)$

Lemma 3.1. Let $S = h \circ SO(2) \circ h^{-1}$ be a topological circle of $\mathcal{P}^r(S^1)$, $h \in Homeo_+(S^1)$. Then every element of S with irrational rotation number has the (D_r) -property.

Proof. Let $f \in S$ with irrational rotation number $\alpha \in S^1$, that is $f = h \circ R_\alpha \circ h^{-1} \in \mathcal{P}^r(S^1)$. Let $g = h \circ R_\beta \circ h^{-1}$ with β irrational such that α , β are rationally independent. Since $f \circ g = g \circ f$, by Proposition 2.7, f and g have the (D_r) -property.

Proof of Theorem 2.10.

Let $S = h \circ SO(2) \circ h^{-1} \subset \mathcal{P}^r(S^1)$ where $h \in Homeo_+(S^1)$. Take $f \in S$ with irrational rotation number $\beta \in S^1$. By Lemma 3.1, f has the (D_r) -property. Hence, by Theorem 2.8, there exists a polynômial homeomorphism $K \in \mathcal{P}^r(S^1)$ such that $F = K \circ f \circ K^{-1} \in Diff_+^r(S^1)$. Now for every $g = h \circ R_\alpha \circ h^{-1} \in S$, $G = K \circ g \circ K^{-1} = (K \circ h) \circ R_\alpha \circ (K \circ h)^{-1} \in \mathcal{P}^r(S^1)$. Since $G \circ F = F \circ G$, by Proposition 2.9, $G \in Diff_+^r(S^1)$. It follows by Corollary 1.1, that $K \circ h = u \in Diff_+^r(S^1)$. Hence, if $r \geq 2$, $r = +\infty$ or $r = \omega$, $h = K^{-1} \circ u \in \mathcal{P}^r(S^1)$.

If r = 1 then $G \in \mathcal{P}^1(S^1) \cap Diff^1_+(S^1)$, so, $G \in Diff^{1+BV}_+(S^1)$. By Corollary 1.2, we have $K \circ h = u \in Diff^{1+BV}_+(S^1)$. Hence $h = K^{-1} \circ u \in \mathcal{P}^1(S^1)$. This completes the proof. \Box

4. Existence of exotic circles of $\mathcal{P}_1^r(S^1)$

In this section, $r \ge 1$ is an integer, $r = +\infty$ or $r = \omega$. Let us consider the set

$$\mathcal{P}_1^r(S^1) = \{ f \in \mathcal{P}^r(S^1) : \pi_s(f) = 1 \}.$$

Lemma 4.1. $\mathcal{P}_1^r(S^1)$ is a subgroup of $\mathcal{P}^r(S^1)$.

Proof. Let us consider the map $\pi_s : \mathcal{P}^r(S^1) \longrightarrow \mathbb{R}^*; f \longmapsto \pi_s(f)$. Since $\pi_s(g \circ f) = \pi_s(g)\pi_s(f)$ by Proposition 2.3, π_s is a group's homomorphism. Its kernel Ker $\pi_s = \mathcal{P}_1^r(S^1)$ is then a subgroup of $\mathcal{P}^r(S^1)$.

Lemma 4.2. Let $\sigma \in \mathbb{R}^*_+ \setminus \{1\}$ and $h_{\sigma} \in \mathcal{P}^r(S^1)$ with one break point c such that $\sigma_{h_{\sigma}}(c) = \sigma$. Then $S_{\sigma} = h_{\sigma} \circ SO(2) \circ h_{\sigma}^{-1}$ is an exotic circle of $\mathcal{P}_1^r(S^1)$.

Proof. Letting $f = h_{\sigma} \circ R_{\alpha} \circ h_{\sigma}^{-1} \in S_{\sigma}$. Then $f \in \mathcal{P}^{r}(S^{1})$ and has exactly two break points c_{1} and $c_{2} = f(c_{1})$ and the product of f-jumps : $\pi_{s}(f) = \sigma_{f}(c_{1})\sigma_{f}(c_{2}) = 1$, hence $f \in \mathcal{P}_{1}^{r}(S^{1})$. Therefore, $S_{\sigma} \subset \mathcal{P}_{1}^{r}(S^{1})$. Since $\pi_{s}(h_{\sigma}) = \sigma_{h_{\sigma}}(c) = \sigma \neq 1$, $h_{\sigma} \notin \mathcal{P}_{1}^{r}(S^{1})$. This completes the proof.

Proof of Theorem 2.11. Assertion i) follows from Lemma 4.2.

Assertion ii): Let $S_1 = h_1 \circ SO(2) \circ h_1^{-1}$ and $S_2 = h_2 \circ SO(2) \circ h_2^{-1}$ be two exotic circles of $\mathcal{P}_1^r(S^1)$.

Suppose that $\pi_s(h_1) = \pi_s(h_2)$. Then $S_2 = L \circ S_1 \circ L^{-1}$ where $L = h_2 \circ h_1^{-1}$. Since S_1 and S_1 are topological circles of $\mathcal{P}^r(S^1)$, so, by Theorem 2.10, $L \in \mathcal{P}^r(S^1)$. Moreover, by Proposition 2.3,

$$\pi_s(L) = \frac{\pi_s(h_1)}{\pi_s(h_2)} = 1$$

Hence, $L \in \mathcal{P}_1^r(S^1)$ and then S_1 and S_2 are conjugated in $\mathcal{P}_1^r(S^1)$.

Conversely, suppose that S_1 and S_2 are conjugated in $\mathcal{P}_1^r(S^1)$, that is $S_2 = L \circ S_1 \circ L^{-1}$ where $L \in \mathcal{P}_1^r(S^1)$. Let $\alpha \in S^1$ be irrational. We have

$$L \circ h_1 \circ R_\alpha \circ h_1^{-1} \circ L^{-1} = h_2 \circ R_\alpha \circ h_2^{-1},$$

hence,

$$h_1^{-1} \circ L^{-1} \circ h_2 \circ R_\alpha = R_\alpha \circ h_1^{-1} \circ L^{-1} \circ h_2.$$

Since α is irrational, $h_1^{-1} \circ L^{-1} \circ h_2$ must belong to SO(2), so $h_1^{-1} \circ L^{-1} \circ h_2 = R_\beta$ for some $\beta \in S^1$. Thus, we have

$$L = h_2 \circ R_{\beta}^{-1} \circ h_1^{-1} = T \circ h_2 \circ h_1^{-1}$$

where $T = h_2 \circ R_{\beta}^{-1} \circ h_2^{-1} \in S_2$. Since $L, T \in \mathcal{P}_1^r(S^1)$, $h_2 \circ h_1^{-1} \in \mathcal{P}_1^r(S^1)$, so $\pi_s(h_2 \circ h_1^{-1}) = 1$, that is $\pi_s(h_1) = \pi_s(h_2)$.

Assertion iii): Let $S = h \circ SO(2) \circ h^{-1}$ be an exotic circle of $\mathcal{P}_1^r(S^1)$. By Theorem 2.10, $h \in \mathcal{P}^r(S^1)$ but $h \notin \mathcal{P}_1^r(S^1)$. Hence $\pi_s(h) = \sigma \neq 1$. Since $\pi_s(h_\sigma) = \sigma_{h_\sigma}(c) = \sigma = \pi_s(h)$, S is conjugated in $\mathcal{P}_1^r(S^1)$ to S_σ by Assertion ii). This completes the proof. \Box

5. The PL case

In this section, we consider the group $PL_+(S^1)$ and we give a new proof of Minakawa classification of all exotic circles of $PL(S^1)$.

Lemma 5.1. Let $h \in Homeo_+(S^1)$. Then $S = h \circ SO(2) \circ h^{-1}$ is an exotic circle of $PL_+(S^1)$ if and only if there exists $\lambda \in \mathbb{R}^*$ and a subdivision $c_0, c_1, ..., c_{p-1}$ of S^1 such that

$$h(x) = \frac{\alpha_i}{\lambda} e^{\lambda x} + \beta_i, \ x \in]c_{i-1}, c_i[$$

where $\alpha_i \in \mathbb{R}^*_+, \beta_i \in \mathbb{R}$ are constants.

Proof. Suppose that S is an exotic circle of $PL_{+}(S^{1})$. Since $PL_{+}(S^{1}) \subset \mathcal{P}^{\infty}(S^{1})$ then by Theorem 2.10, $h \in \mathcal{P}^{\infty}(S^{1})$. We let $f = h \circ R_{\alpha} \circ h^{-1}$ with $\alpha \in S^{1}$ irrational. The set $h^{-1}(S(f)) \cap R_{\alpha}^{-1}(S(f)) \cap S(h)$ is finite and partitioned S^{1} into segments $[c_{i-1}, c_{i}], 1 \leq i \leq p$ $(c_{p} = c_{0})$. So, $f(h(x)) = k_{i}$, for every $x \in [c_{i-1}, c_{i}]$. Differentiating the relation $f \circ h = h \circ R_{\alpha}$, we obtain successively $k_{i}Dh(x) = Dh(R_{\alpha}(x))$ and $k_{i}D^{2}h(x) = D^{2}h(R_{\alpha}(x))$ for every $x \in]c_{i-1}, c_{i}[$. Hence

$$\frac{D^2h(x)}{Dh(x)} = \frac{D^2h(R_\alpha(x))}{Dh(R_\alpha(x))}.$$

Letting

$$\varphi(x) = \{ \begin{array}{c} \frac{D^2h(x)}{Dh(x)} & if \ x \in S^1 \setminus \{c_0, ..., c_{p-1}\} \\ \frac{D^2h_+(c_i)}{Dh_+(c_i)} & if \ x = c_i \end{array} \right.$$

then we have $\varphi \circ R_{\alpha} = \varphi$ on S^1 . Since $\varphi \in L^2(S^1)$ and R_{α} is ergodic with respect to the Haar measure m (α is irrational), φ is constant m a.e.; that is there exists a subset E in S^1 with m(E) = 0 such that $\varphi(x) = \lambda$ for every $x \in S^1 \setminus E$. Since $h \notin PL_+(S^1), \lambda \neq 0$. We have $\frac{D^2h(x)}{Dh(x)} = \lambda \text{ for every } x \in]c_{i-1}, c_i[\setminus E. \text{ Since } \frac{D^2h}{Dh} \text{ is continuous on }]c_{i-1}, c_i[\setminus E \text{ is } c_{i-1}, c_i[\setminus E] \text{ for every } x \in]c_{i-1}, c_i[\setminus E] \text{ for every } x \in]c_{i-1}, c_i[\setminus E] \text{ for every } x \in]c_{i-1}, c_i[\setminus E] \text{ for every } x \in]c_{i-1}, c_i[\setminus E] \text{ for every } x \in]c_{i-1}, c_i[\setminus E] \text{ for every } x \in]c_{i-1}, c_i[\setminus E] \text{ for every } x \in]c_{i-1}, c_i[\setminus E] \text{ for every } x \in]c_{i-1}, c_i[\setminus E] \text{ for every } x \in [C_i] \text{ for every } x$ dense in $]c_{i-1}, c_i[, \frac{D^2h}{Dh} = \lambda$ on $]c_{i-1}, c_i[$ for every *i*. The resolution of the differential equation $D^2h(x) = \lambda Dh(x), \ x \in]c_{i-1}, c_i[$ implies that there exist two constants $\alpha_i \in \mathbb{R}^*_+, \ \beta_i \in \mathbb{R}$ such that

$$h(x) = \frac{\alpha_i}{\lambda} e^{\lambda x} + \beta_i, \ x \in]c_{i-1}, c_i[.$$

Conversely, we let $h(x) = \frac{\alpha_i}{\lambda} e^{\lambda x} + \beta_i, \ x \in]c_{i-1}, c_i[$ where $\alpha_i \in \mathbb{R}^*, \beta_i \in \mathbb{R}$ are constants. Then for every $\delta \in S^1$, $x \in]c_{i-1}, c_i[$, we have

$$h \circ R_{\delta} \circ h^{-1}(x) = h \circ R_{\delta}(\frac{1}{\lambda}\log(\frac{\lambda}{\alpha_i}(x-\beta_i)))$$
$$= h(\frac{1}{\lambda}\log(\frac{\lambda}{\alpha_i}(x-\beta_i)) + \delta) = \frac{\alpha_j}{\alpha_i}e^{\lambda\delta}(x-\beta_i) + \beta_j.$$

Therefore, $S \subset PL_+(S^1)$ and since $h \notin PL_+(S^1)$, S is an exotic circle of $PL_+(S^1)$. This completes the proof.

Remark 2. Let $h_{\sigma} \in Homeo_{+}(S^{1})$ as in Lemma 5.1 with one break point 0 such that $h_{\sigma}(0) = 0$ and $\sigma_{h_{\sigma}}(0) = \sigma$. Then

$$h_{\sigma}(x) = \frac{\sigma^x - 1}{\sigma - 1}, \ x \in [0, 1[.$$

Indeed, by Lemma 5.1,

$$h_{\sigma}(x) = \frac{\alpha}{\lambda} e^{\lambda x} + \beta, \ x \in [0, 1].$$

Since $h_{\sigma}(0) = 0$ and $h_{\sigma}(1) = 1$, we have $\beta = \frac{1}{1-e^{\lambda}}$ and $\alpha = -\frac{\lambda}{1-e^{\lambda}}$. Hence, $\frac{1}{1}$

$$h_{\sigma}(x) = \frac{-1}{1 - e^{\lambda}}e^{\lambda x} + \frac{1}{1 - e^{\lambda}} = \frac{e^{\lambda x} - e^{\lambda x}}{e^{\lambda} - e^{\lambda}}$$

Or

$$\sigma_{h_{\sigma}}(0) = \frac{D(h_{\sigma})_{-}(0)}{D(h_{\sigma})_{+}(0)}$$
$$= \frac{D(h_{\sigma})_{-}(1)}{D(h_{\sigma})_{+}(0)} = e^{\lambda},$$

hence $e^{\lambda} = \sigma$ and $h_{\sigma}(x) = \frac{\sigma^{x} - 1}{\sigma^{-1}}$.

Proof of Minakawa's Theorem. Under the hypothesis of Minakawa's Theorem, $S_{\sigma} =$ $h_{\sigma} \circ SO(2) \circ h_{\sigma}^{-1}$ is an exotic circle of $PL_{+}(S^{1})$ by Remark 2.

Now let $S = h \circ SO(2) \circ h^{-1}$ be an exotic circle of $PL_+(S^1)$. By Theorem 2.10, $h \in \mathcal{P}^{\infty}(S^1)$. Letting $\pi_s(h) = \sigma$, we have $S = L \circ S_\sigma \circ L^{-1}$ where $L = h \circ h_\sigma^{-1}$ and $\pi_s(L) = 1$. Let's show that $L \in PL_+(S^1)$:

By Lemma 5.1, there exists $\lambda \in \mathbb{R}^*$ and a subdivision $c_0, c_1, ..., c_{p-1}$ of S^1 such that $h(x) = \frac{\alpha_i}{\lambda} e^{\lambda x} + \beta_i, x \in]c_{i-1}, c_i[$ where $\alpha_i \in \mathbb{R}^*_+, \beta_i \in \mathbb{R}$ are constants. One can suppose that $c_0 = 0$ by replacing h with $h \circ R_{c_0}$ since

$$S = h \circ SO(2) \circ h^{-1} = h \circ R_{c_0} \circ SO(2) \circ R_{c_0}^{-1} \circ h^{-1}.$$

For i = 1, ..., p - 1, we have

$$\sigma_h(c_i) = \frac{Dh_-(c_i)}{Dh_+(c_i)} = \frac{\alpha_i e^{\lambda c_i}}{\alpha_{i+1} e^{\lambda c_i}} = \frac{\alpha_i}{\alpha_{i+1}}$$

and

$$\sigma_h(0) = \frac{D_-h(0)}{D_+h(0)} = \frac{D_-h(1)}{D_+h(0)} = \frac{\alpha_p e^{\lambda}}{\alpha_1}$$

Hence,

$$\pi_s(h) = \sigma_h(0) \prod_{1 \le i \le p-1} \sigma_h(c_i)$$
$$= \frac{\alpha_p e^{\lambda}}{\alpha_1} \prod_{1 \le i \le p-1} \frac{\alpha_i}{\alpha_{i+1}} = \frac{\alpha_p e^{\lambda}}{\alpha_1} \frac{\alpha_1}{\alpha_p} = e^{\lambda}$$

So, $\pi_s(h) = e^{\lambda} = \sigma$. Since $\lambda \neq 0$, $\sigma \neq 1$.

It follows that $h(x) = \frac{\alpha_i}{\log \sigma} \sigma^x + \beta_i$, $x \in]c_{i-1}, c_i[$. On the other hand, we have $h_{\sigma}^{-1}(x) = \frac{1}{\log \sigma} \log((\sigma - 1)x + 1)$. We compute

$$h \circ h_{\sigma}^{-1}(x) = \frac{\alpha_i}{\log \sigma} ((\sigma - 1)x + 1) + \beta_i.$$

Moreover, $\frac{\alpha_i}{\log \sigma}(\sigma-1) > 0$, hence $L \in PL_+(S^1)$. This completes the proof. \Box

Acknowledgments. This work was done within the framework of the Associateship Scheme of the Abdus Salam International Centre for Theoretical Physics, Trieste, Italy.

References

- 1. A. Adouani, H. Marzougui, Sur les Homéomorphismes du cercle de classe $P \ C^r$ par morceaux $(r \ge 1)$ qui sont conjugués C^r par morceaux aux rotations irrationnelles, Ann. Inst. Fourier, (2007), revised version.
- A. Denjoy, Sur les courbes définies par les équations différentielles à la surface du tore, J. Math. Pures Appl., 11, (1932), 333–375.
- M. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Pub.Math. Inst. Hautes Etudes Sci., 49 (1979), 5–234.
- 4. Y. Katznelson, D. Ornstein, The differentiability of the conjugation of certain diffeomorphisms of the circle, Ergod.Th. and Dynam.Sys. 9 (1989), 4, 643–680.
- I. Liousse, Nombre de rotation, mesures invariantes et ratio set des homéomorphismes affines par morceaux du cercle, Ann. Inst. Fourier, Grenoble, 55., 2 (2005), 1001–1052.
- 6. H. Minakawa, Exotic circles of $PL_+(S^1)$, Hokkaido Math. J. 24 (1995), no. 3, 567–573.
- 7. H. Minakawa, Classification of exotic circles of PL₊(S¹), Hokkaido Math. J. 26 (1997), no. 3, 685–697.
- D. Montgomery, L. Zipping, Topological transformation group. Interscience Tracts in Pure and Applied Math. no1, (1955).
- 9. H. Poincaré, Oeuvres complètes, t.1, (1885), 137-158.
- 10. H. D. Ursell, On the total variation of $\{f(t + \tau) f(t)\}$, Proc. Lond. Math. Soc., II. Ser. 37, (1934), 402-415.