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Integration-by-parts formulas for functions of fundamental jump processes relating to a continuous-time, finite-state Markov chain
are derived using Bismut’s change of measures approach to Malliavin calculus. New expressions for the integrands in stochastic
integrals corresponding to representations of martingales for the fundamental jump processes are derived using the integration-
by-parts formulas. These results are then applied to hedge contingent claims in a Markov chain financial market, which provides a
practical motivation for the developments of the integration-by-parts formulas and the martingale representations.

1. Introduction

Integration by parts is at the heart of Malliavin calculus and
its applications. It is deemed to be useful in mathematical
finance, stochastic filtering and control as well as the theory
of partial differential equations. Particularly, in mathematical
finance, an integration-by-parts formula is useful in hedging
contingent claims, numerical computations of Greeks, and
portfolio optimization; see, for example, Benth et al. [1], Leén
et al. [2], Imkeller [3], and Fournié et al. [4, 5], amongst
others. Indeed, integration-by-parts formulas are one of the
key results in a number of works on Malliavin calculus for
stochastic differential equations driven by Wiener processes
and jump processes. Some examples are Bismut [6], Bichteler
et al. [7], Bass and Cranston [8], Norris [9], and Elliott
and Tsoi [10, 11] to name a few. These authors adopted the
approach to Malliavin calculus pioneered by Bismut [6],
where an integration-by-parts formula was established by
first considering a “small” perturbation of the original process
and then compensating the effect of the perturbation by
Girsanov’s change of measure. For an excellent account of
Malliavin calculus and its applications, one may refer to, for
example, Nualart [12], Privault [13], and di Nunno et al. [14].

Markov chain is an important mathematical tool in
probability theory and has vast applications in diverse fields.
For example, in finance and actuarial science, there has been

an interest in pricing contingent claims under Markov chain
markets; see, for example, Norberg [15] and Elliott and Kopp
[16] for bond pricing in a Markov chain market, Song et
al. [17] for pricing options in a multivariate Markov chain
market, Elliott et al. [18] and van der Hoek and Elliott [19, 20]
for pricing options in Markov chain markets, and Norberg
[21] and Koller [22] for pricing insurance products in Markov
chain models. In statistics, particularly in nonlinear time
series analysis, Markov chain plays an important role in
studying the stochastic stability and ergodicity of stochastic
difference equations; see, for example, Tong [23]. Markov
chain also plays an important role in stochastic filtering and
control. There is a large amount of literature on the use of
Markov chain and related stochastic processes in stochastic
filtering and control. Some recent literature is Shen et al. [24],
Heand Liu [25, 26], Zhang et al. [27], He [28], Siu [29], Ellliott
and Siu [30], and Wu et al. [31], amongst others. The mono-
graph by Elliott et al. [32] provided discussions on hidden
Markov models and their applications in various fields such
as signal processing and image processing. The monographs
by Yin and Zhang [33, 34] provided discussions on the the-
ories and applications of discrete-time and continuous-time
Markov chain, respectively. A recent monograph by Ching
et al. [35] presented applications of Markov chain in diverse
fields such as manufacturing systems, marketing, and finance.
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It appears that in the finance and actuarial science
literature much attention has been given to pricing contingent
claims in Markov chain markets. It seems that relatively
less attention has been paid to hedging contingent claims
in Markov chain markets. An integration-by-parts formula
is a useful tool for hedging contingent claims. It seems that
the literature mainly focuses on developing and applying
integration-by-parts formulas in the cases of Wiener pro-
cesses, Lévy processes, and single jump processes (see, e.g.,
Elliott and Tsoi [10, 11], Nualart [12], Privault [13], and di
Nunno et al. [14]). An integration-by-parts formula in the
case of a Markov chain seems lacking. Motivated by the hedg-
ing problem in Markov chain markets, it may be of interest
to derive an integration-by-parts formula which is useful for
hedging contingent claims in Markov chain markets.

In this paper, we derive integration-by-parts formulas
for functions of a family of fundamental jump processes
relating to a continuous-time, finite-state Markov chain using
the Bismut measure change approach. The formulas are
derived by considering “small” perturbations to the jump
intensity parameters of the fundamental jump processes,
which are then compensated by Girsanov’s measure change.
Using the integration-by-parts formulas, new expressions
for the integrands in representations of martingales for the
fundamental jump processes are derived. Firstly, we consider
a function of the terminal values of the fundamental jump
processes. Then, the results are extended to a function of the
integrals with respect to the whole paths of the fundamental
jump processes. The function of the path integrals may be
considered a canonical form of a random variable which is
measurable with respect to filtration generated by the whole
path of the Markov chain. No infinite-dimensional calculus of
variations is involved in the derivations. Indeed, only finite-
dimensional calculus is adopted. The martingale representa-
tion results derived here may be useful for hedging contingent
claims in the Markov chain financial market developed by
Norberg [21], where the dynamics of share prices were driven
by the basic martingales of the fundamental jump processes
relating to a continuous-time, finite-state Markov chain.

The rest of the paper is organized as follows. Section 2
describes the Markov chain, the fundamental jump processes,
and the basic martingales relating to the chain. Section 3
derives the integration-by-parts formula for a function of
the terminal values of the fundamental jump processes. In
Section 4, the expression of the integrand in the martingale
representation is obtained. The results are then extended
to a function of the integrals of the whole paths of the
fundamental jump processes in Section 5. An application of
the martingale representation result to hedging contingent
claims in the Markov chain financial market of Norberg [21]
is given in Section 6. Section 7 summarizes the paper and
suggests some potential topics for future research.

2. Markov Chain, Fundamental Jump
Processes and Basic Martingales

The aim of this section is to present some known results
in Markov chain, its fundamental jump processes and basic
martingales which are relevant to the later developments.
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Consider a complete probability space (Q, %,[P) and a
finite time horizon 9 := [0,T], where T < oco0. Let X :=
{X(t) | t € T} be a continuous-time, finite-state Markov
chain on (Q, #,P). As in Elliott et al. [32], we suppose that
the state space of the chain X is a finite set of standard unit
vectors & := {e, e,,..., ey} in RY, where the jth component
of e; is the Kronecker delta §;;, for each i, j = 1,2,..., N. The
space & is called the canonical state space of X.

To specity the probability laws of the chain X, we define a
family of rate matrices, or intensity matrices, {A(t) | t € T}
under P, where, for each t € 7, A(f) := [aj(0)]; -1, n- For
eachi,j =1,2,...,Nwithi# jand each t € 7, a;(t) is the
instantaneous transition intensity of the chain X from state e;
to state e; at time . Note that for each i, j = 1,2,..., N and
eacht e 7,

@) a;(t) 2 0, fori# j;
(2) XL ai(t) = 0,50 a;(t) < 0.

We suppose here that, for each i,j = 1,2,...,N, a;(t) is a
bounded and deterministic function of time t.

Let FX .= {FX(t) | t € T} be the [P-augmentation of the
natural filtration generated by the chain X. Note that F* is
right-continuous. Then with the canonical state space of the
chain X, Elliott et al. [32] obtained the following semimartin-
gale dynamics for X:

X (t) :X(O)+J0tA(u—)X(u)du+M(t), teg. ()

Here M := {M(t) | t € T} is an RV -valued, square-integra-
ble, (FX, [®)-martingale.

Foreachi,k =1,2,..., N withi#k,let J; := {J;(t) | t €
T}, where J;.(t) counts the number of transitions of the chain
X from state e; to state e, up to and including time ¢. That is,

T @ = Y (X(s-),) (X(5),€) - 2)
O<s<t
{Ji i,k =1,2,...,N,i#Kk} is called a family of fundamental
jump processes relating to the chain X; (:,-) is the scalar
product in R".
Define, for each i,k = 1,2,...,N with i#k, a process
M = {M;(t) | t € T} by putting

t
M (t) = L (X (s=),e;) (AM (5), ;). 3)

Then it is obvious from the definition that My, i,k =
1,2,...,N, are (FX,P)-martingales and {M, | ik =
1,2,...,N,i#k} is called a family of basic martingales.
Indeed these martingales are orthogonal, purely discontinu-
ous, and square-integrable. Furthermore, M;,(0) = 0.

The following lemma gives the semimartingale decompo-
sition for J;;.. This result is standard (see, e.g., Elliott [36] and
Elliott et al. [32]).

Lemma 1. Foreachi,k = 1,2,...,N withi+k and each t €
9)

t
Luw=L%uMwa»w+Muw (4)
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Proof. The proof of this lemma is standard. For the sake of
completeness, we present the proof here:

Tae (8) = D7 (X(s-), ) (X(s), )

0<s<t

Z (X (s-), ;) {AX (s), ;)

0<s<t

[ (x).e) (@x 9. 60)

= Jo (X(s—),¢e;) (A(s) X (s—),e) ds (5)
t

o[ (X)) (M9

= Jot ay, (s) <X (s-), e,-) ds + M, (t)

= J(: ag (5) (X (s),e;)ds+ M (t).

The last equality is due to the fact that the set of all jump times
of the chain X has zero “dt”-measure. O

From Lemma 1 and the definition of M,
t

Mp® =I5 0 - [ a9 (X(©).e)ds, e, ©
0

Consequently, under [P,
I} is the intensity process of

is an (U:X,[F")—martingale.
{ag()(X(t),e) | t €
Jike-

3. Integration by Parts for Functions of
Fundamental Jump Processes

In this section we first present small perturbations to the
jump intensities of the fundamental jump processes and then
compensate the perturbations by a Girsanov-type measure
change. The integration-by-parts formula for a “suitable”
function of the terminal values of the fundamental jump
processes is then derived by differentiation. The techniques
used to derive the integration-by-parts formula here are
adapted to those used in Elliott and Tsoi [10] for deriving
an integration-by-parts formula for a single jump process. It
seems that the origin of these techniques may be traced back
to the work of Bismut [6].

For each i,k = 1,2,...,N with i #k, let ;. = {1 (t) |
t € T} be a nonnegative, P-a.s. bounded, FX-predictable
process. Then for an arbitrarily small € > 0, we define a small
“stochastic” perturbation aj (t) to a; (t) in the direction #;,(¢)
by putting

ag (t) = (1 + eny (1)) ay (t) . (7)
We then take

N
ag(t)y=— ) ai (), (8)

k=1i#k

so that

N

Yag(t)=0. 9)
k=1

Note that, for each t € 7, 1 (t) > 0 and € > 0, so a; (t) > 0,
i#k,and ag(t) < 0.

Define, for each i,k = 1,2,...,N with i#k, the jump
process J; := {J;(t) | t € T} by putting

t

Jo (1) = jo a5 (O (X (), ey du+ My (), (10)

where M;;(t) is defined in Section 2 as follows:

My (¢) = L (X(s=),e) (dM(s),e). (1)

By definition,
t
My (1) = T (t) - J ag (1) (X (u),e)ydu, teT, (12)
0

is an (F¥, P)-martingale. Consequently, J§ has the intensity
process {a; (t)(X(t),e;) | t € T} under P and it is related to
i as follows:

t
Ji (8) =Ty (1) + € L M () ay () (X (1), ¢;) du. (13)

To simplify the notation, write A (t) := 7 (t)a; (1) (X(t), €;),
foreachi,k =1,2,...,N withi#kand eacht € 7. Then

t

Ji (€)= Ty (£) + 6[ A () du. (14)

0
The process Jj, is called a perturbed process of the funda-
mental jump process J;, so we have a family of perturbed
processes {J; | i,k = 1,2,...,N,i#k} corresponding to
the family of the fundamental jump processes {J;; | i,k =
1,2,...,N,i#k}.
Foreachi,k=1,2,...,Nwithi#kandeacht € 7, let

€ Nik (t)
0, (t) = ————.
i (*) 1+ enye (t) as)
Define, for eacht € 7,
N t
Z°(t) = Z J Gfk (u—) dMy, (u). (16)
ik=1izk 0

Consider an FX-adapted process A := {A°(t) | t € T}
defined by setting

t
A()=1+ J A (u=)dZ (u). 17)
0
Then by Elliott [37] (see Theorem 13.5 therein),

ANMO=8Z)0= ] 1+dz°w), g

O<u<t



where &(Z°) = {&(Z°)() | t € T} is the stochastic
exponential of the process Z% AZ(t) := Z°(t) — Z°(¢-).
Then, for each t € 7,
N t
AS(t) = exp< Z j (In (1 + 65 () - 65 (W]
ik=Li#k 0
x ag (u) (X (u), ;) du
N t
- J In (1+ 65, () dMy (u)).
ik=Li#k 70
(19)

Note that by definition 0} (t) > -1, for each t € T, so
the process A° = {A°(t) | t € T} is strictly positive.
Furthermore, A is an (F¥, P)-martingale.
A new probability measure P€ equivalent to P on F*(T)
is now defined by putting
dPpP¢
d[FD gX(T)

= A (T). (20)

The following lemma will be used to derive the integration-
by-parts formula.

Lemma 2. The P-law of J§, i,k = 1,2,...,N withi#k, is
equal to the P-law of J, i,k = 1,2,..., N withi#k.

Proof. By a version of Girsanov’s theorem, the process Mj, :=
{M5.(t) | t € T} defined by
M (£) = Ji (8)

- J-t (1+05 w)ay (u)(X(u),e;)du, teT,
0

(21)

is an (F%, [P°)-martingale. Note that
(1+ 65 (1)) a () = ay (1), (22)

so J;; has the intensity process {a;(t)(X(t), ;) | t € T} under
P€. This is the same as the intensity process of J;, under P. [

Remark 3. The (FX, P€)-martingale M, defined in the proof

of Lemma2 is related to the (FX,P)-martingale M, as
follows:
t

M (8) = My () - € L Ay (1) du,

ted. (23)

To simplify our notation and illustrate the main idea, we
consider the situation where the chain X has two states. In this
case, the family of fundamental jump processes relating to the
chain is {J},, J,;} and its corresponding perturbed processes
are {J1,, J5, }-

Let G : R* — R be any measurable, integrable, and
differentiable function. Note that from Lemma 2 the P¢-law
of (J1,(T), J5,(T)) is the same as the P-law of (J,,(T), J,;(T)).
Consequently,

E[G (], (1), 1o (D)] = E° [G(J1, (1), J; ()] (24)

Here E and E° are expectations under P’ and P¢, respectively.
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Write
J(T) = (Jip (1), ]y (1)) € R,
J(T) = (J5, (T), I, (T)) € R?,

(25)

where y’ is the transpose of a vector, or a matrix, y.
Define the following gradient of G with respect to x :=
(x,%,) € R%:

D.G(x) = (%G@),%G@)) e R (26)
1

X

Then the following theorem gives the integration-by-parts
formula.

Theorem 4. Foreacht € T, let
M(t) := (M, (t), My, () € R?,
o 27)
7 (t) = (1, () 15, () € R°.

Write, for eacht € 7,

t t !
¢ ()= (L A () du, L A () du) e (28)

Then for any measurable, integrable, and differentiable func-
tionG: R> — R,

T
EUDGO @) 9] =E|Gom) [ o wdMa).
(29)
Proof. By a version of Bayes’ rule,

E[GJ(T)] =E [G(°(T))] =E[A*(T)G(J*(]))].
(30)

Differentiating both sides with respect to € and setting € = 0
give

0 e
E[aA (T)

G0 )|
0

=

v B[ 20, (DGO D). 27 (1))

|-o
e=0

(31)

It is obvious that A°(T)|.., = 1 and that J°(T)|._, = J(T).
Consequently,

0 e
E[aA (T)

_Gao (T))]
+E [ <DXG (1), %IE(T)> (32)

|-o
e=0
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Now

T T !
J )le(u)du,J Ay (u)du> =¢(T),

0 e
PR . .

il

2A€ (T) = A°(T)
de

2

T 1
2 T '
_ J ﬂzk (u) ZdM,‘k (I/l):| )
ik-ni#k 20 (1 +eny ()
(33)
Then
0 2 (T
a—Ae M| =- Z J- A () dMy (1)
€ €0 jk=Lizk "0
(34)
T o
- -L o () dM ().
Hence the result follows. O

The following two integration-by-parts formulas are
immediate consequences of Theorem 4.

Corollary 5. For any measurable, integrable, and differen-
tiable function G : R* — R,

E [iG(] (T)) JT)LIZ () du]

8x1 0
(35)

T
=E [G(I (1)) Jo Mo () dMy, (”)] .
Proof. The result follows by putting #,,(t) = 0, forallt € 7,
in Theorem 4. U

Corollary 6. For any measurable, integrable, and differen-
tiable function G : R* — R,

a T
E [a_sz(I @) [ Ao du] )
) (36)
=E [G(I (T)) Jo 1y (1) dMy, (”)] .

Proof. The result follows by putting #,,(t) = 0, forallt € 7,
in Theorem 4. U

Remark 7. The integration-by-parts formula in Corollary 5
(Corollary 6) may be interpreted as an integration-by-parts
formula obtained by perturbing the intensity {a,,(t) | t € T}
({ay,(t) | t € T}) along the direction 7, (17,;).

Remark 8. In Elliott and Kohlmann [38], an integration-by-
parts formula for functions of jump processes was developed.
Using the concept of stochastic flows, the integration-by-
parts formula was derived for functions of the terminal values
of jump processes. An advantage of the approach by Elliott

and Kohlmann [38] is that the integration-by-parts formula
was derived without using infinite-dimensional calculus. The
integration-by-parts formula for functions of the terminal
values of jump processes has an important application. Elliott
and Kohlmann [38] demonstrated how this integration-by-
parts formula may be applied to establish the existence and
smoothness of the density of a jump process. This is a key
area of application of Malliavin calculus. Using the method in
Elliott and Kohlmann [38], the integration-by-parts formula
in Theorem 4 may be used to establish the existence and
uniqueness of the densities of some stochastic processes
depending on the fundamental jump processes relating to
the chain. This may represent an interesting topic for future
research.

Remark 9. In the Markov chain financial market of Norberg
[21], the dynamics of share prices are described by the
fundamental jump processes relating to a continuous-time,
finite-state Markov chain. The integration-by-parts formula
in Theorem 4 may be used to hedge contingent claims whose
payofts depend on the terminal values of the share prices in
the continuous-time Markov chain market of Norberg [21].
We will discuss this in some detail in Section 6.

4. Martingale Representation Using
Integration by Parts

Martingale representation is one of the fundamental results
in stochastic analysis and calculus. It has many significant
applications in diverse fields such as mathematical finance,
stochastic filtering, and control. A crucial question in a
martingale representation is to determine the integrand in
the representation. This question is of primary importance
in many applications of martingale representations. The
Clark-Haussmann-Ocone-Karatzas formula was developed
to address this question in the case of a Wiener space (see
Clark [39], Haussmann [40], Ocone [41], Ocone and Karatzas
[42], and Karatzas et al. [43]). Elliott and Kohlmann [44]
pioneered the use of stochastic flows to identify the inte-
grand in a stochastic integral in a martingale representation
under a Markov diffusion setting. Elliott and Kohlmann [38]
extended the approach in Elliott and Kohlmann [44] to the
case of a Markov jump process. Elliott and Tsoi [10, 11]
adopted integration-by-parts formulas to derive integrands
in martingale representations in a single jump process and
a Poisson process, respectively. Aase et al. [45] adopted a
white-noise approach to Malliavin calculus to establish a
white-noise generalization of the Clark-Haussmann-Ocone-
Karatzas formula in the cases of multidimensional Gaussian
white noise, multidimensional Poisson white noise, and their
combination. Di Nunno et al. [46] adopted a chaos expansion
approach to Malliavin calculus to establish a white-noise
generalization of the Clark-Haussmann-Ocone-Karatzas for-
mula for Lévy processes.

In this section, we apply the integration-by-parts formula
obtained in the last section to derive the integrand in a mar-
tingale representation for a function of the terminal values of
the fundamental jump processes. Though the techniques to
be used here are similar to those adopted in Elliott and Tsoi



[10, 11], it seems that the formulas of the integrand derived
here appear to be new. Again to simplify our notation, we
consider here the two-regime Markov chain presented in
Section 3.

Note that the filtration F* generated by the chain X is the
same as the filtration generated by the family of fundamental
jump processes {],, J5;}. Then we state the following martin-
gale representation result which was due to Brémaud [47].

Theorem 10. For any real-valued, square-integrable (FX, P)-
martingale L == {L(t) | t € T},

T
L(T):=E[L(T)] + J Y () dM (u), (37)
0
for some R2-valued, [FX-predictable process {y(t) | t € T}.

Furthermore, we need the following expression for the
predictable quadratic variation {{(M,M)(t) | t € T} of M :=
{M(t) | t € T}, which was derived in Elliott et al. [32].

Lemmall. Let diag(y] be a diagonal matrix with the diagonal
elements being given by the components in a vectory. For each
ted,

(M, M) () = L (diag [A () X (u)] - diag [X ()] A’ ()

~A (u) diag [X ()] ) du.
(38)

To simplify our notation, let {f(¢) | t € I} be a matrix-
valued process defined as follows:

f (t) := diag [A (t) X (t)] — diag [X (t)] A (t)
(39)
— A (t) diag [X (t)] € R* @ R*.
Note that {f(t) | t € 7} is the density process of the
measure d(M, M) (t) with respect to the Lebesgue measure dt
on (7, AB(J)) and d(M, M)(¢) is absolutely continuous with
respect to dt, where 9B(J) is the Borel o-field generated by
open subsets of 7.
Then

t

(M, M) () = L £ (1) du. (40)

The following lemma will be used to derive the expressions
for the integrand in the martingale representation.

Lemma 12. For each i,k = 1,2 with i+k, the predictable
quadratic variation of My, namely {{M;,, My () | t € T},
is given by
t
(M, My ) (t) = J (X(u),e;) e f (u)edue R, (41)
0
Proof. Recall that

M, (t) = L (X (u-),e;) (dM (u) , e;.)
(42)

_ r (X(u-),¢,) e.dM (1) .
0
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Then
(Mo M) (t)

t
= L (X (u-),e;) e d (M, M) (1) e (X (u-) ,e;)

t (43)
=I(XWAAJ§HM%W
0

= Jt (X (u),€;) e f (u) edu.
0

The last equality follows from the fact that the set of all jump

times of the chain X has “dt”-measure zero. O
By the martingale representation presented in
Theorem 10,
T
GO =EGAMN+ [ ¥ wdMw, (0

for some [Fx-predictable processy :={y (t) |t € T}.
It can be supposed that E[G(J(T))] = 0 by subtraction.
Then

T
G((T)) = L Y () dM (1) . (45)

The integrand y is then determined in the following
theorem. Though the techniques used in the proof of the
following theorem are similar to those used in Proposition
3.5 of Elliott and Tsoi [11], the expressions for the integrand
presented below appear to be new.

Theorem 13. Suppose that a,,(t),a, (t) > 0 foreacht € J.
Then the integrand y = {y(t) | t € T}, where y(t) =
(y, (), yz(t))' € R2, is determined by

ap;, (1)

ay; (t) ’

on the set {X(t) = e},

_el2 X ()]
YI(t)—E_ale(I(T))|g (t )_

(46)
ay ()

a, ®’

on the set {X(t) =e,}.

_ —i X _-
Vz(f)—E_asz(](T)HJ‘ (t )_

Proof. We only give the proof for the integrand y, (¢) since
the integrand y,(f) can be derived similarly. Firstly, by the
martingale representation for G(J(T)), Lemma 12, and the
orthogonality of M, and M,,,

E [G (1) jT o () dMy, (u)]

0

=E (JT y' (u) dM (u)) (JT My () dM;, (u))]

0 0
(47)

- T
=E L Y1 W) 1y, (u) d <M127M12> (“)]

- T
=E L 1 (1) 7y, () e;f(u) ezl{xmf):el}d”]-
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Then using the integration-by-parts formula in Corollary 5,

T 9
E H -G 0M) s du]

0

T (48)
=F Ho y1 () 11z (@) ef (1) ezl{x<u—)=e1}du] .
Foreachu € 7, let
0
v (u) = a—G J(T)) a1y (1) Iix(y-y=e,}- (49)
X1

Then there exists an [Fx-predictable projection {y"(u) | u €
I} of {w(u) | u € T} such that, for eachu € 7,

v ' W) =E[yw | F*u-)], Pas, (50
so that
v ()

9
- E [a—G g@) | F* (u—)] ap, W) Ix(yyee)r  P-as.
X1
(51)
Furthermore, for any [Fx—predictable process {K(u) | u € 7},
E[K )y )] =E[K@E [y W) F* @)]]

=E[Kwvy" (w)].

Write # for the family of subsets of 7 x Q) of the forms {0} x F,
and (u,t] x F,, where F, € FX(0) and E, € FX(u) for 0 <
u < t < T. Note that the predictable o-field on the product
space 7 x Q) with respect to FX is generated by .

We now take 77, = Ijgyup, OF 15 = Iy 4xp,» Where Iy g
and I, 4, are the indicator functions of the events {0} x F,
and (u,t] x F,, respectively. Then the integration-by-parts
formula in Corollary 5 holds for this #,,. Consequently, the
following equality holds for all #,,’s which are indicators of
sets in 7

E HTmz @y ) du

0

(52)

(53)

T
=E [L M1z (1) y; (W) e;f (v) CZI{X(u—):el}du .

Since the set of all jump times of the chain X has “dt”-measure
zero,

T
E [J Ty W) v" () du]
0
(54)
T !
=E [L N1y () y; (1) eyf (u) ezI{x(u)=e1}d”] .
On the set {X(u) = e},
ef(u)e, = e, (diag [A (u)e,] - diag[e;] A’ (u)
-A (u) diag [e,] ) e, (55)

=ay (u).

Consequently, for all #,,’s which are indicators of sets in 7,

E [LT o W v™ (w) du]
(56)

T
= B[ 2 00 1 0 00 i |

Note that

(1) # generates the F*-predictable o-field on the prod-
uct space I x Q)

(2) the processes {y;(u) | u € T}and {y"(u) | u € T}
are FX-predictable.

Then
V/* (w) = y; (u) ay; () I{X(u):el}’
(57)
for almost all (u,w) € T x Q.
Consequently, for almost all (1, w) € T x Q,
0 X
E a—G J@) | F= (u=) | a, (1) Lxy=e,}
1 (58)
=y (u) ay; (u) I{X(u):el}'
Then,
9] X a, (u)
@ =E| 26015 w)| 221, s
)}1 axl ale (Li) ( )
on the set {X(u) = e} O

5. An Extension to a Function of Path Integrals

The integration-by-parts formulas and the martingale rep-
resentation developed in the previous sections are now
extended to a function of the integrals with respect to the
whole paths of the fundamental jump processes relating to the
chain X. This function may be considered a canonical form of
an FX(T)-measurable random variable.

Consider an FX(T)-measurable random variable H
which is of the following canonical form:

T T
H::h(J o (O (t),J oy ()], (t)), (60)
0 0

where b : ®*> — R is any measurable, integrable, and
differentiable function. Note that H depends on the whole
paths of the fundamental jump processes relating to the
chain X; 7, and #,, are nonnegative, P-a.s. bounded, F*-
predictable processes as defined in Section 3.

We now define some notation. Write

T T

o (VT (O, Ly(T) = j oy ()T, (0),

0

I,(T) := J-

0

1(T) := (I, (T), L, (T))" € R~
(61)



Then
H=h{I(T)). (62)

The following theorem gives an extension to the
integration-by-parts formula presented in Theorem 4 for the
function h.

Theorem 14. Foreacht € T, let

Xu ) = M2 (t) Alz ), 7\21 (t) = a1 (t) A21 ),
t t (63)
G ()= <J A, () du, J Ty () du> e 2.
0 0
Then

T —_—
E[(Dh(I(T)),§(T))] = E [h (1(T)) jo 7 (u)dM (u)] :
(64)
Proof. The proof of this theorem resembles that of
Theorem 4. We only give some key steps. For each € > 0, let

T T

5= [ eodno, 5O | wodso.
(65)

Write
I°(T) := (I5, (1), I5, (T)) € R*. (66)

By Lemma 2, the P“-probability law of I°(T) is the same as
the P-law of I(T'). Then

E[h(I(T)] = E° [A (I (T))] = E[A°(T) h (I (T))] . )
67

Differentiating with respect to € and setting € = 0 give

0 e
E[aA (T)

B ().

e=0

+E [A€ (D). <th (I°(T)), %IE (T)>

|-o
e=0

(68)

Then the result follows by noting that

o=

T T !
[, To@an [ T wdr) -5,
0 0

(69)
O

9

31 (D

Similarly, the following corollaries are direct conse-
quences of Theorem 14.

Corollary 15. For any measurable, integrable, and differen-
tiable function h : R* — R,

d T
E [a—h(l (T))J 1, W) du]
X1 0
(70)

_E [h(l (7)) JT 1y (1) M, (u)] .

0
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Corollary 16. For any measurable, integrable, and differen-
tiable function h : R* — R,

E [a%h (1(T)) LT Xy (1) du]
(71)

=E [h (I(T)) JT 1 (u) dM,, (u)] .

0

We now extend the martingale representation in Section 3
to the function H := h(I(T)) of the path integrals. By the
martingale representation in Theorem 10,

T
h(I(T)) = E[n(I(T))] + L 7 wdM@w), (72)

for some [Fx—predictable process y := {y(t) | t € T}.
Again by subtraction we assume that E[h (I(T))] = 0.
Then

T
h((T)) = L 7 (1) dM (u). (73)

The following theorem gives an expression for the integrand
in the martingale representation for h(I(T')).

Theorem 17. Suppose that a,,(t),a,,(t) > 0 foreacht € .
Then the integrand y = {J(t) | t € T}, where p(t) =
n (@), )72(t))' € R2, is determined by

a, (t)

(23 (1) ’

on the set {X(t) = e},

o[ (e
Vl(”‘E[axlh“‘T”"’“ (t )]

(74)

50 =E| 2 X (1) | G D
mt)-E[axzha(T»w (t >] O

on the set {X(t) =e,}.

Proof. The proof resembles that of Theorem 13. We only need
to note the fact that, for all 7,,’s which are indicators of sets
in 7, ’7%2 = M- O

6. An Application to Hedging
Contingent Claims

In this section we will discuss an application of the martingale
representation result derived in Section 4 to hedge contingent
claims in the Markov chain financial market of Norberg [21].
Here we consider a simplified version of the Markov chain
market of Norberg [21], where there are two risky shares,
namely, $; and S,, and the Markov chain has only two states.
We also suppose that the market interest rate is zero. In this
case, as in Norberg [21], the (discounted) price processes of
the two risky shares {S;(t) | t € T} and {S,(¢) | t € I} under
a risk-neutral probability, say P, are governed by

ds; (1) = $; (t-) ((exp (B1) = 1) dM,, ()
+ (exp (ﬁln) - 1) dM;, (t)) > (75)

S0 =s>0, i=12,
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where f;, and fi,, for i = 1,2, are non-zero constants;
{M,(t) | t € T}and {M,,(t) | t € T} are (F,P)-
martingales. Note that the two risky shares are correlated
since their price dynamics depend on M, and M,,.

qu eachi = 1,2, let “iz = exp(ﬁiz) — 1 and let ocgl =
exp(f3;;) — 1. Then, as in Norberg [21], under the risk-neutral
measure P, the (discounted) terminal prices S, (T) and S,(T')
of the shares are given by

(T
S; (T) = s;exp (—ocllz L ap, (1) (X (t-),e;) dt

(T
- ay L ay () (X (t-), e,) dt

BT 1s (T) + By T (T) ) Cic1a
(76)

Consequently, the vector of the (discounted) terminal prices
of the shares S(T") := (5,(T),S,(T)) is a function of J(T) :=
(1o(T), Ty (T)).

We now consider a contingent claim H written on the two
correlated risky shares S; and S, whose payoft at maturity T
is a function of §(T), say H(S(T')). Two practical examples of
contingent claims having payofts of this form are an exchange
option, which is also called a Margrabe option, and a quanto
option.

Note that the payofts of the Margrable option and the
quanto option may not be differentiable functions of S(T).
To apply the martingale representation result in Section 4 to
derive the hedging quantities for the Margrable option and
the quanto option, we need to consider approximations of
H(S(T)) by some “smooth” or differentiable payoff functions
of S(T). In the sequel, we suppose that, with a slight abuse of
notation, H(S(T)) is such a “smooth” or differentiable payoft
function of S(T).

Then, the payoft H(S(T)) can be written as

H(S(T) =G(J(T), (77)

for some “suitable” measurable, differentiable and integrable
function G : R* — R.
Define, for each t € 7, a (2 x 2)-matrix X(t) by

(51 (t-) (exp (B1) = 1) S (=) (exp (Bay) - 1))
2 (t) =

S, (t-) (exp (ﬁfz) - 1) S, (t-) (exp (ﬂ§1) - 1)
(Sl (t-) oy, S, (t-) a;)
S, (t-) “fz S, (t-) “51
Then the price processes of the two risky shares S, and

S, under the risk-neutral measure P are governed by the
following vector-valued stochastic differential equation:

(78)

ds(t) =2 () dM (1), (79)

where M(¢) := (M, (t), My, (t)) as defined in Theorem 4.

Suppose ocizocgl + 0(;106%2. Then, the inverse ' (¢) of 2(¢)
exists and is given by

“51 B “51
- 1 S (=) S ()
sy L 1 2 30
© a0, — 0,04, _ o, oy 0
Si(t=) S, (t-)
Consequently,
AM (t) =71 (1) dS (1) . (81)
By the martingale representation in Theorem 10,
H(8(T)) =G(J(T))
T o
=EIGOM)]+ |y (0 dM W)
T !
~EHEM) + [ 7 02 dsw
(82)

= E[H (S(T))]

T Y1 (u) “21 -7 (W) “fz
i L ( S, (u-)

)dS1 (u)

. JT<Y2 (u) ‘Xiz -1 (W) 0‘;1

. S, (i) ) ds, (u).

Then the claim H(S(T)) can be hedged perfectly by con-
structing a dynamic portfolio which invests (y,(t)o, —
y2(t)ocf2)/81(t—) units of the risky share S; and ()/z(t)oci2 -
yl(t)(x;l)/sz(t—) units of the risky share S, at time ¢, for
each t € J. The initial investment of the portfolio is
E[H(S(T))], which is the initial price of the claim H(S(T)).
Using Theorem 13, y, () and y,(t) are determined as

_p| 2 X (p_y | G2 (®)
O =E|3-GO M) 762 23,

on the set {X(t) =e,},
(83)
dy ()

ap, (t)

on the set {X(t) = e,}.

el e
Yz(t)—E[asz(I(T))IJ’ t )]

We only illustrate here the use of the martingale represen-
tation result in Section 4 to hedge contingent claims whose
payoffs depend only on the terminal prices of the risky shares
in the Markov chain market. The martingale representation
result in Section 5 may be used to hedge contingent claims
with more general payoft structures in the Markov chain
market.

7. Conclusion

An integration-by-parts formula for a function of the termi-
nal values of the fundamental jump processes relating to a
Markov chain was first established using the Bismut approach
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to Malliavin calculus. The formula was then applied to derive
a new expression for the integrand in a stochastic integral in
a martingale representation. The results were then extended
to functions of the integrals with respect to the whole paths
of the fundamental jump processes. These functions may
be regarded as random variables of canonical forms. Only
finite-dimensional calculus was needed in the derivations.
Though some complex notations may be involved, the results
presented here may be extended to the case of a general
N-state Markov chain where a set of fundamental jump
processes {J;(t) | t € T}, i,k = 1,2,...,N, i#k, is used.
We applied the martingale representation result derived here
to hedge a contingent claim written on two correlated risky
shares in the Markov chain financial market of Norberg [21].
There are several future research directions based on the
results developed in this paper which may be of theoretical
and practical interests. The results may be applied to study
the existence and uniqueness of densities of jump processes
relating to a Markov chain. It seems that this problem is of
fundamental importance in filtering and control theory of
hidden Markov chains. Martingale representations play an
important role in filtering and control. It may be interesting
to explore the applications of the martingale representations
developed in this paper in filtering and control for stochastic
processes relating to Markov chains. The monograph by
Elliott et al. [32] provided some discussions on the filtering
and control of hidden Markov chains. The results developed
here may be extended to develop Malliavin calculus for
stochastic differential equations driven by a continuous-
time, finite-state Markov chain and Markov regime-switching
stochastic differential equations. It may be of practical interest
to further explore the use of the martingale representation
results developed here to hedge modern insurance products,
such as unit-linked insurance products and longevity bonds
in the Markov chain market of Norberg [21]. In Bielecki
et al. [48], the valuation of credit derivatives in a Markov
chain model was discussed. It may be of practical interest
to explore the application of the martingale representation
results developed here to hedge credit derivatives in the
Markov chain model discussed in Bielecki et al. [48].
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