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abstract The extended empirical orthogonal function (EEOF) analysis of signals contain-
ing a standing wave component is considered. It is shown using a simple analytical model
that for a single time-lag EEOF analysis, two EEOF patterns describe the standing wave,
and that their associated eigenvalues become degenerate if the lag chosen is close to a zero
of the sample autocovariance function of the standing wave time series. This degeneracy
strongly affects the relative magnitudes of the two sectors of each EEOF pattern and the
structure of the associated spatial pattern. A set of EEOF analysis of varying lags is per-
formed on a tropical Pacific sea level pressure (SLP) dataset, known to be dominated by
standing variance, and the predictions of the analytical model are verified. As well, it is seen
that at degeneracy there is a reduction in the quality of the spatial patterns produced by the
EEOF analysis.

résumé Nous présentons une analyse en Fonctions orthogonales empiriques élargies
(FOEE) de signaux contenant une composante ondulatoire stationnaire. À l'aide d'un modèle
analytique simple, nous montrons que, pour une FOEE à un seul décalage temporel, deux
patrons de FOEE décrivent l'onde stationnaire. De plus, les valeurs propres qui leur sont
associées dégénèrent si le décalage choisi est près d'un zéro de la fonction d'autocovariance
de la série temporelle de l'onde stationnaire. Cette dégénérescence affecte fortement les gran-
deurs relatives des deux secteurs de chacun des patrons de FOEE ainsi que la structure des
patrons spatiaux associés. Un ensemble d'analyses en FOEE pour des décalages variables est
effectué sur un jeu de données de pression (au niveau de la mer) recueillies dans le Pacifique
tropical et dont nous savons que la variance est dominée par une onde stationnaire. Ces anal-
yses confirment les prévisions du modèle analytiqe. On constate également qu'au moment de
la dégénérescence, il y a une diminution de la qualité des patrons spatiaux produits par
l'analyse FOEE.

1 Introduction

Time-lagged extended empirical orthogonal function (EEOF) analysis has been

used in a number of recent studies (e.g., Barnston, 1994; Shabbar and Barnston,
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1996; Black et al., 1996; Tangang et al., 1998). In such an analysis, an empirical

orthogonal function (EOF) analysis is performed on a heterogeneous dataset com-

posed of observations of the same physical þelds at two or more different times.

The method has shown some promise for both the purposes of data reduction and

of understanding the nature of the dominant patterns of spatially and temporally

coherent variability in a dataset. However, other than the work by Chen and Harr

(1993), little has been written about the idiosyncrasies of EEOF analysis.

We demonstrate that if the dataset subjected to a single time lag EEOF analysis

contains a standing wave component, then the two EEOF patterns describing this

standing variance become degenerate when the time lag is equal to a zero of the

sample autocovariance function of the standing wave's time series. This degeneracy

can complicate the interpretation of the two affected EEOF patterns.

A brief overview of EEOF analysis and an analytical demonstration of the above-

mentioned degeneracy are presented in Section 2 of this paper. In Section 3, we

perform a series of EEOF analyses with varying lags of tropical Paciþc SLP data,

a þeld dominated by standing variance (Tangang et al., 1998), and it is shown that

this degeneracy and its consequences occur as predicted.

2 Analytical Model

Consider the noisy standing wave þeld xi(tn) described by

xi(tn) � ψi f (tn) + Ni(tn)Ù (1)

where f (tn) is the standing wave time series, the index i labels station number,

i 2 f1Ù . . . ÙNg, and n labels the observation time, tn � n∆, n 2 f1Ù . . . ÙTg. By

deþnition the standing wave spatial pattern ψ is of unit norm

jψj2 � 1Ù (2)

and Ni(tn) is a spatially uncorrelated noise þeld of arbitrary covariance structure in

time,

E fNi(t)Nj(t + τ)g � δijη(τ)Ø (3)

We assume the time series f and Ni are centred in time,

hNii � h f i � 0 (4)

and T is sufþciently large that

h f (t)Ni(t)i ' 0 (5)

and

hNi(t)Nj(t + τ)i ' δijη(τ)Ù (6)
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where the angle brackets denote the sample mean, i.e.

hzi � 1

T

TX
n�1

z(tn)Ø (7)

Assuming the above approximate equalities hold exactly, the sample covariance

matrix Γ of the þeld is given by

Γij � Λijaf (0) + δijη(0)Ù (8)

where we have deþned the matrix Λ as the dyadic product

Λij � ψiψjÙ (9)

and where af (τ) is the sample autocovariance function of f , i.e.

af (τ) �
T�τÛ∆X

n�1

f (tn) f (tn + τ) if τ Ü 0Ù (10)

�
TX

n�1+τÛ∆

f (tn � τ) f (tn) if τ Ú 0Ø (11)

Note that af (τ) so deþned is symmetric:

af (τ) � af (�τ)Ø (12)

The eigenvectors of Γ are the EOFs of (1). It can easily be shown that the spatial

pattern ψi is an EOF of (1) with associated eigenvalue

af (0) + η(0)Ø (13)

As the total sample variance in the þeld (1) is given by

σ2 � af (0) + Nη(0)Ù (14)

we see that the fraction of the sample variance explained by the standing wave

mode is

af (0) + η(0)

af (0) + Nη(0)
Ù (15)

which becomes 1 in the limit of vanishing noise.

In a time-lagged EEOF analysis involving a single time lag τ, we construct the

stacked vector time series
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X(tn) �
�

x(tn)

x(tn + τ)

�
Ù (16)

and perform an EOF analysis of this time series. The sample covariance matrix of

the stacked dataset (16) is denoted GG and has the block-diagonal form

GG �
�

af (0)Λ + η(0)I af (τ)Λ + η(τ)I

af (τ)Λ + η(τ)I af (0)Λ + η(0)I

�
Ù (17)

with I the identity matrix. Then the vectors C+ and C� deþned by

C� � 1p
2

�
C (0)

�
C (τ)�

�
(18)

� 1p
2

�
ψ
�ψ

�
(19)

are mutually orthonormal eigenvectors of GG with corresponding eigenvalues

g� � (af (0) + η(0)) � (af (τ) + η(τ))Ø (20)

The spatial maps C (0)� and C (τ)� are denoted the (0) and (τ) sectors of the EEOF

pattern, respectively.
The total sample variance in the stacked dataset (16) is simply twice that of the

þeld (1), so the fractions of variance explained by C� are

r� � (af (0) + η(0)) � (af (τ) + η(τ))

2(af (0) + Nη(0))
Ø (21)

Note that the sum r+ +r� is equal to the fraction of sample variance in (1) explained

by the EOF ψ; the fraction of sample variance explained by the standing wave has

thus been split between the C+ and C� modes. In general, then, each of these
modes will individually explain a smaller fraction of the sample variance than

does the standing wave EOF ψ.

Associated with the EEOFs C� are the time series

F�(tn) � X(tn) � C� (22)

� 1p
2

[( f (tn) + ν(tn)) � ( f (tn + τ) + ν(tn + τ))]Ø (23)

where we have deþned the time series

ν(tn) � N(tn) � ψ (24)

of the projection of the noise on the standing wave spatial pattern.
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In general, the C+ and C� modes correspond to different eigenvalues of GG and

are thus distinct. However, for those values of τ at which af (τ)+η(τ) is nearly zero,
the eigenvalues g+ and g� become close and may not be well-separated. When this

occurs, these eigenvalues may become degenerate such that the pair of vectors J�

J+ � αC+ + βC� (25)

� 1p
2

�
(α + β)ψ
(α � β)ψ

�
Ù (26)

J� � �βC+ + αC� (27)

� 1p
2

�
(α � β)ψ
�(α + β)ψ

�
(28)

will be an orthonormal basis set on the space of eigenvectors of GG describing the

standing wave, where α and β satisfy

α2 + β2 � 1Ù (29)

but are otherwise arbitrary. This degeneracy is a generalization of that found by

Chen and Harr (1993) in their two-station model.

The degeneracy manifests itself in the following manner. Away from degeneracy,

the two sectors of the standing wave EEOFs have magnitudes

jC (0)
� j2 � jC (τ)

� j2 � 1

2
Ù (30)

whereas at degeneracy, these magnitudes are

jJ (0)
+ j2 � jJ (τ)

� j2 � (α + β)2

2
Ù (31)

jJ (τ)
+ j2 � jJ (0)

� j2 � (α � β)2

2
Ø (32)

Thus, a hallmark of degeneracy is predicted to be a marked change away from 1

in the value of the ratio of the magnitudes of the two sectors of the EEOF.

Finally, it is interesting to consider the Fourier spectra of the time series F�. The

standing wave EOF time series has Fourier decomposition

f (tn) + ν(tn) �
T�1X
k�0

( ~fk + ~νk)exp

�
2πink

T

�
Ù (33)

and those of the EEOF time series F�(tn) are
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will yield degenerate eigenvalues if af (τ) + η(τ) � af (3τ) + η(3τ) � 0.

X̂(tn) �

0
BB@

x(tn)

x(tn + τ)

x(tn + 2τ)

x(tn + 3τ)

1
CCA (36)

F�(tn) �
T�1X
k�0

( ~F�)k exp

�
2πink

T

�
Ø (34)

From equation (23) it follows that

j( ~F�)kj2 � j ~fk + ~νk j2
�

1 � cos
2πmk

T

�
Ù (35)

where m � τÛ∆. Note that in the spectrum of F+(tn), low frequencies are ampliþed

and those near k � TÛ2m suppressed relative to the spectrum of f (tn), while the

low frequency components of F�(tn) are suppressed and those near k � TÛ2m

ampliþed. Thus, the EEOF analysis splits the signal f (tn) into two parts: high- and

low-pass þltered versions of the original time series.

These results can be generalized to EEOF analyses with more than one time lag.

For example, it can be shown that an EEOF analysis using the heterogeneous data

vector

3 EEOF Analysis of SLP Data

The SLP dataset used in this study was the same as that used in Tangang et al.

(1998). Monthly-averaged SLP data from the Comprehensive Ocean-Atmosphere

Data Set (COADS) spanning the period January 1952 to June 1997 was averaged

to a 4� by 10� grid covering the region from 28�S to 20�N and from 52�E to 88�W.

The annual cycle was removed by subtracting from each data point the monthly

climatological value. The resulting anomaly þeld was further smoothed using a

3-point running average in time and a 1-2-1 þlter in each spatial dimension.

As described in Tangang et al. (1998), the coherent spatial variability in the equa-

torial Paciþc SLP is dominated by an east-west dipole þeld whose associated time

series is the familiar low-frequency oscillation component of the El-Ni~no Southern

Oscillation (ENSO) (Barnett, 1991). This dipole þeld displays no propagating fea-

tures; it can, to a reasonable þrst approximation, be described by the model (1). The

þrst EOF mode of the SLP data, explaining 36.2% of the variance, corresponds to

this pattern of standing variance; Fig. 1 shows a plot of the sample autocovariance

function of the time series of this mode. The sample autocovariance þrst becomes

zero at a time very close to 13 months; if the sort of degeneracy predicted in the

previous section appears in the EOF analysis of this data, it should occur for time

lags τ near 13 months.

A single-lag EEOF analysis was performed on the SLP dataset, with lags varying
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Fig. 1 Sample autocovariance function of the leading SLP EOF time series (normalized to unit vari-

ance).

between 9 and 17 months. For this range of lags, the leading two EEOF modes

were very close to the C� structure. Figure 2 displays the percentages of variance

explained by C+ and C� as a function of the lag τ. Note that these eigenvalues

cross at a lag of slightly less than τ � 13 months, a lag corresponding to the

þrst zero of the sample autocovariance function of the standing wave signal, as

expected from (20). The sum of the percentage of variance explained by the two

leading modes varies with τ between 38.1% and 39.0%; it is thus slightly, but not

much, higher than the percentage explained by the corresponding EOF mode. As

well, this sum is remarkably invariant over a broad range of lags. We then see that

the percentage of variance explained by the EOF standing wave pattern is indeed

split between the percentages explained by the two single time-lag EEOF standing

wave patterns, as predicted in the previous section.

Although the leading two eigenvalues are not identical at τ � 13 months, they

are not well separated and degeneracy of the kind described in the previous section

does occur at this lag. Figure 3 shows a plot of the magnitudes of the two sectors

of C+ and C� as a function of τ. Of course, at degeneracy the EEOF patterns

are not C+ and C� but linear combinations of these; however, at τ � 13 months,
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Fig. 2 Percentages of variance explained by SLP EEOF modes C+ (solid line) and C� (dashed line),

as a function of lag time, τ.

mode 1 projects most strongly on C� and mode 2 most strongly on C+, so we

continue to use these labels for convenience. Note that for τ well away from 13

months, the magnitudes are close to 0.5, as predicted by equation (30). However,

for τ close to 13 months, these magnitudes become markedly different from 0.5,

and the difference in magnitudes is most pronounced at the þrst zero of the sample

autocovariance function, τ � 13 months.

When the magnitude of one of the two sectors of the EEOF becomes very small,

some degradation in signal can occur. This is because the model (1) does not

exactly describe the dataset, and the leading EEOF modes, while dominated by

the standing wave signal, include other information. Figure 4 displays a plot of the

absolute value of the spatial correlations between the two sectors of C+ and of C�,

i.e.

jC (0)
+ � C (τ)

+ j
jC (0)

+ jjC (τ)
+ j (37)

and
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Fig. 3 Magnitudes of the two sectors of the leading two SLP EEOF modes, as a function of lag time,

τ: C (0)
+ (solid line); C (τ)

+ (dashed line); C (0)� (dotted line); C (τ)� (dot-dashed line).

jC (0)� � C (τ)� j
jC (0)� jjC (τ)� j (38)

as a function of τ. For a system described exactly by (1), the magnitude of the spatial

correlation would be 1 at all τ. For C+, the value is near 1 for all τ except near 13

months, at which point the value drops to 0.50. Because the SLP data contains a

large-scale coherent eastward-propagating pattern with a subannual timescale, the

description of which is part of C� for τ less than 12 months, the spatial correlation

of C� is smaller than that of C+ for these lags. However, the spatial correlation

between the two sectors of C� also has a sharp minimum at τ � 13 months.

Figures 5 and 6 display the spatial patterns of the standing wave EEOF modes at

τ � 15 and at τ � 13 months, respectively. The patterns away from degeneracy

have the predicted C+ and C� forms. At degeneracy, the standing wave patterns

depart markedly from this structure. The C (τ)� and C (0)
+ patterns retain the familiar

east-west dipole structure, while the other two sectors are corrupted. Those sectors

with very small magnitudes experience a suppression of the standing wave signal

and a consequent corruption by other small signals, because the model (1) does not
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Fig. 4 Absolute value of the spatial correlation between the two sectors of C+ (solid line) and those

of C� (dashed line).

exactly describe the SLP dataset. Conversely, the standing wave pattern is enhanced

in those with large magnitude, and here the dipole pattern is robust. The degeneracy

of these two modes has thus resulted in a marked degradation in the quality of the

EEOF signal.

From the above results, it is clear that the degeneracy predicted in Section 2 does

in fact occur in a dataset with a strong standing wave component. This degeneracy

manifests itself in the structure of the EEOFs by greatly increasing the ratio of the

magnitudes of the two sectors of the EEOF from near 1 and through a reduction of

the ability of the EEOF pattern to diagnose spatial patterns of standing variability.

This degeneracy also occurs for lags corresponding to other zeroes of the sample

autocovariance function. An EEOF analysis with a lag of τ � 33 months (not

shown) displays the same degenerate mixing of modes observed with a lag of

τ � 13 months.

Figure 7(a) shows the time series corresponding to the þrst SLP EOF, and 7(b)

shows that corresponding to the þrst SLP EEOF with a lag of τ � 3 months. While

these time series closely resemble each other, the one arising from the EEOF

analysis is clearly smoother. This is precisely the result predicted by equation (35):
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Fig. 5 Maps of EEOF patterns at τ � 15 months: (a) C (0)� , (b) C (τ)� , (c) C (0)
+ , (d) C (τ)

+ .
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Fig. 6 Maps of EEOF patterns at degeneracy, τ � 13 months: (a) C (0)� , (b) C (τ)� , (c) C (0)
+ , (d) C (τ)

+ .
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Fig. 7 (a) SLP EOF mode 1 time series, (b) SLP EEOF mode 1 time series for τ � 3 months, each

normalized to unit variance.

the variabilty on seasonal timescales has been eliminated from the EEOF time

series. This smoothing of the standing wave time series was also noted in Tangang

(1997), in which a three-lag EEOF analysis of the form (36) was performed on this

SLP data.

Results similar to those obtained in the EEOF analysis of the SLP dataset were

found in a single time lag EEOF analysis of the tropical Paciþc sea surface temper-

ature (SST) data used by Tangang et al. (1998), and degeneracy was again found to

occur at a time lag of 13 months. These results were not markedly different from

those described above, so they will not be discussed in any detail.

4 Summary

It has been shown above, both through analytical arguments and through the ex-

ample of a tropical Paciþc SLP dataset, that if a dataset contains a strong standing

wave component, then the EEOFs describing this signal will be degenerate if the

time lag chosen is sufþciently close to a zero of the sample autocovariance function

of the associated time series. Plaut and Vautard (1994) also report the connection
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between oscillatory behaviour and degeneracy of the eigenvalue spectrum in Mul-

tichannel Single Spectrum Analysis (M-SSA), which is formally identical to EEOF

analysis. Their analytical demonstration of the effect, however, is restricted to sig-

nals that are exactly sinusoidal in time, and they do not discuss the problems that

arise in interpretation of spatial patterns obtained at degeneracy. This degeneracy

has a profound impact on the relative magnitudes of the two sectors of the standing

wave EEOF and on the quality of the spatial patterns. The interpretation of the re-

sults of an EEOF analysis performed with a time lag near a zero of the standing

wave's sample autocovariance function is complicated by these effects. In partic-

ular, the quite marked degradation of signal quality displayed in Fig. 6 could con-

ceivably be as bad, or worse, in other datasets. In the example of Section 3, the

lag time of 13 months which leads to degeneracy is somewhat unnatural; it is un-

likely that such a lag time would be used in most conceivable applications with this

particular dataset. However, other datasets with strong standing wave components

may have sample autocovariance functions with zeros at lags more natural for use
in an EEOF analysis, in which case this degeneracy could prove to be a problem,

if not accounted for.
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