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A Study of the Relationship
Between the Dynamic Factors and
the Dynamic Transmission Error
of Spur Gear Pairs
In this study, two different dynamic models, a finite-element-based deformable-body
model and a simplified discrete model, are developed to predict dynamic behavior of spur
gear pairs. Dynamic transmission error (DTE) and dynamic factors (DF) defined based
on the gear mesh loads, tooth loads and bending stresses are computed for a number of
unmodified and modified spur gears within a wide range of rotational speed for different
involute contact ratios and torque values. Although similar models were proposed in the
past, they were neither fully validated nor equipped to predict both DTE and different
forms of DF. Accordingly, this study focuses on (i) validation of both models through an
extensive set of experimental data obtained from a set of tests using spur gear having
unmodified and modified tooth profiles, and (ii) establishment of a direct link between
DTE and different forms of DF, especially the ones based on tooth forces and the root
stresses. The predicted DF and DTE values are related to each other through simplified
formulas. Impact of nonlinear behavior, such as tooth separations and jump discontinui-
ties on DF, is also quantified. �DOI: 10.1115/1.2359470�
Introduction
Dynamic behavior of gear systems is important for two main

easons. One reason is the durability of the gear pair. Forces act-
ng at the gear meshes and bearings under dynamic conditions

ight be many times larger than corresponding quasi-static forces.
s a result of this, stresses, and hence, bending and contact fa-

igue lives of a gear set are influenced by its vibratory behavior.
ear design standards incorporate a dynamic rating factor �1� in

n attempt to account for such dynamic effects. The second reason
hat makes the dynamic behavior relevant is the noise generated
y the gear set. Time-varying dynamic gear mesh and bearing
orces are transmitted to surrounding structures through the hous-
ng and the mounts to cause gear whine noise. Therefore, large
ibration amplitudes typically result in higher noise levels as well.

Most of the theoretical and experimental studies to date were
erformed with only one of the reasons �noise or durability� in
ind. Starting with the dynamic models, a large number of them

ave been developed over the years as reviewed by Ozguven and
ouser �2�, Blankenship and Singh �3�, and Wang et al. �4�. A
reat majority of these studies uses discrete models to predict the
arameters that might be useful in quantifying how noisy the gear
et would be. A few examples from a large number of studies of
his type are referenced here to represent this approach �5–13�. A
iscrete gear mesh interface model consists of a mesh stiffness
lement �mostly a periodically time-varying one to represent the
uctuation of the number of tooth pairs in contact as gears rotate�
nd a viscous damper that are both applied along the line of action
f the spur gear pair. A clearance-type constraint to represent
acklash-induced tooth separations and an external displacement
xcitation to represent gear profile errors and intentional tooth
odifications were included in some of these models. Both mesh
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stiffness function and displacement excitation would be deter-
mined by using a static-elastic gear analysis model. One com-
monly used form output from these models was the dynamic
transmission error �DTE� that is defined as

DTE = r1�1�t� + r2�2�t� �1�

which represents the motion transfer error along the line of action
of gears where r1 and r2 are the base radii of gears 1 and 2, and
�1�t� and �2�t� are the alternating components of angular displace-
ments that are measured from the nominal positions of gears at a
given rotational speed. This is the dynamic equivalent of the better
known static transmission error �STE�. A number of major experi-
mental studies on spur gear dynamics, including Munro �14�,
Umezawa et al. �15�, and Blankenship and Kahraman �16–20�
used DTE as the metric to quantify the dynamic behavior. These
experimental studies demonstrated clearly that mesh stiffness fluc-
tuations and gear backlash must be included in an analysis of a
spur gear pair as it acts as a parametrically excited nonlinear sys-
tem in dynamic terms. These experimental studies guided many
modeling efforts and were used extensively for modal validation
efforts �6–8,16,17�.

Several other investigations predicted dynamic forces acting at
the gear mesh to quantify the dynamic behavior �21–27�. Since
the gear mesh damping force is very small compared to the gear
mesh spring force, the dynamic gear mesh force �DMF� can be
approximated as the product of the gear mesh stiffness and DTE.
Dynamic factor was defined in these studies as DF
= �DMF�max/SMF, where �DMF�max is the maximum value of the
dynamic mesh force and SMF is the static mesh force transmitted
by the gear pair. The main shortcoming of these models is that
they were capable of predicting only DF based on the gear mesh
forces as defined earlier, whereas the durability of the system
would require prediction of the state of gear stresses under dy-
namic conditions. An accurate prediction of dynamic stresses re-
quires the dynamic model that includes flexible teeth, gear blanks,
and contacts, all of which are possible via a deformable body
model. There are recent deformable-body spur gear dynamics
models �e.g., �28��, which were shown to compare well with DTE

measurements of some of the studies cited earlier �16–20�. How-
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ver, these deformable-body models did not focus on DF or gear
tresses as a part of the dynamic behavior. Similarly, experimental
tudies that focused on the measurement of the dynamic bending
ear stresses �29� are yet to be related to any dynamic model.

This study attempts to bridge this apparent gap between gear
urability concerns and gear dynamics models. Specific objectives
re

1. to develop and validate dynamic models to predict DTE and
all forms of DF, simultaneously,

2. to investigate the relationships between DTE and different
forms of DF, and

3. to quantify the influence of tooth separations on DF values.

or this purpose, two different dynamic models, a deformable-
ody model and a discrete model, will be developed. The
eformable-body model will have the capacity of predicting both
TE and DF based on mesh and tooth forces as well as dynamic
ear tooth bending stresses. The discrete model will rely on the
eformable-body model for computation of gear mesh parameters
nder quasi-static conditions and will predict both DTE and DF
ased on mesh and tooth forces. A set of spur gear experiments
ill be employed to validate both models by comparing predicted

nd measured DTE values. The validation matrix will include sev-
ral gear sets having different involute contact ratios and tooth-
rofile modifications operating within a wide range of rotational
peed at different applied loads. The validated models will then be
sed for two specific purposes. First, DTE values will be related
o DF values based on �i� gear mesh forces, �ii� tooth forces, and
iii� bending stresses. Simplified relationships between DTE and
ifferent forms of DF will be proposed, with the intent that exten-
ive experimental and theoretical DTE database available in the
iterature can be related to the durability of the gear sets. Second,
he impact of tooth separations and jump discontinuities due to
acklash on gear stresses will be quantified. Such effects were
tudied in the past using DTE solely for noise purposes, and their
mpact on gear durability is yet to be understood.

Dynamic Models

2.1 Deformable-Body Model. The width of the contact zone
n typical gear applications is two orders of magnitude smaller
han the dimensions of the gear teeth themselves, requiring a very
ne mesh inside the contact zone. The location of the contact zone
hanges as the gears enter and exit the mesh. When conventional
nite element �FE� methods are used, besides having an extremely
efined mesh, re-meshing is necessary for every contact position.

A gear contact analysis model �30�, which is the same model
sed in Ref. �28�, will be used here to perform a deformable-body
ynamic analysis of a spur gear pair. The model divides the gear
nto a near-field region near the contact and a far-field region
way from the contact. The FE method is used to compute relative
eformations and stresses for points in the far-field, and a semi-
nalytical deformation model based on the Bousinesq and Cerruti
olutions is used in the near field within the contact zones �31�.
his approach does not require a highly refined mesh at the con-

acting tooth surfaces, reducing the computational effort compared
o conventional FE models, which require a refined mesh at gear
ooth region, limiting the model to static analysis only. Therefore,
he model used here allows a more refined and comprehensive
tudy of spur gear dynamics than the conventional FE models.
he tooth surfaces are modeled by a large number of nodes rep-

esenting the involute shape and surface modifications. The model
llustrated in Fig. 1 makes it unnecessary to locally refine the FE

esh near the contact, and remesh the finite elements for each
ontact position.

A reference frame is attached to the pinion and gear, and the
nite element computations are done for each of them separately.

he mesh stiffness and mesh contact forces, comprising the dy-
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namic excitation for the system, are evaluated internally at each
time step �31�. Contact conditions are handled as linear inequality
constraints whose solution is obtained by a revised SIMPLEX

solver.
Contact analysis determines the contact conditions between the

pinion and gear at each time step. In the absence of rigid-body
motion, the FE displacement vector x fi for gear i satisfies the
linear system of differential equations �28�

M f fiẍ fi + C f fiẋ fi + K f fix fi = f fi �2�

where f fi is the vector of external loads. Rayleigh’s damping
model is used here in the form C f fi=�M f fi+�K f fi, where � and �
are constant coefficients. If rigid-body motion is considered, and
if we represent the rigid-body degrees of freedom by xir, we re-
place Eq. �2� by

�M f fi M fri

Mrfi Mrri
��ẍ fi

ẍri
� + �C f fi C fri

Crfi Crri
��ẋ fi

ẋri
� + �K f fi K fri

Krfi Krri
��x fi

xri
�

= �f fi

fri
� �3�

The equations for the pinion �i=1� and the gear �i=2� are as-
sembled into the matrix equation of motion for the system:

Mẍ + Cẋ + Kx = F �4�
The deformable body model employs a time-discretization
scheme based on Newmark method �30�, as used successfully in
previous studies �28,32�.

2.2 Discrete Parameter Model. The proposed discrete model
is based on an existing gear dynamics model developed by one of
these authors �16�. This nonlinear, time-varying model is shown in
Fig. 2. It consist of two rigid wheels of polar mass moments of
inertia of I1 and I2, and base radii of r1 and r2. The gear mesh
interface is represented by a periodically time-varying mesh stiff-
ness function k�t� and a viscous damper c. Here k�t� takes into

Fig. 1 Deformable-body dynamic model of an example spur
gear pair
account the parametric excitation due to the mesh stiffness varia-
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ion caused by the fluctuation of number of tooth pairs in contact.
clearance-type nonlinear restoring function g is included to rep-

esent the gear backlash of magnitude 2b. An external displace-
ent excitation e�t� is also applied at the gear mesh interface to

epresent manufacturing errors and intentional modifications of
he tooth profile. Friction forces at the gear tooth contact are ne-
lected, and the shafts and bearings supporting the gears are as-
umed to be rigid. In Fig. 2, the alternating rotational displace-
ents �1�t� and �2�t� are defined positive in clockwise direction.
ith these assumptions, the equation of motion represented by the

ingle-degree-of-freedom dynamic model shown in Fig. 2 is given
or a coordinate x�t�=r1�1�t�+r2�2�t�−e�t� as

meẍ + cẋ + k�t�g�x�t�� = F − meë�t� �5a�

g�x�t�� = 	x�t� − b , x�t� � b

0, 
x�t�
 � b

x�t� + b , x�t� � − b
� �5b�

F = me�T1r1

I1
+

T2r2

I2

 �5c�

me =
I1I2

I1r2
2 + I2r1

2 �5d�

here an overdot denotes differentiation with respect to time t,
nd T1 and T2 are constant torque values applied to the pinion and
ear, respectively. Torque fluctuations are not considered in this
odel as the experimental setup described later is suitably de-

igned to maintain a constant torque value. In Eq. �5�, x�t� repre-
ents the difference between DTE defined in Eq. �1� and the un-
oaded STE.

The governing equation �5� can be nondimensionalized by de-
ning a characteristic frequency �n=�km /me and a characteristic
isplacement b �half backlash�. Here, �n is the undamped natural

Fig. 2 Discrete dynamic model a spur gear pair
requency of the corresponding linear time-variant system where
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km is the mesh stiffness, i.e., k�t�=km+ka�t�. Defining a dimen-
sionless time �=�nt, a viscous damping ratio 	=c / �2�mekm� and
dimensionless displacements x̄���=x��� /b and ē���=e��� /b, one
obtains

x̄� + 2	x̄� + �1 + k̄a����g�x̄���� = f − ē���� �6a�

g�x̄���� = 	x̄��� − 1, x̄��� � 1

0, 
x̄���
 � 1

x̄��� + 1, x̄��� � − 1
� �6b�

where f =F / �kmb�, k̄a���=ka��� /km, and � �� denotes differentia-
tion with respect to �.

One of the main disadvantages of this model is its dependence
on the deformable-body model to determine the gear mesh param-
eters k�t� and e�t�. The involute profile modifications are repre-
sented in this model by e�t� that corresponds to unloaded STE.
Hence, a static analysis is performed on the deformable-body
model developed for the same gear pair, described in detail in Sec.
2.1, under unloaded conditions for several discrete positions over
a period of one mesh cycle to determine e�t�. Similarly, the mesh
stiffness function k�t� is obtained from the same static analysis of
the deformable-body model, now under operating load conditions.
As the gears rotate, the number of teeth in contact changes result-
ing in time-varying mesh stiffness. This analysis is repeated at the
same discrete rotational positions over a mesh cycle to obtain the
loaded static transmission error �LSTE�. This is used to estimate
the mesh stiffness at each discrete position i as

ki =
T1

r1
� 1

�LSTE − e�i
� �7�

Both e�t� and k�t� are represented in Fourier series form in the
model. The nonlinear differential equation of motion �6� is solved
numerically by using a fourth-order, variable-step Runge-Kutta
�Dormand-Prince pair� numerical integration routine available in
MATLAB.

It should be pointed out that this discrete model employs a
number of simplifying assumptions, rigid gear blank assumption
perhaps being the most critical one. Therefore, this model should
be expected to be reasonably accurate only for the applications
where the gear rims are quite rigid. In cases when this is not true,
a deformable-body model should be considered as the only accu-
rate model to predict gear dynamic behavior.

3 Validation of Dynamic Models

3.1 Experimental Study. A power-circulation-type test ma-

Fig. 3 Gear dynamics test machine
chine shown in Fig. 3 is employed for the experimental study. The
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ame test machine was used previously to study nonlinear behav-
or of spur gear pairs including jump discontinuities, parametric
esonances, and chaotic motions �16–18�. Experimental investiga-
ions on the influence of certain design parameters, such as tooth
rofile modifications �19� and contact ratio �20�, on the dynamic
ehavior of spur gear pair were also performed using the same
achine. A detailed description of the test machine can be found

n �16�. It is of primary interest here to note that the test gear set
hown to the left in Fig. 3 are well isolated from the reaction gear
ox through massive flywheels, elastomer couplings, and flexible
hafts, such that influence of the reaction gear pair on the dynamic
ehavior of the test gear system is negligible. A constant torque is
pplied to the closed loop thorough a split coupling. Each test gear
s assembled on its shaft precisely to avoid any mounting error. A
air of precision spherical roller bearings supports the bearings
hat are housed in the bearing caps. The bearing caps and the
earings pedestals are such that there are no shaft misalignments.
n addition, the bearing pedestals and the bedplate of the test
achine are rigid.
A rotational speed range of 500–4000 rpm �415–3330 Hz of
esh frequency� is considered for each test. The accelerometer-

ased DTE measurement system consists of four diametrically
pposed linear accelerometers on each test gear shaft that are
ounted near the gear blanks tangentially at a certain radius such

hat �̈1 and �̈2 can be measured with any gravitational effects
ancelled out. These signals are combined using analog circuitry

o obtain d2�DTE� /dt2=r1�̈1+r2�̈2, which is integrated twice to
btain DTE. Details of this method and the signal processing can
e found in �16�.

Different sets of spur test gear pairs are considered in the ex-
erimental study representing different modification parameters
nd involute contact ratios �ICR�. Experimental test matrix cov-
red an ICR range between 1.0 and 2.0 as well as different mag-
itudes of linear profile tip relief �
=0,4, and 10 �m� and differ-
nt roll angles where the tip relief starts ��=20.9 deg representing
he pitch point, �=22.2 deg near the highest point of single tooth
ontact, �=23.6 deg and �=24.8 deg�. Because of space limita-
ions, this paper will use data from a small subset of this experi-

ental study formed by the three gear pairs shown in Fig. 4. Table
lists the common gear design parameters of the test gears. Each

ear pairs are formed by identical gears �unity ratio� and operated
t a 150 mm center distance.

Each gear set was tested at several torque levels up to 350
-m; however, only the results for 170 Nm and 340 Nm are in-

luded in this paper. The rotational speed was varied between

ig. 4 The test gear pairs used in this study: „a… �=0, ICR
1.8; „b… �=10 �m, �=20.9 deg, ICR=1.8; and „c… �=0, ICR
1.4
00 rpm and 4000 rpm with an increment of nearly 50 rpm and

8 / Vol. 129, JANUARY 2007
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root-mean-square �rms� value of the measured DTE at each speed
increment was recorded under steady state conditions. In order to
capture jump-up- and jump-down-type nonlinear phenomena,
tests were repeated for both speed-up and speed-down conditions.

3.2 Comparison of Measured and Predicted DTE Values.
Dynamic analyses are performed using both models for different
sets of gear pairs described in Sec. 3.1. The models are validated
by comparing the predicted DTE values to the measured ones. The
deformable-body model for one of the example gear pairs is
shown in Fig. 1. Lumped inertias were added to the gear inertias
to account for the difference in the width between gear teeth and
the blank. The Rayleigh damping coefficients were chosen as �
=479 and �=1.4�10�−7 �28� so that the damping ratio is �1% as
determined by the experiments.

In order to capture jump-up- and jump-down-type nonlinear
phenomena as in experiments, simulations were also repeated for
both speed-up and speed-down conditions within a range of
500–4000 rpm �gear mesh frequency 415–3330 Hz� with a incre-
ment between 50 rpm and 150 rpm. In order to reach steady-state
motions, each deformable-body analysis was performed in four
different stages. First, the system was ramped up �or down� to the
desired speed in a relatively smaller number of very coarse time
steps �25 mesh cycles with 8 time steps per mesh cycle�. A second
stage of simulation was performed at this constant speed to sur-
pass the transients using a coarse time step �30–50 mesh cycles
with �20 time steps per mesh cycle�, followed by a more refined
third stage �25 mesh cycles with 50 points per mesh cycle� to
reach steady-state motions. The final stage of simulation used a
very small time step �4 mesh cycles with 128 points per mesh
cycle� to capture all dynamic motions to the desired resolution.
This final section of data was used to extract steady-state re-
sponse. Here, the main reason for performing the last two stages
separately was that stress calculations increase the computational
time by more than a factor of two. Hence, by enabling stress
calculations only in the final stage of analysis, significant amount
of computational effort was saved without compromising the re-
quired resolution of response. As in the case of an actual speed
sweep, the last simulation point of the steady-state motion from
the previous speed increment was considered as the initial condi-
tion for the ramp-up �ramp-down� followed by a refined steady-
state simulation.

For the discrete model simulation, gear inertias are calculated
using the disk approximation as 0.0073 kg-m2 and gear mesh pa-
rameters are obtained from the quasi-static analysis of
deformable-body model. Speed changes were introduced in sud-
den step increments. However, since the simulation is extremely
fast compared to that of the deformable-body model, a much
smaller speed increment was used and the simulation at each
speed increment was carried out with a refined time step ��125
mesh cycles with 128 points per mesh cycle�.

In the deformable-body model, time histories of DTE were cal-
culated from the angular displacements of the pinion and gear
using Eq. �1�. Time histories of the dynamic mesh force �DMF�
were obtained by adding all the individual dynamic tooth forces
�DTF�. Fast Fourier transform �FFT� of the each time history is

Table 1 Common design parameters of the spur gear pairs
used for the model validation

Number of teeth 50
Module, mm 3.0

Pressure angle, deg 20.0
Pitch diameter, mm 150.0
Base diameter, mm 140.954

Outside diameter, mm variable
Normal circular tooth thickness, mm 4.64

Helix angle, deg 0
Tooth profile modifications variable
used to compute the root-mean-square �rms� values of DTE and
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MF. Maximum principal stresses, �max, were computed at sev-
ral predetermined root locations ranging from the root center to
he start of active profile. Figure 5 illustrates time histories of
TF, DMF, and maximum principal stress at 2 kHz for a modified
ear pair with 
=10 �m and �=20.9 deg, computed by using the
eformable-body model.

In the case of the discrete model, DMF at a given time � is
efined as

DMF��� = kmb�2	x̄� + �1 + k̄a����g�x̄����� �8�
ere, it may be noted that the magnitude of the damping force

erm is very small compared to the mesh stiffness force term and,
ence, may be neglected in the calculation of the total gear mesh
orce. Individual dynamic tooth forces �DTF� were calculated us-
ng an approximate formula given by

DTF��� = �STF���
SMF

�DMF��� �9�

he static tooth force STF��� is obtained from the deformable-
ody model for one complete mesh cycle under quasi-static
onditions.

Data from three gear sets shown in Fig. 4 are presented here for
alidation of the models. In Fig. 6 for the first gear pair having no
rofile modification �
=0� and ICR=1.8 at 340 Nm, the rms val-
es of the measured DTE are compared to predictions of both
odels within the entire mesh frequency range of interest. It is

bserved in Fig. 6 that the predictions of the deformable-body
odel match measured data very well in terms of both overall

mplitudes and the shape of the forced response. The measured
rimary resonance near 3100 Hz as well as the first two superhar-
onic resonances near 1550 Hz and 1000 Hz are predicted accu-

ig. 5 Time histories of „a… dynamic tooth force, „b… dynamic
esh force, and „c… dynamic max principal stress at 2 kHz for a
odified gear pair with �=10 �m, �=20.9 deg, and ICR=1.8 at

40 Nm using deformable body model
ately by the deformable-body model. The amplitudes of the DTE

ournal of Mechanical Design
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are also predicted accurately in both resonance and off-resonance
regions. In addition, the measured nonlinear behavior character-
ized by a frequency range of double stable motions �a lower-
branch no-contact-loss motion and an upper-branch tooth-
separation motion� bounded by jump-up and jump-down
discontinuities also match well with the experimental data. The
same conclusions can also be reached for the discrete model with
one exception that the DTE predictions of this model along the
upper-branch tooth-separation motions are somewhat larger than
the experimental data as well as the deformable-body model pre-
dictions. This might be because the model shown in Fig. 2 is a
very simple one with many secondary effects neglected, including
gear blank deflections.

Figures 7 and 8 present the same type comparison for the other
two gear pairs at 340 Nm and 170 Nm, respectively. In Fig. 7 for
an ICR=1.8 gear pair with a linear tip relief of 
=10 �m starting
at the pitch line ��=20.9 deg roll angle�, the nonlinear behavior is
significantly less and the forced response is nearly linear. This is
attributed to the fact that the applied load of 340 Nm corresponds
to the “design load” for the profile modifications made on the gear
pair �19�. Because of this, the discrete model compares to experi-

Fig. 6 Comparison of measured and predicted rms values of
DTE for an unmodified gear pair with �=0 and ICR=1.8 at
340 Nm

Fig. 7 Comparison of measured and predicted rms values of
DTE for a modified gear pair with �=10 �m, �=20.9 deg, and

ICR=1.8 at 340 Nm
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ents as good as the deformable-body model. Meanwhile, the
onlinear jump discontinuities due to tooth separations are again
vident in Fig. 8 for the third gear pair having no profile modifi-
ations �
=0� but a different involute contact ratio, ICR=1.4 at
70 Nm. Similar to Fig. 6, both models compare well to the mea-
ured data, whereas the discrete model predicts larger upper-
ranch motions with separations. In addition to the good agree-
ent in terms of the rms values of DTE, the harmonic

omponents of predicted DTE also compare well to the experi-
ent. Figure 9 illustrates this for the gear pair used in Fig. 7 at

hree different gear mesh frequencies of 1.5, 2.1, and 2.9 kHz.
Comparisons to experimental data from gear pairs having pa-

ameters different from those shown in Fig. 4 were also made in
his study with the same level of agreement. For instance, gear
airs having other ICR values and different modification ampli-
udes �say, 
=4 �m� were tested and simulated at torque levels
ther than the ones considered here to demonstrate that both mod-
ls are indeed capable of predicting the dynamic response of a
ear pair accurately. These additional comparisons can be found
n �33�.

Comparison of DTE and Different Forms of DF
Next, the validated dynamic models introduced earlier will be

sed to investigate the relationship between the DTE, a commonly
easured and predicted noise metric, and different forms of dy-

amic factors that have been used in design to account for the
ncrease in forces and bending stresses due to dynamic effects.
efore this can be done, different versions of DF will be defined
ere based on the total gear mesh force, individual tooth forces,
nd the principal bending stresses. The dynamic mesh force factor
DF�mf will be defined as the ratio of the maximum value of the
ynamic mesh force in one complete mesh cycle of the steady-
tate response to the static mesh force

�DF�mf =
�DMF�max

SMF
�10a�

here SMF=T1 /r1=T2 /r2=const. Similarly, the dynamic tooth
orce factor �DF�tf is the ratio of the maximum value of the dy-
amic tooth force in one complete mesh cycle of the steady-state
esponse to the maximum value of the static tooth force during the

ig. 8 Comparison of measured and predicted rms values of
TE for an unmodified gear pair with �=0 and ICR=1.4 at
70 Nm
ame mesh cycle
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�DF�tf =
�DTF�max

�STF�max
�10b�

Finally, the dynamic stress factor �DF�� is defined as the ratio of
the maximum value of the dynamic bending stress �d on the gear
tooth in one complete mesh cycle of the steady-state response to
the maximum value of the static bending stress �s during one
mesh cycle

�DF�� =
��d�max

��s�max
�10c�

Figures 10–12 compare these three types of DF predicted by
both dynamic models to the predicted DTE values for the gear
pairs used in Figs. 6–8, respectively. In these figures, the top
figure displays �DF�mf, �DF�tf, and �DF�� together with DTE as
predicted by the deformable-body model while the bottom figure
shows discrete model predictions of �DF�mf, �DF�tf, and DTE.
�DF�� is not included in the bottom figures since the discrete

Fig. 9 Comparison of the harmonic amplitudes of measured
and predicted DTE for �=10 �m, �=20.9 deg, and ICR=1.8 at
340 Nm: „a… 1500 Hz, „b… 2100 Hz, and „c… 2900 Hz
model is not capable of predicting stresses. In Figs. 10–12, the
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ertical axis for �DF�mf, �DF�tf, and �DF�� is shown on the left-
and side and the vertical axis for DTE is to the right.

Focusing on the deformable-body model predictions first �Figs.
0�a�, 11�a�, and 12�a��, it is seen that �i� values of �DF�tf and
DF�� are very close to each other regardless of the mesh fre-
uency, and �ii� �DF�mf and rms values of DTE are proportional to
ach other. The first observation is somewhat expected since the
ooth force and the resultant bending stress can be considered to
e linearly proportional to each other, at least when only the tooth-
ending effects are considered. It can also be stated that �DF�mf is
lways significantly larger than both �DF�tf and �DF��. For in-
tance, at 2750 Hz in Fig. 10, lower branch motion has �DF�tf

�DF��=1.1 and �DF�mf =1.4. At the same frequency, the upper
ranch motion yields �DF�tf =1.8, �DF��=2.0 and �DF�mf =2.75.
t this frequency, a design based on �DF�mf would be about 25–
5 % more conservative than a design based on �DF�tf or �DF��.
onsidering that �DF�tf or �DF�� are directly related the contact
nd bending failures of a gear tooth, prediction of previous
iscrete-parameter models that focused solely on �DF�mf might
ot be able to represent the actual dynamic loading conditions
nd, hence, dynamic fatigue loading, experienced at the tooth
ank of a gear pair.
A comparison between the predictions of both models in Figs.

0–12 reveals that the discrete model is in good agreement with
he deformable-body model in predicting DF. This has practical
onsequences since the discrete model is several orders of magni-

ig. 10 Comparison of „DF…mf, „DF…tf, „DF…�, and „DTE…rms for
n unmodified gear pair with �=0 and ICR=1.8 at 340 Nm: „a…
eformable-body model and „b… discrete model
ude faster than the deformable-body model. Also considering that

ournal of Mechanical Design

 https://mechanicaldesign.asmedigitalcollection.asme.org on 07/01/2019 Terms o
values �DF�tf and �DF�� are rather close to each other, the discrete
model can provide a dynamic factor that can be readily used for
design purposes.

4.1 Relationships Between DTE and Different Forms of
DF. In the previous section, DF values were shown to follow the
same overall trends as DTE predictions as the mesh frequency is
varied. This brings the possibility of establishing certain relation-
ships between different forms of DF and DTE. If this can be
accomplished, measurement of DTE, which is in many cases a
more feasible task than measurement of DF especially for finer
pitch gears, could be used as an indirect measure of DF for design
purposes. This would also provide the well-established DTE da-
tabase to be used for durability purposes. In this section, an at-
tempt has been made to relate �i� DTE to �DF�mf and �ii� DTE to
�DF��. Since �DF�tf and �DF�� have similar values, the second
item would also relate DTE to �DF�tf.

For the relationship between DTE and �DF�mf, half of the peak-
to-peak values of DTE and DMF, denoted by �DTE�o-p and
�DMF�o-p were normalized with respect to 
 and SMF, respec-
tively. Here, 
 corresponds to the difference between the average
values of LSTE and unloaded STE given by 
= �LSTE�ave−eave.
These two normalized parameters at all mesh frequencies are plot-
ted against each other in Fig. 13 for all the three gear pairs con-
sidered earlier as predicted by the discrete model. In these figures,
the slope for the no contact loss solutions is nearly equal to unity

Fig. 11 Comparison of „DF…mf, „DF…tf, „DF…�, and „DTE…rms for a
modified gear pair with �=10 �m, �=20.9 deg, and ICR=1.8 at
340 Nm: „a… Deformable-body model and „b… discrete model
and, hence,
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�DMF�o-p

SMF
�

�DTE�o-p



�11a�

earranging this equation as

�DMF�o-p + SMF

SMF
�

�DTE�o-p



+ 1 �11b�

etting �DMF�o-p+SMF= �DMF�max, and using the earlier defini-
ion of �DF�mf given by Eq. �10a�, one writes the first relationship
f interest as

�DF�mf �
�DTE�o-p



+ 1 �12�

his relationship between �DF�mf and DTE is quite accurate in the
inear frequency ranges when no contact loss occurs, but would
ive a conservative estimate �DF�mf in the nonlinear regime. This
s evident in Figs. 13�a� and 13�c� for the regions of tooth sepa-
ation where the slope is nearly one-half. As a matter of fact, Eq.
11a� can be rewritten as

�DMF�o-p = �SMF



��DTE�o-p �13�

here the slope can be physically interpreted as the average value
f stiffness. In the nonlinear region, because the teeth separate
uring a portion of the mesh cycle, the average value of stiffness
s reduced. Hence, the decrease in slope observed in Figs. 13�a�
nd 13�c� should be expected.

The second relationship between �DF�� and DTE is illustrated

ig. 12 Comparison of „DF…mf, „DF…tf, „DF…�, and „DTE…rms for
n unmodified gear pair with �=0 and ICR=1.4 at 170 Nm: „a…
eformable-body model and „b… discrete model
ith the help of Figs. 14�a�–14�c� obtained by using the predic-
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tions of the deformable body model for the same three gear pairs.
These figures plot �DF�� against �DTE�max that is normalized with
respect to �LSTE�max. Figures 14 demonstrate a direct linear rela-
tionship between these two parameters such that

�DF�� =
�DTE�max

�LSTE�max
�14�

This relationship provides a very good approximation for �DF�� in
both linear and nonlinear regimes and can be used for design

Fig. 13 Normalized values of „DMF…o-p versus „DTE…o-p for „a…
�=0, ICR=1.8, „b… �=10 �m, �=20.9 deg, ICR=1.8, and „c… �
=0, ICR=1.4
purposes in estimating �DF�� from DTE.
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Conclusion
In this study, two different dynamic models of varying com-

lexity were developed and validated by comparing the predicted
TE values to the available experimental data. The deformable-
ody model is capable of predicting DTE, tooth forces, as well as
he tooth-bending stresses. The discrete model uses the results
rom the quasi-static analysis of the deformable-body model to
redict the DTE, and gear mesh and tooth forces. Three different
ynamic factors were defined and their values were compared
ith that of DTE in both linear and nonlinear motion regimes.

ig. 14 „DF…� versus „DTE…max for „a… �=0, ICR=1.8, „b… �
10 �m, �=20.9 deg, ICR=1.8, and „c… �=0, ICR=1.4
ynamic factors based on tooth forces and bending stresses were

ournal of Mechanical Design
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shown to be approximately equal, whereas dynamic factors based
on total gear mesh forces are consistently higher that the other two
types of dynamic factors. At the end, simple design formulas were
proposed to relate DTE to dynamic factors based on gear mesh
forces and stresses.

Nomenclature
b � backlash
C � damping matrix
c � viscous damping coefficient

DF � dynamic factor
DMF � dynamic mesh force
DTE � dynamic transmission error
DTF � dynamic tooth force

e � displacement excitation �unloaded static trans-
mission error�

F � force
g � nonlinear function
I � polar mass moment of inertia

ICR � involute contact ratio
K � stiffness matrix
k � stiffness

LSTE � loaded static transmission error
M � mass matrix
m � mass
r � base radius

SMF � static mesh force
STE � static transmission error
STF � static tooth force

T � torque
� � roll angle

 � tip relief magnitude

�, � � Rayleigh’s stiffness and mass damping
coefficients

� � alternating component of the rotational
displacement

� � bending stress
	 � damping ratio
� � dimensionless time
� � frequency

Subscripts
1, 2 � pinion and gear

a � alternating component
ave � average

d � dynamic
f � deflection component

m � mean component
max, min � maximum and minimum values

mf, tf � mesh force, tooth force
r � rigid body component

rms � root mean square value
s � static
� � bending stress

Superscripts
o-p � half of peak to peak value
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