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Abstract

A complex exponential map is said to be Misiurewicz if the forward trajectory of the
asymptotic value 0 lies in the Julia set and is bounded. We prove that the set of Misiurewicz
parameters in the exponential family λ exp(z), λ ∈ C \ {0}, has Lebesgue measure zero.

1 Introduction
We consider the exponential family

fλ(z) = λ exp(z) , λ ∈ C \ {0}, (1.1)

of entire transcendental functions. It is well known class of functions, studied by many authors.
It is impossible to list them all, but let us mention at least some: [2, 5, 6, 7, 12]. Note that
the dependence on the parameter λ in the considered family is analytic. These maps have only
one singular value 0, which is an asymptotic value, so the dynamics of fλ is determined by the
trajectory of 0. For a general description of the dynamics of transcendental functions and more
references see e.g. [3].

The notion of Misiurewicz maps derives from the paper [13] by M. Misiurewicz, where the
author studied e.g. the real quadratic family ga(x) = 1−ax2 in the case when ga is non-hyperbolic
and the critical point 0 is non-recurrent. We refer to [1] for a nice discussion concerning various
definitions of Misiurewicz condition in the complex case and more references. We are interested in
defining Misiurewicz maps for the exponential family (1.1). The authors of [4] call a parameter λ0

Misiurewicz if the only singular value 0 is eventually mapped by fλ0 onto a periodic cycle in the
Julia set J(fλ0). We want to generalize this notion and introduce the following definition which is
an analogue of the Misiurewicz’ original idea.

Definition 1.1 Parameter λ0 in the exponential family (1.1) is called Misiurewicz if the asymp-
totic value 0 belongs to the Julia set J(fλ0) and its fλ0-forward orbit is bounded.

Note that, since fλ0 is exponential, the boundedness of the orbit of 0 immediately implies that 0
is non-recurrent. Our definition of the Misiurewicz map obviously includes the case when 0 has
finite trajectory (like in [4]).

Urbanski and Zdunik in [15] showed that every Misiurewicz parameter λ0 in the exponential
family is unstable, i.e. in any neighbourhood of λ0 in the parameter space, there is some λ1

such that fλ0 and fλ1 are not quasi-conformally (topologically) conjugate. One can ask about
the Lebesgue measure of those parameters in the parameter space. Recently it was proved by
M. Aspenberg in [1] that the set of Misiurewicz maps has Lebesgue measure zero in the space of
rational functions of any fixed degree. In this paper we prove the following.

Theorem 1.2 The set of Misiurewicz parameters in the exponential family (1.1) has the Lebesgue
measure zero in C.
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Let us denote
M = {λ ∈ C \ {0} : λ is a Misiurewicz parameter}.

For every λ ∈M, since 0 has bounded trajectory under fλ, we can find some δ > 0 such that

Oλ(0) ⊂ B(0, 1/δ) \B(0, δ), (1.2)

where Oλ(0) =
⋃
n≥1 f

n
λ (0) is the forward trajectory of the asymptotic value 0. Parameters for

which (1.2) holds will be called δ-Misiurewicz. Denote also

Mδ = {λ ∈ C \ {0} : λ is δ-Misiurewicz}.

Note that
M =

⋃
n≥1

M1/n and δ1 < δ2 ⇒Mδ1 ⊃Mδ2 .

Following Aspenberg’s idea in [1] we will show that δ-Misiurewicz parameters are rare in any
neighbourhood of λ0.

Theorem 1.3 If λ0 is a Misiurewicz parameter, then for every δ > 0, the setMδ has the Lebesgue
density strictly smaller than one at λ0.

Obviously Theorem 1.3 implies that µ(Mδ) = 0 for every δ > 0, where µ is the 2-dimensional
Lebesgue measure. Hence

µ(M) ≤
∑
n≥1

µ(M1/n) = 0,

which is exactly the statement of Theorem 1.2.
The proof of Theorem 1.3 in general follows the Aspenberg’s approach from [1], however it

differs in some crucial details. The main difficulty is the presence of essential singularity at ∞ and
infinite degree of maps. Because of this our considerations have to be local in most cases. As we
will see in Lemma 5.2 sometimes we need to be much more careful and our estimates need to be
slightly more subtle to avoid obstacles which do not appear in the rational case.

We will focus on a Misiurewicz parameter λ0 and its neighbourhood B(λ0, r) in the parameter
plane. We will see how the Misiurewicz condition implies exponential expansion on Λ, the closure
of the forward trajectory of 0 under fλ0 , which leads to the existence of a holomorphic motion
h : Λ × B(λ0, r) → C conjugating the dynamics of fλ0 and nearby maps fλ, λ ∈ B(λ0, r), on
a neighbourhood of Λ. Next, we will use the expansion property and instability of Misiurewicz
exponential maps to derive nice distortion properties binding space and parameter derivatives in
a small scale. This allows us to control the growth of a parameter ball B(λ0, r) to a big scale,
where in turn we can estimate the measure of those parameters which are not δ-Misiurewicz.

2 Holomorphic motion and instability
In the following sections we will use the Euclidean metric and derivatives unless otherwise stated.
Take a Misiurewicz parameter λ0 ∈ M, then, since the only singular value of fλ0 is in the Julia
set, we have that J(fλ0) = C. Consider the set Λ = Oλ0(0), closure of the forward trajectory of 0
under fλ0 . It is compact, forward invariant, contains neither critical nor parabolic points. Hence,
by Theorem 1 in [8] (compare also with [14]), Λ is a hyperbolic set, i.e. there are real constants
C > 0 and a > 1 such that

|(fnλ0
)′(z)| ≥ Can for all z ∈ Λ and n ≥ 1.

Look now at the nearby exponential maps fλ, λ ∈ B(λ0, r). If r > 0 is sufficiently small, since
Λ is hyperbolic, there exists a holomorphic motion

h : Λ×B(λ0, r)→ C
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such that hλ0 = id, the map hλ := h(·, λ) : Λ → Λλ is quasiconformal for each parameter λ ∈
B(λ0, r), and h(z, ·) : B(λ0, r)→ C is holomorphic at every z ∈ Λ. To see this, follow the proof of
[11, Theorem III.1.6] locally in a neighbourhood of the hyperbolic set Λ. Moreover

hλ ◦ fλ0 = fλ ◦ hλ on Λ.

Note that Λλ := hλ(Λ) is a hyperbolic set for fλ.
Now, we want to obtain so-called transversality condition (cf. [1]), which says that the asymp-

totic value 0 cannot follow its holomorphic motion hλ(0) in the whole parameter ball B(λ0, r).
As we will see, it is an immediate consequence of the instability of Misiurewicz parameters (more
general Collet-Eckmann maps) in the exponential family proved by Urbański and Zdunik in [15]. It
follows also from the non-existence of invariant line-fields for Misiurewicz maps proved by Graczyk,
Kotus and Świątek in [8, Theorem 2]. For the convenience of the reader, we will use notation anal-
ogous to [1].

Recall that 0 is the only singular value of each fλ, thus its trajectory determines the dynamics
of the map. Consider a holomorphic function x : B(λ0, r)→ C given by

x(λ) = 0− hλ(0)

which is exactly the difference between the asymptotic value and its holomorphic motion. Note
that hλ(0) always belongs to the hyperbolic set Λλ. We obviously have that x(λ0) = 0. Our aim
is to show that λ0 is an isolated zero of x.

Lemma 2.1 The function x is not identically zero in any ball B(λ0, r) in the parameter plane.

Proof. Suppose that x(λ) ≡ 0 on some ball B(λ0, r). Then ξn(λ) := fnλ (0) would form a normal
family on B(λ0, r) and we could extend hλ to a quasiconformal conjugacy on the whole Julia set
J(fλ0) = C between two Misiurewicz maps fλ0 and fλ for any λ ∈ B(λ0, r) (cf. [10, Theorem 4.2]
and [9, Theorem 3.1]). But this means that λ0 would be a stable parameter. This is however
a contradiction since every Misiurewicz parameter in the exponential family is unstable (see [15]).
�

Therefore we have that
x(λ) = αK(λ− λ0)K + ... (2.1)

for some K ≥ 1 and αK 6= 0. This property will be crucial to obtain distortion estimates in the
next section.

3 Expansion and distortion estimates
In this section we will derive distortion estimates based on the expansion property near the hyper-
bolic set Λ. It is rather technical and mainly follows analogous proofs in [1]. We decided however
to keep it in a very detailed form for the convenience of the reader and also because of changes
which are minor but crucial.

Since Λ is a hyperbolic set, we can take a small neighbourhood N of Λ such that

|(fmλ0
)′(z)| > ã > 1 for some m ≥ 1 and all z ∈ N .

Moreover, for some small radius r > 0, decreasing slightly ã if necessarily, we also have

|(fmλ )′(z)| > ã > 1 for all z ∈ N and λ ∈ B(λ0, r).

We may also assume that the set N is closed, bounded (hence compact) and for some δ > 0,
N ⊂ B(0, 1/δ) \B(0, δ). We get therefore the following lemma.

Lemma 3.1 There are constants C > 0, a > 1 and radius r > 0 such that whenever f jλ(z) ∈ N
for j = 0, . . . , k and λ ∈ B(λ0, r), then

|(fkλ )′(z)| ≥ Cak.

3



If we now take some δ′ > 0 for which {z : dist(z,Λ) ≤ 11δ′} ⊂ N , then we will always assume
r > 0 to be so small that {z : dist(z,Λλ) ≤ 10δ′} ⊂ N for each λ ∈ B(λ0, r). This means that Λλ,
the hyperbolic set for fλ, is well inside N .

Recall that we have chosen N so that for some m ≥ 1, ã > 1 and for all z ∈ N , λ ∈ B(λ0, r),
we have |(fmλ )′(z)| ≥ ã. Thus for every z ∈ N we can find some radius r(z) > 0 such that

|fmλ (z)− fmλ (w)| ≥ ã|z − w| (3.1)

for all w ∈ N with |z−w| ≤ r(z) (decreasing slightly ã > 1 if necessarily). Since N is compact and
r(z) changes continuously, we can find a universal r̃ > 1 such that (3.1) holds for every z, w ∈ N
with |z − w| ≤ r̃. This implies exponential expansion in a small scale.

Lemma 3.2 There are constants δ̃, C > 0 and a > 1 such that for every λ ∈ B(λ0, r) and every
z, w ∈ N , if f jλ(z), f jλ(w) ∈ N and |f jλ(z)− f jλ(w)| ≤ δ̃ for j = 0, . . . , k, then

|fkλ (z)− fkλ (w)| ≥ Cak|z − w|.

Proof. Every integer k can be written in the form k = pm+ q, where q ≤ m− 1. For some C̃, δ̃ > 0
we can estimate for all λ ∈ B(λ0, r)

|fλ(z)− fλ(w)| ≥ C̃|z − w| for all z, w ∈ N with |z − w| ≤ δ̃.

If we now take z, w ∈ N for which assumptions of the lemma are satisfied, then

|fkλ (z)− fkλ (w)| ≥ ãp|fqλ(z)− fqλ(w)| ≥ ãpC̃q|z − w| ≥ akC|z − w|

for a = ã
1
m and some C > 0. �

We will use the expansion property in the following distortion estimates to show that in a small
scale parameter and space derivatives are comparable. For λ ∈ B(λ0, r) and n ≥ 0 put

ξn(λ) = fnλ (0) and µn(λ) = fnλ (hλ(0)) = hλ(fnλ0
(0)).

Then ξn(λ) is the forward orbit of the asymptotic value for fλ while µn(λ) is the holomorphic
motion of the asymptotic orbit for fλ0 , hence µn(λ) ∈ Λλ. In particular x(λ) = ξ0(λ)− µ0(λ).

The following lemma will be used several times in our distortion estimates. See [1] for references.

Lemma 3.3 Let un ∈ C for n = 1, . . . , N . Then∣∣∣∣∣
N∏
n=1

(1 + un)− 1

∣∣∣∣∣ ≤ exp

(
N∑
n=1

|un|

)
− 1.

Let us begin with the Main Distortion Lemma concerning control of the space derivative in
a neighbourhood of the hyperbolic set.

Lemma 3.4 For every ε > 0 we can find δ′ > 0 and r > 0 arbitrarily small with the following
property. For any a, b ∈ B(λ0, r) if |ξk(λ)− µk(λ)| ≤ δ′ for all k ≤ n and λ = a, b, then∣∣∣∣ (fna )′(0)

(fnb )′(0)
− 1
∣∣∣∣ < ε.

Proof. First we will show that for an arbitrarily small ε1 = ε1(δ′), it is possible to choose δ′ > 0
so that ∣∣∣∣ (fnλ )′(hλ(0))

(fnλ )′(0)
− 1
∣∣∣∣ ≤ ε1 (3.2)

provided |ξk(λ)− µk(λ)| ≤ δ′ for all k ≤ n.
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By the expansion property and since |f ′λ| > C−1
δ on N for some Cδ > 0, we can estimate for

any λ ∈ B(λ0, r):

n−1∑
j=0

∣∣∣∣f ′λ(µj(λ))− f ′λ(ξj(λ))
f ′λ(ξj(λ))

∣∣∣∣ ≤ Cδ n−1∑
j=0

|f ′λ(µj(λ))− f ′λ(ξj(λ))| ≤

≤ Cδ max
z∈N
|f ′′λ (z)|

n−1∑
j=0

|µj(λ)− ξj(λ)| ≤ C̃
n−1∑
j=0

Caj−n|µn(λ)− ξn(λ)| ≤ C ′δ′

Using Lemma 3.3 we obtain the inequality (3.2) if δ′ is small enough.
Secondly, for any ε2 > 0, if δ′ > 0 and r > 0 are chosen sufficiently small, then for every

t, s ∈ B(λ0, r) ∣∣∣∣ (fnt )′(ht(0))
(fns )′(hs(0))

− 1
∣∣∣∣ ≤ ε2. (3.3)

Put aλ,j = f ′λ(µj(λ)). Since each aλ,j is analytic with respect to λ, it can be expressed as follows:
aλ,j = aλ0,j(1 + cj(λ− λ0)j + . . .). Moreover, by Lemma 3.2 and (2.1), we have that

n ≤ −C log |x(λ)| ≤ −C̃ log |λ− λ0|, (3.4)

where constants depend only on δ′ and not on n. Thus, if c =
∑n−1
j=0 cj , then

(fnt )′(ht(0))
(fns )′(hs(0))

=
n−1∏
j=0

at,j
as,j

=
n−1∏
j=0

aλ0,j(1 + cj(t− λ0)l + . . .)
aλ0,j(1 + cj(s− λ0)l + . . .)

=
1 + cn(t− λ0)l + . . .

1 + cn(s− λ0)l + . . .
.

Now, both the numerator and the denominator can be made arbitrarily close to one if only r > 0
is small enough, since they are of order 1 +O(|t−λ0|l log |t−λ0|) and 1 +O(|s−λ0|l log |s−λ0|).

Putting together (3.2) and (3.3) we obtain the statement of the lemma. �
Next we want to compare space and parameter derivatives.

Lemma 3.5 Let ε > 0. If δ′ > 0 is sufficiently small, then for every 0 < δ′′ < δ′, there exists
an r > 0 such that the following holds. For any λ ∈ B(λ0, r), if |ξk(λ)−µk(λ)| ≤ δ′ for k ≤ n and
|ξn(λ)− µn(λ)| ≥ δ′′, then ∣∣∣∣ ξ′n(λ)

(fnλ )′(hλ(0))x′(λ)
− 1
∣∣∣∣ ≤ ε.

Proof. Note that we have

ξn(λ) = µn(λ) + (fnλ )′(hλ(0))x(λ) + En(λ),

where |En(λ)| ≤ ε′|ξn(λ) − µn(λ)| independently of n, for any small ε′ > 0, if only δ′ > 0 was
chosen small enough. To see this we will proceed similarly as in the first part of the proof of
Lemma 3.4. First we can write

(fnλ )′(hλ(0))x(λ)
ξn(λ)− µn(λ)

=
n−1∏
j=0

f ′λ(µj(λ))(ξj(λ)− µj(λ))
ξj+1(λ)− µj+1(λ)

.

By the expansion property - Lemma 3.2 - we can estimate as follows∣∣∣∣f ′λ(µj(λ))(ξj(λ)− µj(λ))
ξj+1(λ)− µj+1(λ)

− 1
∣∣∣∣ ≤ 1

Ca

∣∣∣∣f ′λ(µj(λ))− ξj+1(λ)− µj+1(λ)
ξj(λ)− µj(λ)

∣∣∣∣ ≤
≤ 1
Ca

max
z∈N
|f ′′λ (z)| |ξj(λ)− µj(λ)| ≤ M ′′

Ca
C−1aj−n|ξn(λ)− µn(λ)|,

for M ′′ = max{|f ′′λ (z)| : z ∈ N , λ ∈ B(λ0, r)}. Applying Lemma 3.3 we obtain the estimate we
were looking for.
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Put again f ′λ(µj(λ)) = aλ,j , then (fnλ )′(hλ(0)) =
∏n−1
j=0 aλ,j . Now, differentiate ξn with respect

to λ. By the Chain Rule we get

ξ′n(λ) =µ′n(λ) + x′(λ)
n−1∏
j=0

aλ,j + x(λ)
n−1∑
j=0

a′λ,j

∏n−1
k=0 aλ,k
aλ,j

+ E′n(λ) =

=
n−1∏
j=0

aλ,j

x′(λ) + x(λ)
n−1∑
j=0

a′λ,j
aλ,j

+
µ′n(λ) + E′n(λ)∏n−1

j=0 aλ,j

 .

In the following we want to show that x′(λ) is the leading term in the above expression.
Recall that δ′′ ≤ |ξn(λ) − µn(λ)| ≤ δ′, thus if r > 0 is small enough, then by Lemma 3.4, for

an arbitrarily small ε1 > 0

δ′ ≥ |ξn(λ)− µn(λ)| = |fnλ (0)− fnλ (hλ(0))| ≥ |(fnλ )′(hλ(0))||x(λ)| 1
1 + ε1

and
δ′′ ≤ |ξn(λ)− µn(λ)| = |fnλ (0)− fnλ (hλ(0))| ≤ |(fnλ )′(hλ(0))||x(λ)| 1

1− ε1
.

So we have

(1− ε1)δ′′ ≤ |x(λ)|
n−1∏
j=0

|aλ,j | ≤ (1 + ε1)δ′ (3.5)

Now we need to estimate |
∑ a′λ,j

aλ,j
|. Note that, since µj(λ) = f jλ(hλ(0)) ∈ Λλ, we get that

|aλ,j | = |f ′λ(µj(λ))| ≤ max
z∈Λλ,λ∈B(λ0,r)

|f ′λ(z)| and |aλ,j | ≥ Ca , C, a > 0.

Since aλ,j are uniformly bounded for every j and λ ∈ B(λ0, r), therefore, by Cauchy’s formula,
also a′λ,j are uniformly bounded by some M ′ > 0 on a slightly smaller ball B(λ0, r

′). We get the
following ∣∣∣∣∣∣

n−1∑
j=0

a′λ,j
aλ,j

∣∣∣∣∣∣ ≤
n−1∑
j=0

∣∣∣∣a′λ,jaλ,j

∣∣∣∣ ≤ nM ′Ca
=: nC̃.

Thus, using (3.4),

|x(λ)|
∣∣∣∣∑ a′λ,j

aλ,j

∣∣∣∣ ≤ |x(λ)|nC̃ ≤ |x(λ)|C ′(− log |x(λ)|)C̃,

where C ′ > 0 depends only on δ′, and, up to a multiplicative constant,

−|x(λ)| log |x(λ)|
|x′(λ)|

� −|(λ− λ0)K | log |λ− λ0|
|(λ− λ0)K−1|

� −|λ− λ0| log |λ− λ0|. (3.6)

Let us estimate

ξ′n(λ)
(fnλ )′(hλ(0))x′(λ)

− 1 =

∏
aλ,j

(
x′(λ) + x(λ)

∑ a′λ,j
aλ,j

+ µ′n(λ)+E′n(λ)∏
aλ,j

)
∏
aλ,j x′(λ)

− 1 =

=
x(λ)

∑ a′λ,j
aλ,j

x′(λ)
+
µ′n(λ) + E′n(λ)∏

aλ,j x′(λ)
.

By (3.6) the first summand tends uniformly to zero as λ → λ0. To see what happens with the
second summand note that |µ′n(λ) + E′n(λ)| is uniformly bounded by Cauchy’s formula, since
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µn(λ) and En(λ) are bounded. We have also seen that |
∏
aλ,j x(λ)| is bounded (from both sides)

independently of n. Therefore, by (3.5), we get∣∣∣∣ 1∏
aλ,j x′(λ)

∣∣∣∣ =
∣∣∣∣ 1∏

aλ,j x(λ)

∣∣∣∣ ∣∣∣∣ x(λ)
x′(λ)

∣∣∣∣ ≤ 1
δ′′(1− ε1)

∣∣∣∣ x(λ)
x′(λ)

∣∣∣∣ � |λ− λ0|,

thus also the second summand tends uniformly to zero as λ→ λ0. This finishes the proof. �
Binding together Lemma 3.4 and Lemma 3.5 we obtain the following result.

Corollary 3.6 Let ε > 0. If δ′ > 0 is small enough and 0 < δ′′ < δ′, we can find a radius r > 0
such that for every λ ∈ B(λ0, r) if |ξk(λ)− µk(λ)| ≤ δ′ for k ≤ n and |ξn(λ)− µn(λ)| ≥ δ′′, then∣∣∣∣ ξ′n(λ)

(fnλ )′(0)x′(λ)
− 1
∣∣∣∣ ≤ ε.

4 Distortion in an annulus
As we have seen in the previous section, we need to move away from λ0 in the parameter ball
B(λ0, r) in order to have nice distortion estimates. That is why we will restrict our considerations
to an annular domain. This approach will give us a powerful tool which is bounded distortion of
ξn and will lead to the control of the growth of B(λ0, r) under ξn.

Consider an annulus in the parameter space:

A = A(λ0; r1, r2) = {λ : r1 < |λ− λ0| < r2}.

Note that, by (2.1), for some constant C ≥ 1 and any λ1, λ2 ∈ A

C−1

(
r1

r2

)K−1

≤
∣∣∣∣x′(λ1)
x′(λ2)

∣∣∣∣ ≤ C (r2

r1

)K−1

,

where K is the degree of x(.) at λ0. Therefore from Corollary 3.6 and Lemma 3.4 we conclude that
if r2 > 0 is small enough, then

C̃−1

(
r1

r2

)K−1

≤
∣∣∣∣ξ′n(λ1)
ξ′n(λ2)

∣∣∣∣ ≤ C̃ (r2

r1

)K−1

,

for some C̃ ≥ 1 and all λ1, λ2 ∈ A, as long as |ξk(λ)−µk(λ)| ≤ δ′ for k ≤ n and |ξn(λ)−µn(λ)| ≥ δ′′
for all λ ∈ A.

Lemma 4.1 Let ε > 0. If δ′ > 0 and δ′′

δ′ are sufficiently small, 0 < δ′′ < δ′, there exists an r > 0
such that for any ball B = B(0, r2) ⊂ B(0, r) we have the following. Let n be maximal for which
|ξn(λ)− µn(λ)| ≤ δ′ for all λ ∈ B. Let r1 < r2 be minimal such that |ξn(λ)− µn(λ)| ≥ δ′′ for all
λ ∈ A = A(λ0; r1, r2). Then r1

r2
≤ 1

10 and there is some δ′′ < δ′1 < δ′ such that

A(µn(λ0); δ′′ + ε, δ′1 − ε) ⊂ ξn(A) ⊂ A(µn(λ0); δ′′ − ε, δ′1 + ε).

Moreover, ξn is at most K-to-1 on B.

Proof. Note that a parameter circle γr = {λ : |λ− λ0| = r}, for small r > 0, is mapped under x(.)
onto a curve that encircles λ0 K-times so that x(γr) is close to a circle of radius αKrK . Moreover,
|µn(λ) − µn(λ0)| = |hλ(fnλ0

(0)) − fnλ0
(0)| is arbitrarily small for small radius in the parameter

space, since Λ and Λλ can be very close to each other for λ ∈ B(λ0, r). Thus if r is small and
|ξn(λ)− µn(λ)| ≥ δ′′, then

|ξn(λ)− µn(λ)| > P |µn(λ)− µn(λ0)| (4.1)
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for some big P � 1 depending only on δ′′ and r. Arguing again like in the proof of Lemma 3.5,
we get that for every ε1 > 0 we can choose δ′ > 0 and r > 0 so that

|ξn(λ)− µn(λ)− (fnλ )′(0)x(λ)| < ε1|ξn(λ)− µn(λ)| (4.2)

for all λ ∈ B(0, r).
If r1 is minimal so that |ξn(λ) − µn(λ)| ≥ δ′′ for all λ ∈ A(λ0; r1, r2), then for some λ1 with

|λ1 − λ0| = r1 we have
|ξn(λ1)− µn(λ1)| = δ′′. (4.3)

On the other hand, from the definition of n, we have for some λ2 with |λ2 − λ0| = r2 that
|ξn+1(λ2)− µn+1(λ2)| ≥ δ′. But

|ξn+1(λ2)− µn+1(λ2)| = |fλ2(ξn(λ2))− fλ2(µn(λ2))| ≤M ′|ξn(λ2)− µn(λ2)|,

where M ′ = max{|f ′λ(z)| : z ∈ N , λ ∈ B(λ0, r)}. Therefore we get that

|ξn(λ2)− µn(λ2)| ≥ δ′

M ′
. (4.4)

Moreover, by (4.2), for every λ ∈ B(λ0, r), if r > 0 and δ′ > 0 were small enough, then

1
1 + ε1

|(fnλ )′(0)x(λ)| ≤ |ξn(λ)− µn(λ)| ≤ 1
1− ε1

|(fnλ )′(0)x(λ)|. (4.5)

Using (4.3), (4.4), (4.5) and Lemma 3.4 we can estimate as follows

δ′

δ′′
≤ M ′|ξn(λ2)− µn(λ2)|
|ξn(λ1)− µn(λ1)|

≤M ′ 1 + ε1

1− ε1

∣∣∣∣∣ (fnλ2
)′(0)x(λ2)

(fnλ1
)′(0)x(λ1)

∣∣∣∣∣ ≤M ′ (1 + ε1)2

1− ε1

∣∣∣∣x(λ2)
x(λ1)

∣∣∣∣ .
Thus we can choose δ′′ > 0 so small that r1

r2
≤ 1

10 independently of n.
Now we want to see how many times ξn(λ)−µn(λ) orbits around 0, as the parameter λ moves

along the circle γr, r > r1. To see this let us look at the expression ξn(λ)−µn(λ)
|ξn(λ)−µn(λ)| . But by (4.2) we

have that ∣∣∣∣ ξn(λ)− µn(λ)
|ξn(λ)− µn(λ)|

− (fnλ )′(0)x(λ)
|ξn(λ)− µn(λ)|

∣∣∣∣ ≤ ε1,

so it is the same to ask how many times (fnλ )′(0)x(λ) encircles 0. By Lemma 3.4, (fnλ )′(0) is
essentially constant on B(λ0, r2), so the number we are looking for is K, the same as for x(λ) only.
Further, recall after (4.1) that |µn(λ)− µn(λ0)| is much smaller than |ξn(λ)− µn(λ)|. This means
that ξn(λ) orbits around µn(λ0) = ξn(λ0) also K times close to some circle centered at µn(λ0).
By the Argument Principle, the degree of ξn is at most K.

In order to prove that the shape of the considered set is really close to round let us take λ1, λ2

with |λ1 − λ0| = |λ2 − λ0| = r. Then again by (4.5) and Lemma 3.4 we obtain the following
estimates ∣∣∣∣ξn(λ1)− µn(λ0)

ξn(λ2)− µn(λ0)

∣∣∣∣ ≤1 + ε

1− ε

∣∣∣∣ξn(λ1)− µn(λ1)
ξn(λ2)− µn(λ2)

∣∣∣∣ ≤ (1 + ε)2

(1− ε)2

∣∣∣∣∣ (fnλ1
)′(0)x(λ1)

(fnλ2
)′(0)x(λ2)

∣∣∣∣∣ ≤
≤ (1 + ε)3

(1− ε)2

∣∣∣∣∣ (fnλ2
)′(0)x(λ1)

(fnλ2
)′(0)x(λ2)

∣∣∣∣∣ =
(1 + ε)3

(1− ε)2

∣∣∣∣x(λ1)
x(λ2)

∣∣∣∣ .
The last expression can be arbitrarily close to 1 independently of n for small r. This means that
the set ξn(γr) is close to a circle centered at ξn(λ0) = µn(λ0) and of radius |ξn(λ) − µn(λ0)| for
any |λ − λ0| = r, so the annulus A is mapped onto a slightly distorted annulus whose shape can
be controlled independently of n. This finishes the proof of the lemma. �

With the notation of the previous lemma, we obtain from its proof and Lemma 3.4 the following
important corollary.

Corollary 4.2 If n is maximal for which |ξn(λ) − µn(λ)| ≤ δ′, λ ∈ B(0, r2), then for all λ with
|λ− λ0| = r2 we have |ξn(λ)− µn(λ)| ≥ δ′

2M ′ , if δ
′ > 0 and r > 0 were chosen small enough.

8



5 Measure estimates
By now we know how to control the behaviour of ξn in a small scale. In this section we will see how
does it act in a large scale. This will help us to estimate the Lebesgue measure of those parameters
λ for which fnλ (0) either turns back to a neighbourhood of zero or escapes close to infinity.

Let Uδ = C \ B(0, 1
δ ) ∪ B(0, δ), for some small δ > 0, be a neighbourhood of infinity and the

asymptotic value 0. We want to estimate the number of iterates of fλ, λ ∈ B(λ0, r) for some
r > 0, after which the image of a small disk intersecting the Julia set covers a big part of Uδ. Note
however that, since fλ is entire and Uδ is unbounded, it is impossible to cover whole Uδ in the
finite number of steps. Consider then a bounded set instead:

Ũδ = Uδ ∩B(0, 2/δ) = B(0, δ) ∪A(0; 1/δ, 2/δ). (5.1)

Lemma 5.1 Let D be a bounded set disjoint from Uδ containing a disk of radius d > 0 centered
at the Julia set of some f = fλ. Then we can choose an Ñ , depending only on d and f , such that

inf
{
m ∈ N : fm(D) ⊃ Ũδ

}
≤ Ñ .

Proof. Cover J(f) \ Uδ with a collection of open disks Dz of diameter d centered at z ∈ J(f) \ Uδ.
Since the family {fn} is not normal on J(f), for every Dz there is a minimal n = n(z) such that

fn(Dz) ⊃ Ũδ.

But n(z) is constant in some neighbourhood of z since fn is continuous, moreover J(f) \ Uδ is
compact, therefore we can find an integer Ñ such that n(z) ≤ Ñ for every z. �

Note that we can choose a radius r > 0 so that the statement holds for every fλ, λ ∈ B(λ0, r)
and say 2Ñ , which depends only on d > 0 for r small enough. It is possible since the dependence
on λ is analytic hence continuous.

We know now that fm(D) c Ũδ for some m ≤ Ñ . The next step is to estimate the measure
of those points from D that get mapped into Uδ under f j for some j ≤ m. Recall that f = fλ
is an exponential map and D is an open set disjoint from Uδ. In particular D ⊂ B(0, 1

δ ). The
following lemma is similar to an analogous one in the rational case (cf. [1, Lemma 4.2]), however
to prove it we have to be much more careful. Recall that µ denotes the Lebesgue measure, Uδ is
the δ-neighbourhood of 0 and ∞, while Ũδ is given by (5.1).

Lemma 5.2 Assume that D is an open set disjoint from Uδ and the integer m is such that
fm(D) c Ũ := Ũδ. Then there exists a constant N > 0, only depending on f , m and Uδ, such that

µ
({
z ∈ D : f j(z) ∈ Uδ for some 1 ≤ j ≤ m

})
≥ Nµ(D).

Proof. Let us define
F = {z ∈ D : f j(z) ∈ Uδ for some 1 ≤ j ≤ m}

and
F̃ = {z ∈ D : f j(z) ∈ Ũ for some 1 ≤ j ≤ m}.

Divide F̃ into m pairwise disjoint subsets, i.e. domains of the first entry map to Ũ :

F1 = {z ∈ D : f(z) ∈ Ũ} = f−1(Ũ) ∩D,
F2 = {z ∈ D : f2(z) ∈ Ũ but f(z) /∈ Ũ} = f−2(Ũ) ∩ f−1(C \ Ũ) ∩D,
F3 = {z ∈ D : f3(z) ∈ Ũ but f(z) /∈ Ũ , f2(z) /∈ Ũ},

...

Fm = {z ∈ D : fm(z) ∈ Ũ but f j(z) /∈ Ũ for j ≤ m− 1} =

= f−m(Ũ) ∩
m−1⋂
j=1

f−j(C \ Ũ) ∩D.
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Then F̃ = F1 ∪ F2 ∪ . . . ∪ Fm and the sum is disjoint. But, since D ⊂ B(0, 1
δ ) and the set⋃m

j=0 f
j(B(0, 1

δ )) is bounded, we can take some bounded set A disjoint from Ũ instead of C \ Ũ
in the definition of sets F2, . . . , Fm, i.e.

F2 = f−2(Ũ) ∩ f−1(A) ∩D
...

Fm = f−m(Ũ) ∩
m−1⋂
j=1

f−j(A) ∩D.

Note also that

D \ F̃ = {z ∈ D : f(z) /∈ Ũ , . . . , fm(z) /∈ Ũ} =
m⋂
j=1

f−j(C \ Ũ) ∩D =
m⋂
j=1

f−j(A) ∩D.

To estimate the degree of fm on D\ F̃ recall that f is 2πi-periodic, A is a bounded set in C\ Ũ ,
hence A∩B(0, δ) = ∅. Note that the set f−1(A)∩A intersects finitely many, say nA, fundamental
strips for f and is bounded. Next, f−1(f−1(A)∩A)∩A intersects at most nA fundamental strips
and is bounded as well, and so on. Since on every strip f is injective, we conclude that the degree
of fm on D \ F̃ is at most (nA)m and this number depends only on f , m and A (which in turn
depends on f , m and δ).

Moreover, on every Fj the modulus of the derivative |(f j)′| is bounded from above by some
constant cj = cj(f,m, δ). On the other hand on D\F̃ , |(fm)′| is bounded from below by a constant
a = a(f,m, δ) > 0. Since µ is the 2-dimensional Lebesgue measure, we get the following estimates.

µ(Ũ) ≤
m∑
j=1

∫
Fj

|(f j)′(z)|2dµ(z) ≤
m∑
j=1

c2jµ(Fj) ≤ max
j=1,...,m

c2j

m∑
j=1

µ(Fj) =: Cµ(F̃ ), (5.2)

Denote g(w) = {z ∈ D \ F̃ : fm(z) = w} for w ∈ C \ Ũ . Actually it is enough to consider w ∈ A,
since fm : D \ F̃ → A. Then:

µ(D \ F̃ ) =
∫

C\Ũ

∑
z∈g(w)

|(fm(z))|−2dµ(w) =
∫
A

∑
z∈g(w)

|(fm(z))|−2dµ(w) ≤

≤ (nA)ma−2µ(A) =: κµ(A).

(5.3)

Finally, for some constant MŨ,m = MŨ,m(f,m, Ũ) > 0 we have that

µ(Ũ) ≥MŨ,mµ(A). (5.4)

Putting together (5.2), (5.3) and (5.4) we obtain the following

µ(F̃ ) ≥ 1
C
µ(Ũ) ≥

MŨ,m

C
µ(A) ≥

MŨ,m

Cκ
µ(D \ F̃ ),

which implies that
µ(F ) ≥ µ(F̃ ) ≥ Nµ(D)

for some constant N = N(f,m, δ). �

6 Conclusion
Consider fλ, λ ∈ B(λ0, ε) for some small ε > 0. For r ≤ ε denote

A(z) = {λ ∈ B(λ0, r) : ξn(λ) = z} , for z ∈ D = ξn(B(λ0, r)).
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Proposition 6.1 There exist δ′ > 0 and 0 < r̃ < ε, only depending on fλ0 , such that for any
0 < r < r̃, if we take the maximal integer n for which diam(ξn(B(λ0, r))) ≤ δ′, then ξn(B(λ0, r))
contains a ball centered at µn(λ0) ∈ J(fλ0) of diameter δ′

2M ′ , where M
′ = max{|f ′λ| : z ∈ N , λ ∈

B(λ0, r̃)}. The degree of ξn on B(λ0, r) is bounded by K only depending on the family fλ, λ ∈
B(λ0, r̃).

Moreover, if δ > 0, Uδ = B(0, δ) ∪ (C \ B(0, 1
δ )) and D = ξn(B(λ0, r)), there are constants

C > 0 and Ñ such that

µ
({
z ∈ D : ξn+j(a(z)) ∈ Uδ for all a(z) ∈ A(z) and some 1 ≤ j ≤ Ñ

})
≥ Cµ(D),

where C depends only on fλ0 and Uδ.

Proof. First part follows from Lemma 4.1 and Corollary 4.2, if only r̃ is chosen small enough so
that z and its holomorphic motion hλ(z) are sufficiently close for all z ∈ Λ and λ ∈ B(λ0, r̃).

To prove the second part we apply Lemma 5.1 for fλ0 and Uδ/2, and next Lemma 5.2. It follows
that there exists an integer Ñ and a constant C > 0, depending only on fλ0 , Ñ and δ > 0, such
that

µ
({
z ∈ D : f jλ0

(z) ∈ Ũδ/2 for some 1 ≤ j ≤ Ñ
})
≥ Cµ(D),

where, recalling our notation, Ũδ/2 = B(0, δ/2) ∪ A(0; 2/δ, 4/δ). Now, since we have only finitely
many steps to consider, we can decrease r̃ > 0 if necessarily to have that for any λ ∈ B(λ0, r̃)

f jλ0
(ξn(λ)) ∈ Ũδ/2 =⇒ ξn+j(λ) = f jλ(ξn(λ)) ∈ Uδ

for any j < Ñ . �
To conclude with the proof of Theorem 1.3, recall that fλ0 was a Misiurewicz exponential map

and consider fλ = λez, λ ∈ B(λ0, r) for some small r > 0. Take an arbitrarily small δ > 0 (such
that e.g. fλ0 is 2δ-Misiurewicz). We want to show that the set of δ-Misiurewicz maps in B(λ0, r)
has the Lebesgue density less than one at λ0.

Let δ′ > 0 and r̃ > 0 be chosen so that the statement of the Proposition 6.1 is satisfied and
all our expansion and distortion properties hold. Consider a parameter ball B = B(λ0, r2) for any
r2 ≤ r̃. Let N be the largest possible integer for which ξN (B) has the diameter at most δ′ and let
Ñ be as in the Proposition 6.1.

Lemma 6.2 It is possible to choose δ′′ ∈ (0, δ′) so that for every λ ∈ B(λ0, r)

ξN+j(λ) ∈ U3δ/4 for some j ≤ Ñ =⇒ λ ∈ A(λ0; r1, r2),

where r1 > 0 is minimal for which |ξn(λ)− µn(λ)| ≥ δ′′ for all λ ∈ A(λ0; r1, r2).

Proof. Note that in the Proposition 6.1 we could choose δ′′ > 0 as small as desired, provided r̃ > 0
was small enough. Thus, to have that for any λ ∈ B(λ0, r̃) with |ξN (λ) − µN (λ)| ≤ δ′′ and for
j ≤ Ñ

|ξN+j(λ)− µN+j(λ)| ≤ bj |ξN (λ)− µN (λ)| ≤ δ′

it is sufficient to choose δ′′ so small that bÑ ≤ δ′

δ′′ , where

b = max{|f ′λ(z)| : z ∈ N , λ ∈ B(λ0, r̃)} , b > 1.

Next, we know that µN+j(λ) ∈ N and N ∩ Uδ = ∅ (if r̃ small). Thus, if δ′ < δ/4, then ξN+j(λ) /∈
U3δ/4 for all λ with |ξN (λ)− µN (λ)| ≤ δ′′. �

Recall that inside the annulus A = A(λ0; r1, r2) we have bounded distortion:

1
C ′

(
r1

r2

)K−1

≤
∣∣∣∣ξ′N (λ1)
ξ′N (λ2)

∣∣∣∣ ≤ C ′(r2

r1

)K−1

.
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Moreover, if r̃ was chosen small enough and we take λi with |λi − λ0| = ri, i = 1, 2, since
diam(ξN (B)) ≤ δ′,

|ξN (λ1)− µN (λ1)| ≥ δ′′ and |ξN (λ2)− µN (λ2)| ≤ 1
1− ε

δ′,

consequently, applying Lemma 3.4 and (4.2), we get similarly like in the proof of Lemma 4.1,

δ′′

δ′
≤ 1

1− ε

∣∣∣∣ξN (λ1)− µN (λ1)
ξN (λ2)− µN (λ2)

∣∣∣∣ ≤ 1 + ε

(1− ε)2

∣∣∣∣ (fλ1)′(0)x(λ1)
(fλ2)′(0)x(λ2)

∣∣∣∣ ≤
≤ (1 + ε)2

(1− ε)2

∣∣∣∣ (fλ2)′(0)x(λ1)
(fλ2)′(0)x(λ2)

∣∣∣∣ =
(1 + ε)2

(1− ε)2

∣∣∣∣x(λ1)
x(λ2)

∣∣∣∣ ≤ (1 + ε)3

(1− ε)3

(
r1

r2

)K
,

and therefore (
r1

r2

)K
≥
(

1− ε
1 + ε

)3
δ′′

δ′
.

As a consequence we obtain uniform bounds on the distortion of ξN on the annulus A:

C̃−1 ≤
∣∣∣∣ξ′N (λ1)
ξ′N (λ2)

∣∣∣∣ ≤ C̃ (6.1)

for all λ1, λ2 ∈ A, where C̃ depends only on δ′′ and δ′, if r̃ was chosen small enough. On the other
hand, we have also had r1

r2
≤ 1

10 , thus µ(A) ≥ 99
100µ(B).

Recall our notation: A(z) = {λ ∈ B : ξN (λ) = z} for z ∈ ξN (B) =: D. Let

E =
{
z ∈ D : ξN+j(a(z)) ∈ U3δ/4 for all a(z) ∈ A(z) and some j ≤ Ñ

}
.

By Proposition 6.1 there is some C > 0, independent of D, such that µ(E) ≥ Cµ(D). We want to
estimate the measure of the following set G = {λ ∈ B : ξN (λ) ∈ E}. But, by Lemma 6.2, we have
that

G = H := {λ ∈ A : ξN (λ) ∈ E}.

Take any point z0 ∈ A. By (6.1) we get

µ(E) ≤
∫
H

|ξ′N (z)|2dµ(z) ≤ C̃2|ξ′N (z0)|2µ(H).

On the other hand, since the degree of ξN is bounded by K on A,

µ(A) =
∫
D

∑
z∈ξ−1

N (w)∩A

|ξ′N (z)|−2dµ(w) ≤ C̃2K|ξ′N (z0)|−2µ(D).

Therefore
µ(H) ≥C̃−2|ξ′N (z0)|−2µ(E) ≥ C̃−2|ξ′N (z0)|−2Cµ(D) ≥

≥CC̃
−4

K
µ(A) ≥ CC̃−4

K

99
100

µ(B).

Thus for some q ∈ (0, 1), q = q(δ′, δ′′, Uδ), we have that

µ ({λ ∈ B : ξN (λ) ∈ E}) ≥ qµ(B).

But, by the definition of E, this implies that

µ
(
{λ ∈ B : ξn(λ) ∈ U3δ/4 for some n ≥ N}

)
≥ qµ(B).
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If the asymptotic value 0 falls under fλ to a slightly smaller set U3δ/4 ⊂ Uδ, then fλ cannot be
δ-Misiurewicz, so

µ ({λ ∈ B(λ0, r2) : fλ is not δ-Misiurewicz}) ≥ qµ(B(λ0, r2)).

Since it holds for every r2 ≤ r̃, the Lebesgue density of δ-Misiurewicz maps at λ0 is at most
1− q < 1. This finishes the proof of Theorem 1.3.
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