
Annals of Mathematics and Artificial Intelligence 36: 5–38, 2002.
 2002 Kluwer Academic Publishers. Printed in the Netherlands.

An algebraic representation of calendars

Peng Ning a, Xiaoyang Sean Wang b and Sushil Jajodia b

a Department of Computer Science, North Carolina State University, Raleigh, NC 27695-7534, USA
E-mail: ning@csc.ncsu.edu

b Department of Information & Software Engineering, George Mason University, 4400 University Drive,
Fairfax, VA 22030-4444, USA

E-mail: {xywang, jajodia}@gmu.edu

This paper uses an algebraic approach to define temporal granularities and calendars. All
the granularities in a calendar are expressed as algebraic expressions based on a single “bot-
tom” granularity. The operations used in the algebra directly reflect the ways with which
people construct new granularities from existing ones, and hence yield more natural and com-
pact granularities definitions. Calendar is formalized on the basis of the algebraic operations,
and properties of calendars are studied. As a step towards practical applications, the paper
also presents algorithms for granule conversions between granularities in a calendar.

Keywords: temporal granularity, calendar, calendar algebra, granule conversion

AMS subject classification: 68T30, 68U35, 68W30

1. Introduction

System support for time has long been recognized to be important. Time is of-
ten represented in terms of closely related granularities (e.g., year, month, day) that
are organized into calendars (e.g., Gregorian calendar). Reasoning and processing of
time are usually performed on these representations. The reasoning processes usually
require knowledge not only about the involved granularities but also the relationships
among them. Moreover, for applications that allow user-defined granularities and calen-
dars (e.g., scheduling applications), it is critical for the representation mechanisms to be
natural and flexible as well. This paper presents such a representation mechanism that
accommodates these requirements.

Natural representation is important not only for the ease of use. In many cases, it
also allows more compact representations. As an example, consider the specification of
leap years. A year is a leap one if the year (i.e., its number) is divisible by 4, but not
divisible by 100 unless it’s divisible by 400. A direct method of “coding” the leap year
information is to have the above rule embedded in the definition of the granularity year.
Unfortunately, it seems that all current proposals of granularity symbolic representations
adopt an “explicit” method, namely give a separate definition to each year in a 400-year
period. Using such a method, the system cannot easily “rediscover” the leap-year rule
and take advantage of it in a reasoning system. Moreover, such a method is not scalable

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357332433?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

6 P. Ning et al. / An algebraic representation of calendars

to granularities with large periods. In particular, the enumeration will take more storage,
and manipulating large periods may result in poor performance.

In this paper, we develop an algebraic representation for time granularities, which
we call the calendar algebra. Each time granularity is defined as a mapping from its
index set to the subsets of the time domain [1]. We assume that there exists a “bottom”
granularity known to the system. Calendar algebra operations are designed to generate
new granularities from the bottom one or recursively, from those already generated.
Thus, the relationship between the operand(s) and the resulting granularities are encoded
in the operations.

The central issue to be resolved is to design a set of operations that capture the
characteristics of calendars both naturally and expressively. On the basis of how the
human calendars are usually formed, we come up with a set of operations that conform
to the human perspective of granularities. For example, granularity month can be gen-
erated on the basis of granularity day by several calendar algebra operations. The first
operation generates a granularity by partitioning all the days into 31-day groups, the
second operation shrinks the second group of every 12 groups (which corresponds to
February) by 3 days, the third step shrinks the fourth group of every 12 ones (which
corresponds to April) by 1 day, etc. To define month on the basis of day includ-
ing all the leap year information, we only need nine such operations (see section 3 for
details) without explicit enumeration of all the months in a period of 400 years (i.e.,
4,800 months).

We formalize the notion of calendar on the basis of granularities generated by cal-
endar algebra. Informally, a calendar is a collection of granularities generated from a
single bottom granularity and the ways in which the non-bottom granularities are gen-
erated. For example, we may have a calendar that has two granularities second and
minute, where second is the bottom granularity and minute is generated by group-
ing every 60 seconds. We study the high-level relationships, especially the dependency,
between the granularities in the same calendar. It turns out that the relationships among
the granularities in the same calendar have some nice properties.

The process of finding some granules in one granularity that has a particular rela-
tionship with a set of given granules in another granularity is called granule conversion.
An example is to find all the business days in a given month. Granule conversion is
essential to many applications such as automatic evaluation of user queries, mixed gran-
ularities and multiple calendars support, and rolling up along a time hierarchy in time
series analysis or OLAP applications. We develop a generic method to solve the general
granule conversion problem.

The above mapping viewpoint of granularity represents granules using indices,
e.g., integers. However, people are used to relative representations. For example, a par-
ticular day is usually represented in the form of, for example, January 3, 2001, which
denotes the 3rd day in the first month in year 2001. To formalize such representations,
we develop label mappings on the basis of granule conversions. Then the aforemen-
tioned day January 3, 2001 can be represented as a label (2001, 1, 3) on the given set of
granularities year, month and day.

P. Ning et al. / An algebraic representation of calendars 7

The relative representation and granule conversion combined give rise to some
interesting computation capabilities. For example, to find the week day of January 3,
2001, we only need to convert the day to a relative representation (x, 4), where x is the
index of the week of January 3, 2001, based on the two granularities week and day.
Indeed, since it is the 4th day of week x, it is a Wednesday (counting from Sunday as
usually done in the US). Other examples include finding the date of the first Monday of
September 2001 and finding the week day that is the 200th day of year 2001.

The rest of this paper is organized as follows. Section 2 defines some prelimi-
nary concepts that will be used throughout this paper. Section 3 presents the algebraic
operations. Section 4 formalizes the notion of calendar on the basis of the algebraic
operations and studies its properties. Section 5 discusses granule conversion between
granularities within a calendar, and presents the notion of vector label, which provides
a relative representation for time granules. Section 6 discusses the related work, and
section 7 concludes the paper.

2. Preliminaries

We adopt some notions about temporal granularity from [1,2].

Definition 1. A time domain is a pair (T ,�), where T is a non-empty set of time instants
and � is a total order on T .

A time domain is the set of primitive temporal entities used to define and interpret
time-related concepts. The temporal entities in the set are ordered by a relationship,
�, on these entities. Integers (Z,�), natural numbers (N,�), rational (Q,�), and real
numbers (R,�) are all examples of time domains with their natural total orders. In this
paper, we assume that there is a fixed time domain without loss of generality.

Definition 2. A granularity is a mapping G from the integers (the index set) to the
subsets of the time domain such that (1) if i < j and G(i) and G(j) are non-empty,
then each element of G(i) is less than all the elements of G(j), and (2) if i < k < j and
G(i) and G(j) are non-empty, then G(k) is non-empty.

Each non-empty set G(i) is called a granule of granularity G.
The first condition states that the time instants of different granules do not inter-

leave and their index order is the same as their time domain order, i.e., the mapping must
be monotonic. The second condition disallows an empty set to be the value of a mapping
for an index value if both a lower index and a higher index are mapped to nonempty sets.

To simplify the algebra, we use an extended notion of granularity.

Definition 3. A labeled granularity is a pair (L,G), where L is a subset of the integers,
and G is a mapping from L to the subsets of the time domain such that (1) if i < j ,
where i and j are in L, and G(i) and G(j) are non-empty, then each element in G(i) is

8 P. Ning et al. / An algebraic representation of calendars

less than all the elements of G(j), and (2) if i < k < j , where i, j , and k are in L, and
G(i) and G(j) are non-empty, then G(k) is non-empty. L is called the label set of G.

When L is exactly the integers, we call the granularity full-integer labeled. Note
that full-integer labeled granularities are exactly “regular” granularities defined in defin-
ition 2 since labels coincide with indices. However, in general, the label set L can be an
arbitrary subset of (possibly noncontiguous) integers and these labels are used instead of
indices to identify granules.

The reason that we allow the label set to be possibly noncontiguous is due to the
need for computational efficiency. For example, to union two granularities (e.g., Sun-
day and Saturday, see section 3), we have to make sure the granules of the two
operand granularities are properly aligned in the resulting granularity. It is much easier
to have the labels of the operand granularities already aligned than to reorder the gran-
ules from both granularities and reassign the labels. This implies that we cannot always
have integers as the label sets of granularities. For example, if both Sunday and Sat-
urday have integers as the label sets, then we will have to reassign the labels to the
granules of the union of Sunday and Saturday since the granules of these two gran-
ularities actually interleave with each other. Nevertheless, using noncontiguous integers
as the label set may be unintuitive and confuse human users. We address this problem
by introducing a relative representation mechanism called vector labels in section 5.6.

We will still use G to denote labeled granularities and refer to labeled granularities
as granularities when no confusion arises.

2.1. Relationships between labeled granularities

To facilitate the description of calendar algebra operations, we now extend some
relationships between granularities that have the same time domain to labeled granular-
ities. For detailed information about the original relationships, please refer to [1,2].

Group into A labeled granularity G groups into a labeled granularity H if for each label
i of H , there exists a subset S of the label set of G such that H(i) = ⋃

j∈S G(j). For
example, each week consists of seven days, so granularity day groups into granularity
week.

Finer than A labeled granularity G is finer than a labeled granularity H if for each
label i of G, there exists a label j of H such that G(i) ⊆ H(j). For example, every
day is in a certain month, so day is finer than month.

Subgranularity A labeled granularity G is a subgranularity of a labeled granularity H

if for each label i of G, there exists a label j of H such that G(i) = H(j). For
example, Sunday is a subgranularity of day. Note that G is a subgranularity of H
if and only if H groups into G and G is finer than H .

Label-aligned subgranularity A labeled granularity G is a label-aligned subgranular-
ity of a labeled granularity H if for each label i of G, i is also a label of H and
G(i) = H(i). For instance, if each Sunday has the same label as the corresponding
day, then Sunday is a label-aligned subgranularity of day.

P. Ning et al. / An algebraic representation of calendars 9

Figure 1. The groups periodically into relationship.

Note that the difference between the label-aligned subgranularity relationship and
the “usual” subgranularity relationship is that here each granule of G1 uses exactly
the same label as the one used by the corresponding granule in G2.

Shift equivalent Full-integer labeled granularities G and H are shift equivalent if there
exists an integer k such that G(i) = H(i + k) for all i ∈ Z. For example, if
each hour of GMT-Hour has a label that is larger than the corresponding hour of
USEastTime-Hour by 5, then GMT-Hour and USEastTime-Hour are shift
equivalent.

Partition A labeled granularity G partitions a labeled granularity H if G groups into
H and G is finer than H . For example, day partitions week, since day both groups
into and is finer than week.

Groups periodically into A labeled granularity G groups periodically into a labeled
granularity H if G groups into H and there exist positive integers R,P , where R is
less than the number of granules of H , such that (1) for each label i of H , i + R is
a label of H if there is a label of H that is greater than or equal to i + R, and (2) for
each label i of H , if H(i) = ⋃k

r=0 G(jr) and H(i + R) is a non-empty granule of H
then H(i + R) = ⋃k

r=0 G(jr + P). Figure 1 shows two such granularities G and H ,
where G groups periodically into H with P and R being 7 and 2, respectively.

3. Calendar algebra

In this section, we present a symbolic representation of granularities. The design of
the representation scheme starts with the observation that granularities used in a calendar
are not isolated but closely related. We thus design our symbolic representation based on
some algebraic operations that capture these relationships. The symbolic representation
is called the calendar algebra.

The calendar algebra consists of two kinds of operations: grouping-oriented and
granule-oriented operations. The grouping-oriented operations combine certain gran-
ules of a granularity together to form the granules of the new granularity, while the
granule-oriented operations do not change the granules of a granularity, but rather make
choices of which granules should remain in the new granularity. Certain calendar op-
erations will only work on full-integer labeled granularities, while others will be more
easily defined and implemented using more flexible labeling as in a labeled granularity.

10 P. Ning et al. / An algebraic representation of calendars

Figure 2. Grouping operation.

3.1. The grouping-oriented operations

3.1.1. The grouping operation
Let G be a full-integer labeled granularity, and m a positive integer. The grouping

operation Groupm(G) generates a new granularity G′ by partitioning the granules of G
into m-granule groups and making each group a granule of the resulting granularity.
More precisely, G′ = Groupm(G) is the full-integer labeled granularity such that for
each integer i, G′(i) = ⋃im

j=(i−1)m+1 G(j).
Figure 2 shows an example of the grouping operation, where granularity week is

defined by week = Group7(day). Note here we assume that the day labeled 1 starts a
week.

3.1.2. The altering-tick operation
Let G1, G2 be full-integer labeled granularities, and l, k, m integers, where G2

partitions G1, and 1 � l � m. The altering-tick operation Alterml,k(G2,G1) generates a
new full-integer labeled granularity by periodically expanding or shrinking granules of
G1 in terms of granules of G2. Since G2 partitions G1, each granule of G1 consists of
some contiguous granules of G2. The granules of G1 can be partitioned into m-granule
groups such that G1(1) to G1(m) are in one group, G1(m + 1) to G1(2m) are in the
following group, and so on. The altering-tick operation modifies the granules of G1 so
that the lth granule of each group has |k| additional (or fewer when k < 0) granules of
G2. For example, if G1 represents 30-day groups (i.e., G1 = Group30(day)) and we
want to add a day (i.e., k = 1) to the 5th one in each group of 12 months (i.e., l = 5 and
m = 12), we may have Alter12

5,1(day,G1). Intuitively, this makes May have 31 days.
More specifically, for all i = l + mn, where n is an integer, G1(i) denotes the

granule to be shrunk or expanded. The granules of G1 are split into two parts at G1(0).
When i > 0, G1(i) expands (or shrinks if k < 0) by taking in (or pushing out) later
granules of G2, and the effect is propagated to later granules of G1. When i � 0, G1(i)

expands (or shrinks if k < 0) by taking in (or pushing out) earlier granules of G2, and
the effect is propagated to earlier granules of G1.

The altering-tick operation can be formally described as follows. For each integer
i such that G1(i) �= ∅, let bi and ti be the integers such that G1(i) = ⋃ti

j=bi
G2(j). (The

integers bi and ti exist because G2 partitions G1.) Then G′ = Alterml,k(G2,G1) is the
granularity such that for each integer i, let G′(i) = ∅ if G1(i) = ∅, and otherwise let

G′(i) =
t ′i⋃

j=b′
i

G2(j),

P. Ning et al. / An algebraic representation of calendars 11

Figure 3. Altering-tick operation.

where

b′
i =

{
bi + (h − 1)k, if i = (h − 1)m + l,

bi + hk, otherwise,

t ′i = ti + hk,

and

h =
⌊
i − l

m

⌋
+ 1.

Figure 3 shows an example of an altering-tick operation. Suppose we want to have
a granularity called G that has six days in the second granule in every three-granule group
(starting from the second one) and has seven days in the other granules. That is, G(1)
has 7 days, G(2) has 6 days, and then G(3) has 7 days, and so on. Then G can be defined
by G = Alter3

2,−1(day,week).
Note that the grouping operation is a special case of the altering-tick operation.

Indeed, Groupm(G) = Alter1
1,m−1(G,G), i.e., combining every m granules together is

the same as expanding every granule by m−1 granules. However, we keep the grouping
operation because of its conceptual simplicity.

An extension of the operation is also used: when the parameter m is infin-
ity (∞), the altering-tick operation Alter∞

l,k(G2,G1) means only altering the granule
G1(l). For example, to add a leap second to the last minute of 1998, we may use
Alter∞

x,1(second,minute), where x is the label of the last minute of 1998.

3.1.3. Shifting operation
Let G be a full-integer labeled granularity, and m an integer. The shifting operation

Shiftm(G) generates a new full-integer labeled granularity G′ by shifting the labels of G
by m positions. For each integer i, the granule G′(i) has the same time instants as
granule G(i − m). More formally, G′ = Shiftm(G) is the granularity such that for each
integer i, G′(i) = G(i −m). Note that G is shift equivalent to G′.

The shifting operation can easily model time differences. Suppose granularity
USEast-Hour stands for the hours of US Eastern Time. Since the hours of US Pa-
cific Time are 3 hours later than those of US Eastern Time, the hours of US Pacific Time
can be generated by USPacific-Hour= Shift−3(USEast-Hour).

Note. The grouping, altering-tick and shifting operations are collectively called basic
operations. These basic operations are restricted to operate on full-integer labeled gran-

12 P. Ning et al. / An algebraic representation of calendars

ularities (i.e., “regular” granularities), and the granularities generated by these operations
are still full-integer labeled ones.

3.1.4. Combining operation
Let G1 and G2 be granularities with label sets L1 and L2, respectively. The

combining operation Combine(G1,G2) generates a new granularity G′ by combining
all the granules of G2 that are included in one granule of G1 into one granule of
G′. More formally, for each i ∈ L1, let s(i) = ∅ if G1(i) = ∅, and otherwise let
s(i) = {j ∈ L2 | ∅ �= G2(j) ⊆ G1(i)}. Then G′ = Combine(G1,G2) is the gran-
ularity with the label set LG′ = {i ∈ L1 | s(i) �= ∅} such that for each i in LG′ ,
G′(i) = ⋃

j∈s(i) G2(j).
For instance, given granularities business-day (which represents the busi-

ness days) and month, the granularity for business months can be generated by
business-month = Combine(month,business-day). That is, each business
month is a union of all the business days in the month.

3.1.5. Anchored grouping operation
Anchored grouping operation is a variation of the grouping operation. Let G1 and

G2 be granularities with label sets L1 and L2, respectively, where G1 is a full-integer la-
beled granularity, and G2 is a label-aligned subgranularity of G1. The anchored grouping
operation Anchored-group(G1,G2) generates a new granularity G′ by combining all the
granules of G1 that are between two granules of G2 into one granule of G′. More pre-
cisely, G′ = Anchored-group(G1,G2) is the granularity with the label set LG′ = L2

such that for each i ∈ LG′ , G′(i) = ⋃i′−1
j=i G1(j), where i′ is the next label of G2 after i.

Granularity G2 is called the anchor granularity of G1 in this operation. The
granules of G2 divide the granules of G1 into groups, and each group is made into
a granule of the resulting granularity (by the anchored grouping operation). For ex-
ample, suppose each fiscal year at a company begins in October and ends in the next
September. Then the granularity corresponding to the fiscal years can be generated by
FiscalYear = Anchored-group(month,October).

3.2. Granule-oriented operations

3.2.1. Subset operation
The subset operation is designed to generate a new granularity by selecting an

interval of granules from another granularity.
Let G be a granularity with label set L, and m,n integers such that m � n. The

subset operation G′ = Subsetnm(G) generates a new granularity G′ by taking all the
granules of G whose labels are between m and n. More formally, G′ = Subsetnm(G) is
the granularity with the label set LG′ = {i ∈ L | m � i � n}, and for each i ∈ LG′ ,
G′(i) = G(i). For example, given granularity year, all the years after the 20th century
can be generated by FutureYear = Subset∞2001(year).

P. Ning et al. / An algebraic representation of calendars 13

Note that G′ is a label-aligned subgranularity of G, and G′ is not a full-integer
labeled granularity even if G is. We also allow in the above the extensions of setting
m = −∞ or n = ∞ with semantics extended in a usual way.

3.2.2. Selecting operations
The selecting operations are all binary operations. They generate new granularities

by selecting granules from the first operand in terms of their relationship with the gran-
ules of the second operand. The result is always a label-aligned subgranularity of the
first operand granularity.

There are three selecting operations: select-down, select-up and select-by-intersect.
To facilitate the description of these operations, we introduce a notation for subsets of a
given set of integers. Suppose S is a set of n integers. Let S = {j1, j2, . . . , jn}, where
j1 < j2 < · · · < jn. For each i � 0, let ji be an arbitrary integer less than j1, and for
each i > n, let ji be an arbitrary integer greater than jn. Given two integers k and l,
where k �= 0 and l > 0, �l

k(S) denotes the subset of S defined as follows.

�l
k(S) =

{
S ∩ {jk, . . . , jk+l−1}, if k > 0,
S ∩ {j(n+k+2)−1, . . . , j(n+k+2)−l}, if k < 0.

Therefore, if k > 0, �l
k(S) consists of the l (or less than l if the range determined by k

and l is out of S) integers in S starting from the kth one from the beginning of the list.
For example, �2

3({1, 2, 3, 4, 5, 6, 7}) = {3, 4}, since it should include two labels (l = 2)
starting from the third label (k = 3). If k < 0, �l

k(S) consists of the l (or less than l if the
range determined by k and l is out of S) integers in S starting from the |k|th one from the
end of the list counting backward. For example, �3−7({1, 2, 3, 4, 5, 6, 7}) = {1, 2, 3},
since it should consist of three labels (l = 3) starting from the seven-th label (k = −7)
from the end.

Let G1 and G2 be granularities with label sets L1 and L2, respectively. In the
following, we describe the selecting operations using the �l

k(·) operator.

Select-down operation. For each granule G2(i), there may exist a set of granules
of G1 contained in G2(i). The operation Select-downlk(G1,G2), where k �= 0 and
l > 0 are integers, selects granules of G1 by picking up l granules starting from the
kth one in each set of granules of G1 contained in one granule of G2. More formally,
G′ = Select-downlk(G1,G2) is the granularity with the label set LG′ = ⋃

i∈L2
�l

k({j ∈
L1 | ∅ �= G1(j) ⊆ G2(i)}), and for each i ∈ LG′ , G′(i) = G1(i). For exam-
ple, Sunday is considered the first day in a week in the United States. Then given
granularities week and day, the granularity for the Sundays can be generated by
Sunday = Select-down1

1(day,week). Note that G′ is a label-aligned subgranularity
of G1.

Select-up operation. The select-up operation Select-up(G1,G2) generates a new
granularity G′ by selecting the granules of G1 that contain one or more granules
of G2. More formally, G′ = Select-up(G1,G2) is the granularity with the label

14 P. Ning et al. / An algebraic representation of calendars

set LG′ = {i ∈ L1 | ∃j ∈ L2(∅ �= G2(j) ⊆ G1(i))}, and for each i ∈ LG′ ,
G′(i) = G1(i). For example, given granularities week and FirstDayOfMonth, the
granularity of the first week of each month can be defined by FirstWeekOfMonth=
Select-up(week,FirstDayOfMonth). Note that G′ is a label-aligned subgranularity
of G1.

Select-by-intersect operation. For each granule G2(i), there may exist a set of gran-
ules of G1, each granule intersecting G2(i). The operation Select-by-intersectlk(G1,G2),
where k �= 0 and l > 0 are integers, selects granules of G1 by selecting l granules
starting from the kth one in all such sets, generating a new granularity G′. More for-
mally, G′ = Select-by-intersectlk(G1,G2) is the granularity with the label set LG′ =⋃

i∈L2
�l

k({j ∈ L1 | G1(j) ∩ G2(i) �= ∅}), and for each i ∈ LG′ , G′(i) = G1(i). For
example, given the granularities week and Semester, the granularity consisting of
the last week of each semester (among all the weeks intersecting the semester) can be
generated by LastWeekOfSemester = Select-by-intersect1

−1(week,Semester).
Again, G′ is a label-aligned subgranularity of G1.

3.2.3. Set operations
The set operations are based on the viewpoint that each granularity corresponds

to a set of granules mapped from the labels. In order to have the set operations as
a part of the calendar algebra and to make certain computations easier, we restrict the
operand granularities participating in the set operations so that the result of the operation
is always a valid granularity: the set operations are defined on G1 and G2 only if there
exists a granularity H such that G1 and G2 are both label-aligned subgranularities
of H . In the following, we describe the union, intersection and difference operations of
G1 and G2, assuming that they satisfy the requirement.

Union. The union operation G1 ∪ G2 generates a new granularity G′ by collecting all
the granules from both G1 and G2. More formally, G′ = G1 ∪G2 is the granularity with
the label set L′ = L1 ∪ L2, and for each i ∈ LG′ ,

G′(i) =
{
G1(i), i ∈ L1,

G2(i), i ∈ L2 − L1.

For example, given granularities Sunday and Saturday, the granularity of the week-
end days can be generated by WeekendDay = Sunday ∪ Saturday. Note that G1

and G2 are label-aligned subgranularities of G′. In addition, if G1 and G2 are label-
aligned subgranularity of H , then G′ is also a label-aligned subgranularity of H . This is
derived from the transitivity of the label-aligned subgranularity relationship.

Intersection. The intersection operation G1 ∩ G2 generates a new granularity G′ by
taking the common granules from both G1 and G2. More formally, G′ = G1 ∩ G2

is the granularity with the label set L′ = L1 ∩ L2, and for each i ∈ L′, G′(i) =
G1(i) (or equivalently G2(i)). For example, given the granularity FullMoonDay,
which includes the days when there is a full moon, and the granularity Weekday, the

P. Ning et al. / An algebraic representation of calendars 15

granularity for the days that are both full-moon days and weekdays can be generated by
FullMoonWeekDay = FullMoonDay∩ Weekday. Note that G′ is a label-aligned
subgranularity of both G1 and G2.

Difference. The difference operation G1 − G2 generates a new granularity G′ by ex-
cluding the granules of G2 from those of G1. More formally, G′ = G1 − G2 is the
granularity with the label set L′ = L1 − L2, and for each i ∈ L′, G′(i) = G1(i). For
example, business days are all the week days that are not federal holidays. Then given
granularities Weekday and FederalHoliday,BusinessDay can be generated by
BusinessDay = Weekday − FederalHoliday. Note that G′ is a label-aligned
subgranularity of G1.

From the definition of the calendar algebraic operations, it is clear that the opera-
tions are defined by manipulating the granules of the operand granularities. In addition,
we have the following lemma on the basis of the definition of the calendar algebraic
operations.

Lemma 1. Each granule of a granularity generated by a calendar algebraic operation
consists of one or many granules of at least one operand granularity.

3.3. Examples

Here we present some more example granularities represented in the calendar al-
gebra. Assuming that second is given, we may have the following.

• minute = Group60(second),

• hour = Group60(minute),

• day = Group24(hour),

• week = Group7(day),

• pseudomonth= Alter12
11,−1(day, Alter12

9,−1(day, Alter12
6,−1(day, Alter12

4,−1(day,
Alter12

2,−3(day, Group31(day)))))), where the granularity pseudomonth is gener-
ated by grouping 31 days, and then shrink April (4), June (6), September (9) and
November (11) by 1 day, and shrink February (2) by 3 days,

• month = Alter12∗400
2+12∗399,1(day, Alter12∗100

2+12∗99,−1(day, Alter12∗4
2+12∗3,1(day, pseudo-

month))), where the February of each leap year is adjusted appropriately,

• Monday = Select-down1
1(day,week),

• . . . ,

• Sunday = Select-down1
7(day,week).

In the above examples, we assumed that second(1) starts a minute, minute(1)
starts an hour, etc. Note that the granularity pseudomonth was first defined to repre-
sent the months in nonleap years, and then month was generated by taking into consid-
eration the leap years based on pseudomonth.

16 P. Ning et al. / An algebraic representation of calendars

Informally, we call a calendar algebraic operation or a composition of several op-
erations with the operand granularity(ies) a calendar algebraic expression, or simply
a calendar expression. In the above examples, the granularity hour is defined by a
calendar algebraic expression Group60(minute), which consists of only one grouping
operation, and the granularity month is defined by a more complex calendar algebraic
expression with three altering-tick operations.

3.4. Further assumption and expressiveness

By the definition of the operations, the granularities participating in a calendar
operation may have to satisfy certain conditions. For example, the set operations only
apply to granularities that are label-aligned subgranularities of a common one. In gen-
eral, checking these preconditions is infeasible. For example, given two granularities
G1 and G2 over the same time domain, to determine whether G1 groups into G2 is to
check whether there exists a set S of granules of G1 for each granule G2(i) such that
G2(i) = ∑

j∈S G1(j), and it is impossible if G1 and G2 are arbitrary granularities that
have infinite number of granules.

To make the check of preconditions feasible, we assume that there is only one
predefined, full-integer labeled granularity called the bottom granularity and all the other
granularities are generated from the bottom granularity by calendar algebraic operations.
(Indeed, this is how human calendars are formed. There is usually one finest granularity
(e.g., day, second, or nanosecond), on the basis of which all the other granularities
are formed.)

Note that the bottom granularity does not have to cover the entire time domain; it
may have gaps within and/or between its granules. Since our algebraic operations are
defined by manipulating the labels of the operand granularities, all the operations are
still well defined. For example, we may use the granularity of WeekDays as the bot-
tom granularity, assuming WeekDays is full-integer labeled. Then we may define two
new granularities by G = Group5(WeekDays) and G′ = Alter2

1,−1(WeekDays,G).
Figure 4 shows the granularities WeekDays, G and G′, where the dotted segments rep-
resent the part of the time domain not covered by the bottom granularity. Note that G′(1)
consists of WeekDays(1) through WeekDays(4), G′(2) consists of WeekDays(5)
through WeekDays(9), and so on. Both G and G′ are full-integer labeled.

Figure 4. Using a bottom granularity that does not cover the entire time domain.

P. Ning et al. / An algebraic representation of calendars 17

Also note that we do not specify the bottom granularity, but only require it to be
full-integer labeled. For example, the bottom granularity can be one that consists of gran-
ules with equal size (e.g., second, minute), and it can also be one that have granules
with different sizes (e.g., month). Although the choice of the bottom granularity affects
the granularities generated by calendar algebra, it does not affect the relationships be-
tween the generated granularities and itself. Indeed, many temporal applications (e.g.,
temporal databases) only care about the relationships between different granularities.

To study the expressiveness of the calendar algebra, we define the concepts of
periodical granularity and finite granularity.

Definition 4. A granularity G is said to be periodical (with respect to the bottom gran-
ularity B) if B groups periodically into G.

Assume B = day. It is easily seen that week is periodical since day groups
periodically into week (with R = 1 and P = 7). Furthermore, year is also periodical
since day groups periodically into year (with R = 400 and P being the number of
days in a four-hundred year period).

Definition 5. A granularity G is said to be finite (with respect to the bottom granularity
B) if B groups into G and the number of G’s granules is finite.

Theorem 1. The calendar algebra can represent all the granularities that are either peri-
odical or finite (with respect to the bottom granularity).

Proof. Assume that the bottom granularity B groups into all the granularities being
considered. Consider an infinite periodical granularity G that has no first nor last gran-
ule. It is clear that there exist positive integers R and P , where R is less than the num-
ber of granules of G, such that (1) for each label i of G, i + R is a label of G, and
(2) for each label i of G, if G(i) = ⋃k

r=0 B(jr), then G(i + R) = ⋃k
r=0 B(jr + P).

We divide the granules of B into P -granule periods. Then it is easily seen that
Select-down1

i (bottom,GroupP (bottom)) gives a granularity that consists of the ith
granule of the bottom granularity for each period. Let S be the (finite) set of granules of
the bottom granularity that are in the first period and also contained in granules of G. By
using the above expression repeated by a finite number of times (once for each integer
in S) and using the union operation (note that each above granularity is a label-aligned
subgranularity of the bottom), we can get a granularity that is a subgranularity of the
bottom whose granules are exactly those that group into the granules of G. Call this
granularity H . Now assume that G′ is the subgranularity of the bottom such that each
granule of G starts exactly with a granule of G′. It is not difficult to see that G′ is also pe-
riodical and can be built by using the Group, Select-down, and union operations from B.
Now it is easily seen that G = Anchored-group(H,G′).

Consider an infinite periodical granularity G that has a first granule. Let m be
the label of the first granule. We can construct an infinite periodical granularity G′

18 P. Ning et al. / An algebraic representation of calendars

by repeating the granules of G backward so that it is an infinite periodical granularity
without first and last granule. According to the above discussion, G′ can be represented
by calendar algebraic operations. Thus, G can by defined by G = Subset∞m (G′). An
infinite periodical granularity having a last granule can be defined similarly.

Consider a finite granularity G. Let m and n be the smallest and the largest label
of G, respectively. We can construct an infinite periodical granularity G′ by repeating
the granules of G both forward and backward. According to the above discussion, G′
can be represented by calendar algebraic operations. Thus, G can be defined by G =
Subsetnm(G

′). �

From the proof of theorem 1 we can see not all operations are required to represent
all finite or periodical granularities. However, the goal of the calendar algebra is to
provide a natural and flexible representation that can encode the relationships among
different granularities. Each of the operations indeed captures one particular way in
which a new granularity is generated from existing ones.

Note that the calendar algebra can express granularities that are not periodic
nor finite due to the variation of the altering-tick operation, which may use ∞ as
the period. For example, if we add a leap second into minute (defined in sec-
tion 3.3) by minute_with_leap_second = Alter∞

x,1(second,minute), where
x is the label of the minute into which the leap second is added, then minute_with_
leap_second is neither periodic nor finite. An exact characterization is beyond the
scope of this paper.

Remark. The calendar algebra has some properties that may facilitate reasoning about
the generated granularities. As a simple example, consider G1 = Group5(Shift5(G))

and G2 = Shift1(Group5(G)). We can easily conclude that G1 = G2, i.e., they represent
the same granularity. Thus, all the granularities that are finer than (or group into) G1

are finer than (or group into) G2. However, due to space reasons, full exploration of the
algebraic equivalence of calendar expressions and its applications is out of the scope of
this paper.

4. Calendar

4.1. Syntactic restrictions

Checking the preconditions could still be rather annoying with the assumption of
the bottom granularity. For example, suppose we need to check whether G is full-
integer labeled, where G is defined by G = (

⋃l1
i=1 Select-down1

ki
(day,month)) ∪

(
⋃l2

j=1 Select-down1
mj
(day,week)) on the basis of the granularities in section 3.3. In

general, we only need to check the integers within a period of G with respect to day,
since day groups periodically into G. However, we cannot decide whether an integer in
the period is a valid label or not without using the exact values of ki’s and mj ’s. Indeed,

P. Ning et al. / An algebraic representation of calendars 19

we have to use these parameters to check all the integers in the whole period, since each
integer in the period has the possibility of being either a valid or an invalid label.

To avoid the above situations, we further adopt some syntactic restrictions, namely
to use the explicit relationships derived from the operations themselves, so that only the
operators (not the parameters in the operators) need to be checked. As an additional
benefit, the granule conversion problem (see section 5) is also simplified due to the
syntactic restrictions.

Note that the preconditions of the operations only use the following kinds of re-
quirements: (1) a granularity must be a full-integer labeled one, (2) a granularity must
partition another one, and (3) a granularity is a label-aligned subgranularity of an-
other.

We partition the granularities generated by the calendar algebra into three lay-
ers. Which layer a generated granularity is in is determined by the operations and the
operands used to define the granularity. Figure 5 shows the three-layered partition of
the granularities defined by the calendar algebra and the transitions between the layers
resulting from calendar algebraic operations. Layer 1 consists of the bottom granularity
and the granularities generated by only applying (maybe repeatedly) the basic operations
(grouping, altering-tick and shifting). Layer 2 consists of the granularities that are the
result of applying (maybe repeatedly) the subset operation and the selecting operations
on the full-integer labeled granularities in the first layer. In addition to subset and se-
lecting operations, set operations can be applied to the granularities in layer 2 that are
label-aligned subgranularities of the same granularity in layer 1. The result will be in
layer 2. Layer 3 consists of granularities that are the result of the combining and an-
chored grouping operations. Note that operand 1 for the anchored grouping operation
must be from layer 1 (a full-integer labeled granularity), while the combine operation
may take granularities of any layers.

The three-layer partition not only facilitates the calendar algebraic operations, but
also leaves some interesting properties. All the granularities in layer 1 are full-integer

Figure 5. Three-layered partition of the granularities generated from one bottom granularity.

20 P. Ning et al. / An algebraic representation of calendars

labeled. Such a granularity may have granules that have gaps in terms of the time domain
when the bottom granularity has such gaps in its granules; however, there will be no gaps
in terms of the granules of the bottom granularity. All granularities in layer 2 may not
be full-integer labeled, but there is no gap within each granule of every granularity in
terms of the bottom granularity, i.e., each granule is an interval of granules of the bottom
granularity. The granularities in layer 3, however, may contain gaps (in terms of the
bottom granularity) within a granule. Thus, from the layer in which a granularity is, we
can infer its granule pattern in terms of the bottom granularity.

Note that the proof of theorem 1 follows the syntactic restrictions. This means
that even with the syntactic restrictions, the calendar algebra can still represent all the
granularities that are either periodical or finite.

4.2. Formalization of calendar

Intuitively, a calendar is a way to arrange correlated granularities. Here we abuse
the word calendar a bit to denote both the set of granularities and how they are defined.
A calendar can be considered being built up in a constructive manner. Initially, the
calendar consists of only the bottom granularity. New granularities can be generated
by the calendar algebra operations on the basis of granularities already in the calendar.
Then the new granularities and the way they are defined (i.e., the calendar expression)
are added into the calendar. The formal definition of calendar is as follows.

Definition 6. Let B be the bottom granularity. A calendar is recursively defined as
follows:

• ({B}, {}) is a calendar;

• If (T ,E) is a calendar, e is a calendar algebraic expression on the granularities in T ,
and G /∈ T is the granularity defined by e, then (T ∪ {G}, E ∪ {e}) is a calendar. We
say e is the expression associated with G.

According to the above definition, all the calendars originate from the bottom gran-
ularity, and a new calendar is formed by adding into an existing calendar new granular-
ities defined by calendar expressions. Each granularity in a calendar has an expression
associated except for the bottom granularity.

Example. Let second be the bottom granularity. Then we may have a calen-
dar C0 = ({second}, {}). Given the calendar algebraic expression minute =
Group60(second), C1 = ({second,minute}, {minute = Group60(second)}) is
also a calendar. Similarly, the calendar C = (T ,E) can be constructed from C1, where

T = {second, minute, hour, day, week, pseudomonth, month,
year, Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday, Sunday}

and E is given by the calendar expressions in section 3.3.

P. Ning et al. / An algebraic representation of calendars 21

The granularities in a calendar are all related to each other by the calendar expres-
sions that define them. The relationship between them can be pictorially demonstrated
by a dependency graph.

Definition 7. The dependency graph for a calendar (T ,E) is a directed graph, whose
nodes are the granularities in T and for each pair of granularities G and G′ in T , there is
an edge from G to G′ if and only if G′ appears in the expression associated with G.

The dependency graph for a calendar shows what granularities are used to define
other granularities. The nodes to which there is an edge from a granularity G represent
all the granularities that appear in the expression associated with G. It follows directly
from the basic graph theory that in a dependency graph for a calendar with the bottom
granularity B, there exists a path from each granularity G (other than B) to B. This
intuitively says that all granularities directly or indirectly depends on the bottom granu-
larity. In addition, it also follows (from definitions 6 and 7) that the dependency graph is
acyclic. Figure 6(a) shows the dependency graph for calendar C in the above example.

In the dependency graph for a calendar, all the edges from a granularity G point
to all the granularities in the expression associated with G, and G can be defined by
the expression associated with these granularities. For example, in figure 6(a), the
edges from Monday point to week and day, and Monday is defined by the expres-
sion Monday = Select-down1

1(day,week). Note that a granularity (e.g., week) in
the expression associated with G has edges pointing to other granularities (e.g., day)
if it is not the bottom granularity. By induction, it is easy to see that a granularity G

can be defined by the granularities at the ends of all the paths and the composition of
the expressions associated with the granularities along the paths. In particular, if all the
paths from G finally come to a single granularity H , then G can be defined by H using
the composition of the expressions along the paths. For example, in figure 6(a), all the

Figure 6. The dependency graph and the defined-only-on relation for calendar C.

22 P. Ning et al. / An algebraic representation of calendars

paths from Monday come to day. Thus, Monday is defined by day and the expres-
sions associated with week and Monday. This observation is captured by the following
definition of defined-only-on relation.

Definition 8. Let (T ,E) be a calendar with the bottom granularity B, and G1 and G2

two granularities in T . Then G1 is said to be defined-only-on G2 if G2 is on all the paths
from G1 to B in the dependency graph.

Figure 6(b) shows the relation defined-only-on among the granularities defined in
calendar C in the above example. (The transitive edges are omitted from the figure.) It is
easy to see that in a calendar with the bottom granularity B, all the granularities G other
than B are defined-only-on B.

Note that the syntactic restriction for the altering-tick operation actually requires
that the second operand granularity is defined-only-on the first one.

The granularities in a calendar form a partial order with respect to the defined-
only-on relation. Let (T ,E) be a calendar with the bottom granularity B, and G1, G2

and G3 any three granularities in the calendar. If G1 is defined-only-on G2, then, by
definition, G2 is in all the paths from G1 to B in the dependency graph of the calendar.
Then G2 cannot be defined-only-on G1. Indeed, otherwise, G1 would be in all the paths
from G2 to B, and there would be a cycle involving G1 and G2. Thus, defined-only-on is
anti-symmetric. If G1 is defined-only-on G2, and G2 is defined-only-on G3, then G2 is
in all the paths from G1 to B, and G3 is in all the paths from G2 to B. This means G3 is
also in all the paths from G1 to B, i.e., G1 is defined-only-on G3. Thus, defined-only-on
is transitive.

Indeed, the relationship among the granularities in a calendar is more than just a
partial order; it is a partial order with greatest lower bound. To see this, we first show
that if G is defined-only-on both H1 and H2, then either H1 is defined-only-on H2, or
H2 is defined-only-on H1. Since G is defined-only-on both H1 and H2, both H1 and H2

are in all the paths from G to B in the dependency graph. Then all the paths that contain
H1 and H2 are either from H1 to H2, or from H2 to H1. Otherwise, there will be a cycle
in the dependency graph. It then follows that either H1 is defined-only-on H2 or H2 is
defined-only-on H1.

Now consider two different granularities G1 and G2 in the calendar. Since all the
granularities in the calendar are defined-only-on B, G1 and G2 must have a lower bound
with respect to defined-only-on relation. If G1 and G2 have more than one lower bounds,
then let H1 and H2 be any two of them. It follows that G1 is defined-only-on both H1 and
H2, and either H1 is defined-only-on H2 or H2 is defined-only-on H1. That is, the lower
bounds of G1 and G2 with respect to defined-only-on relation are comparable. Thus, the
greatest lower bound of G1 and G2 always exists. This can be easily extended to the
result stated in lemma 2.

Lemma 2. The greatest lower bound of any set of granularities with respect to the rela-
tion defined-only-on always exists in a calendar.

P. Ning et al. / An algebraic representation of calendars 23

The following theorem further reveals the relationship between two granularities
if one is defined-only-on the other in a calendar. This theorem and lemma 2 form the
foundation of granule conversion to be discussed in the next section.

Theorem 2. Let G1 and G2 be any two granularities in a calendar. If G1 is defined-
only-on G2, then G2 groups into G1.

Proof. By lemma 1, each granule of a resulting granularity consists of one or many
granules of at least one operand granularity. Depicted in the dependency graph, each
granule of a non-bottom granularity consists of one or many granules of at least one
granularity to which the former one is connected by a directed edge. By induction,
there is at least one path from a non-bottom granularity to the bottom one such that
each granule of the non-bottom granularity consists of one or many granules of any
granularity in the path. Since G1 is defined-only-on G2, G2 is in every path from G1

to G2. This means that each granule of G1 consists of one or many granules of G2.
Therefore, G2 must group into G1. �

5. Granule conversion

In order to process data measured in different granularities, systems should have
the ability to convert the granules in one granularity to those in another. For example,
suppose a database stores daily sales information. To get the sales data per business
month, the database application has to have the information about which day is in which
business month. We refer to the process of finding granules in one granularity in terms
of the granules in another as granule conversion.

There can be many different semantics for granule conversions. In this section,
we propose a generic conversion method on the basis of calendar algebra regardless of
the semantics of the conversion. Our method is based on three basic constructs: up
conversion, down conversion, and next conversion (which is a conversion within one
granularity). General purpose granule conversions can be performed using the three
basic conversions with further consideration of conversion semantics.

5.1. Three basic conversions

By theorem 2, one granularity groups into another in a calendar if the latter is
defined-only-on the former. Hence, for each granule of the latter granularity, there exists
a set of granules of the former such that both sets of granules cover the same part of the
time domain. Since the greatest lower bound with respect to the defined-only-on relation
(GLB) always exists (by lemma 2), granule conversion between two granularities can be
performed with their GLB as an intermediary. (In the worst case, the bottom granularity
will be this intermediary.) In other words, granule conversion between two granularities
can be performed by granule conversions between each of them and their GLB. Thus,
general purpose granule conversion can be reduced to granule conversions between two

24 P. Ning et al. / An algebraic representation of calendars

granularities where one is defined-only-on the other and granule conversions within one
granularity.

In the following, we present three basic granule conversions to support general
purpose granule conversions.

Definition 9. Let G and H be granularities, where G is defined-only-on H . Down con-
version from G to H , denoted �·�GH , is a mapping from the label set of G to the subsets of
the label set of H such that for each label i of G, the down conversion �i�GH consists of all
and only the labels of the granules of H that group into G(i), i.e., G(i) = ⋃

j∈�i�GH H(j).

Definition 10. Let G, H be granularities, where G is defined-only-on H . Up conversion
from H to G, denoted �·�GH , is a mapping from the label set of H to the label set of G
such that for each label i of H , if there exists a granule G(j) that contains H(i), then
�i�GH = j ; otherwise �i�GH is undefined.

When granularity G is defined-only-on granularity H in a calendar, up and down
conversion represent two directions of the conversions between G and H . Down conver-
sion from G to H gets the labels of the granules of H that group into a certain granule
of G, representing the down direction, while up conversion from H to G gets the label
to the granule that contains a certain granule of H , representing the up direction.

Using the granularity examples given earlier, we can see that the down conversion
from month to day is a mapping such that

�1�monthday = {1, 2, . . . , 31}, �2�monthday = {32, 33, . . . , 59}, etc.

The up conversion from day to month is a mapping such that

�1�monthday = �2�monthday = . . . = �31�monthday = 1,

�32�monthday = �33�monthday = . . . = �59�monthday = 2, etc.

Sometimes it is necessary to convert granules within one granularity. For example,
one may need to know the label of the day that is 3 days after a certain date. Next
conversion is proposed to accommodate this need.

Definition 11. Let G be a granularity. Next conversion within granularity G, denoted
NextG(·), is a mapping from Z × Z to the label set of G such that for each pair (i, n)

• if n > 0 and there exists a granule G(j) that is the nth granule of G whose label is
greater than i, let NextG(i, n) = j ;

• if n < 0 and there exists a granule G(j) that is the |n|th granule of G whose label is
less than i, let NextG(i, n) = j ;

• if n = 0 and G(i) is a granule of G, let NextG(i, 0) = i;

• otherwise let NextG(i) be undefined.

P. Ning et al. / An algebraic representation of calendars 25

Figure 7. A conversion between month and week.

With down, up and next conversions, general conversions can be performed by
further considering the conversion semantics. Let G1 and G2 be granularities involved
in a granule conversion problem. The first step of the conversion would be to find the
GLB of G1 and G2 in the calendar. Let granularity H be the GLB of them. With H as
the intermediary, an appropriate set of granules of G1 will be converted to H by down
conversion. Then a corresponding set of granules of G2 can be found by up conversion.
Finally, the conversion problem is solved by the combination of up, down and next
conversion using the conversion semantics.

For example, suppose we want to know the second week after January 1998
(in month). As the first step, we find that their GLB in the calendar is granularity
day. So we use day as the intermediary for this conversion. As the second step, the
day that group into January 1998 are collected by down conversion from month
to day. As the third step, the week containing the last day of January 1998 is
found by an up conversion from day to week. Finally, the second week after Jan-
uary 1998 is computed with a next conversion. Figure 7 shows the process of this
conversion.

5.2. Conversion semantics

In TSQL2, two operations, scale and cast, are proposed to covert time values be-
tween granularities [18]. The conversion function scale(g, H), where g is a sequence of
granules of a granularity G and H is the target granularity, converts g into the smallest
sequence h of granules of H such that h covers g. The conversion function cast(g,H),
where g is a sequence of granules (from lG to uG) of granularity G and H is the tar-
get granularity, returns the sequence of granules of H from lH to uH such that lH is
min(scale(lG,H)) and uH is min(scale(uG,H)).

However, there are some granule conversions that cannot be expressed by using
these two operations. For example, if we want to list the weekly sales that occurred
within January 2000, we cannot use neither scale nor cast operation to locate the rele-
vant weeks according to the month. Indeed, the scale operation always converts input
granules to output granules that covers a bigger part of the time domain. In the follow-
ing, we generalize scale into three types of conversions to accommodate other types of

26 P. Ning et al. / An algebraic representation of calendars

granule conversions. The three types of conversions are distinguished by the relation-
ships between the input and the output granules. Since cast is defined on the basis of
scale, cast can be generalized similarly.

• Covering. The granule conversion should return all the granules of the destination
granularity such that the time represented by the source granules contains the time
represented by each destination granule.

• Covered-by. The granule conversion should return the smallest set of granules of
the destination granularity such that the time represented by the source granules are
covered by the time represented by the destination granules. This type of granule
conversion corresponds to the direct generalization of scale. Note that scale deals
with contiguous input granules, while granule conversion with respect to covered-by
can accommodate input granules that are not contiguous.

• Overlap. The granule conversion should return all and only the granules of the desti-
nation granularity such that the time represented by the source granules overlaps the
time of each destination granule.

5.3. Computation of down and up conversions

As discussed earlier, the computation of up and down conversions is very critical.
Because of the label manipulation nature of the calendar algebraic operations, up and
down conversions can be recursively computed. For the sake of presentation, we assume
granularities G and H , where G is defined-only-on H , are the granularities involved in
the up or down conversion.

Recall that all the granularities in layer 1 are full-integer labeled. Taking advantage
of this fact, we use two recursive procedures, first and last, to help compute the down
conversion from G to H . The procedure first takes full-integer labeled granularities G,
H and an integer i as input and outputs the label of the first granule of H contained in
G(i). If G and H are the same, the procedure first trivially returns i; if G is defined
by G = Shiftm(H1), the procedure recursively calls and returns first(H1, H , i − m); if
G is defined by G = Groupm(H1), the procedure recursively calls and returns first(H1,
H , (i − 1)m + 1); if G is defined by G = Alterml,k(H1,H2), the procedure computes
j := first(H2,H1, i) and h := INT((i − l)/m) + 1, and depending on whether i =
(h−1)m+ l, it recursively calls either first(H1, H , j + (h−1)k) or first(H1, H , j +hk).
The procedure last works in a similar way; it takes two full-integer labeled granularities
G, H and an integer I as input, and outputs the label of the last granule of H contained
in G(i). (Details are omitted.) Thus, if both G and H are in layer 1, we can simply
compute j := first(G, H , i) and j ′ := last(G, H , i), and then the down conversion
�i�GH = [j, j ′], i.e., the interval from j to j ′.

The up conversions for the granularities in layer 1 can simply be computed recur-
sively if no altering-tick operation is involved. For G and H in layer 1, if G is defined
by G = Shiftm(H1), then �i�GH = �i�H1

H +m; if G is defined by G = Groupm(H1), then
�i�GH = INT((j − 1)/m)+ 1, where j = �i�H1

H .

P. Ning et al. / An algebraic representation of calendars 27

However, if the altering-tick operation is involved, for example, G = Alterml,k(H,

H2), there is no simple formula for the up conversion, since each granule of H2 may con-
tain different number of granules of H . Indeed, the formula (if we insist on having one)
will be conditioned on the intervals of the granules of H , and the computation of an up
conversion will involve multiple comparisons to determine which interval the input label
falls in. In section 5.4, we will study an estimation based method that can give a rather
accurate estimation when the granules of the coarser granularity (e.g., H2 in the above
example) contain similar number of finer granules (e.g., H in the example). Note that if
we have a more complex altering-tick operation, for example, G = Alterml,k(H1,H2), we

can first get j = �i�H1
H and then �i�GH = �j�GH1

.
In layer 1, all the granularities are full-integer labeled. There exist simple formu-

las for up and down conversions for the shifting operation and the grouping operation.
Though the altering-tick operation is a bit more complex, there also exists simple for-
mula for the down conversion, and the up conversion can be performed on the basis of
the down conversion. Furthermore, the up conversion for the altering-tick operation can
be estimated, and the difference between the estimated value and the real up conversion
is usually bounded by a small number. Suppose the number of basic operations that are
involved in the conversion is n. The complexity of the up and the down conversion in
layer 1 is linear to n if there is no up conversion for the altering-tick operation. If there
exists up conversion for the altering-tick operation, the complexity is O(n log2 P) in the
worst case, where P is the bound between the estimated and the real up conversions.
Therefore, there exist efficient algorithms for the up and down conversions in the first
layer.

Down conversions involving granularities in layers 2 or 3 can be computed recur-
sively according to the definitions of the operations that generate these granularities. For
example, given G = Subsetnm(H1), if m � i � n, then �i�GH = �i�H1

H ; otherwise, �i�GH
is undefined. As another example, if G is defined by G = Select-downlk(H1,H2), we
first check whether i is a valid label of G. This is done by finding the granule H2(j) that
contains H1(i), computing the set of granules of H1 contained in H2(j), and then check-
ing if H1(i) is selected by the operation. If i is a valid label of G, then �i�GH = �i�H1

H ;
otherwise, �i�GH is undefined.

Up conversions involving granularities in layers 2 or 3 can be computed recursively
as well, and sometimes with the help of the corresponding down conversions. For ex-
ample, given G = Subsetnm(H1), we first compute j = �i�H1

H . If j is not undefined and
m � j � n, then �i�GH = j ; otherwise, �i�GH is undefined. As an example of using the
corresponding down conversion, consider G = Select-downlk(H1,H2) again. We first
compute j = �i�H1

H and then s = �j�H1
H . If s is undefined, �i�GH is undefined; otherwise,

�i�GH = j .
In general, the algorithms for up and down conversions involving granularities in

layers 2 or 3 are not only affected by the number of operations involved, but also by the
correspondence of the granules of both operand granularities, e.g., how many granules
of the first operand are contained in the granules of the second operand in select-down
operation. Because the labels of a second-layer or third-layer granularity may not be

28 P. Ning et al. / An algebraic representation of calendars

contiguous, the conversion has to individually manipulate the labels. However, with
further knowledge, e.g., one or both operands are in layer 1 or layer 2, the conversion
algorithm can be more efficient. If both operands of the selecting operations or the
combining operation are not in the third layer, then each operand granularity does not
have inside gaps, and the processing of the coarser granularity is simplified. If it is
further known that the finer operand is in layer 1, the fact that the labels of the finer
operand are contiguous can be used, and the complexity of the conversion is only related
to the number of operations involved.

5.4. Estimating up conversion for the altering-tick operation

In this subsection, we present an estimation-based approach to computing up con-
versions involving the altering-tick operation. Suppose H , G and G′ are granularities
in a calendar, where G is defined-only-on H and G′ is defined by G′ = Alterml,k(H,G).
Our approach is based on the following observations.

• Granularity H groups periodically into G if G is defined-only-on H .

• For real life granularities, if G is defined-only-on H in a calendar, granules of G
usually contain similar numbers of granules of H . (Recall that H groups into G if G
is defined-only-on H .) For example, each month has about 30 days, though precisely
speaking a month may have 28, 29, 30 or 31 days.

The first observation enables us to identify the period that the up conversion falls in,
while the second provides an opportunity to estimate the label within the period. The
exact up conversion can then be searched within the error bounds around the estimated
value.

Identifying the period. Here we introduce some notations for convenience. Since H

groups periodically into G, there must exist positive integers N and P such that for
all labels i of G, if G(i) = ⋃j2

j=j1
H(j) and G(i + P) �= ∅ then G(i + P) =⋃j2

j=j1
H(j + N). Here we say P is the period of G with respect to H and N is the

period of H with respect to G. Since G is defined-only-on H and only basic opera-
tions can be involved between them, the above periods can be recursively computed as
follows.

• If G = H , then P = 1 and N = 1;

• If G = Shiftm(G0), and the period of G0 with respect to H and the period of H with
respect to G0 are P0 and N0, respectively, then P = P0 and N = N0;

• If G = Groupm(G0), and the period of G0 with respect to H and the period of H
with respect to G0 are P0 and N0, respectively, then P = P0/gcd(m, P0) and N =
N0m/gcd(m, P0);

• If G = Alterml,k(H,G0), and the period of G0 with respect to H and the period
of H with respect to G0 are P0 and N0, respectively, then P = P0m/gcd(m, P0)

and N = (P0k +mN0)/gcd(P0,m);

P. Ning et al. / An algebraic representation of calendars 29

• If G = Alterml,k(G0,G1), and the period of G1 with respect to H and the period
of H with respect to G1 are P1 and N1, respectively, then P = P1m/gcd(m, P1) and
N = last(G,H,P)− last(G,H, 0).

To determine the period in which the up conversion �i�G′
H is, we use the granule

G′(0) as reference. Let t0 be the label of the last granule of H contained in G′(0), and
d = �(i − t0)/N�. Then we can easily determine that dP + 1 � �i�G′

H � (d + 1)P .
We could just perform a binary search within the interval [dP + 1, (d + 1)P] and

determine whether a granule of G′ is the result by performing a down conversion from
G′ to H . The complexity of such a method is O(n log2 P), where n is the number of
operations involved from G′ to H , and P is as defined above.

Estimating up conversion. Our strategy to estimate the up conversion is to assume that
G′ is defined by a grouping operation on H . Given the periods P and N , the average
number of granules of H that group into a granule of G′ is y = N/P . Then G′ is
assumed to be defined by G′ = Groupy(H). It follows that the up conversion �i�G′

H can
be estimated by i = (i − t0 + 1)/y. Since H groups periodically into G′, the estimated
up conversion is in the same period as the real one.

Estimating error bounds. Now we try to estimate the upper and the lower bound
of the difference between the real and the estimated up conversion. Suppose G′ =
Alterml,k(H,G). In addition, suppose for all granularities H ′ in the paths from G′
to H in the dependency graph, if H ′ is defined by an altering-tick operation in the
form of Alterm

′
l′,k′(H1,H2), then H1 is defined by a series of grouping and shifting op-

erations. Then each altering-tick operation Alterm
′

l′,k′(H1,H2) can be transformed into

Alterm
′

l′,k′′(H,H2), where k′ = km1m2 · · ·mn, and m1,m2, . . . , mn are the parameters
involved in the grouping operations.

Let granularity G be any one in the paths from H to G′ in the dependency graph. It
follows that H partitions G. For each label i of G, let ti be the last label of H contained
in G(i), and let xi = ti − t0. By viewing granularity G as defined by the grouping op-
eration G = Groupy(H), we can estimate �j�GH as i = (j − t0)/y. Suppose the real up
conversion from H to G is i. Then the error of the estimation is i− i = (j − t0)/y− i =
(j − t0 − iy)/y.

Let δj = j − t0 − iy. Now consider the bounds of δj . Since H(j) is in the ith
granule of G, xi−1 < j − t0 � xi . Let δjl = xi−1 − iy and δju = xi − iy, then δj is
always bounded by δjl and δju, i.e., δjl < δj � δju. Let δl = min(δjl), δu = max(δju).
Then δl < δj � δu for each granule H(j). Thus, the error of the estimated up conversion
is always bounded by δl/y and δu/y.

The integral components of the error bound, δl and δu, can be estimated recursively
as shown in the following three cases.

(1) G′ = Shiftm(G).
Since G′(i) = G(i−m) for each label i of G′, x′

i = xi −xm. Since the ith granule of
G′ should be the (i−m)th granule of G, for each H(j), δ′

j l = xi−1−xm−(i−m)y =

30 P. Ning et al. / An algebraic representation of calendars

δjl − (xm − my) � δl − δu. It follows that δ′
l = δl − δu. Similarly, we can get

δ′
u = δu − δl .

(2) G′ = Groupm(G).
For each granule G′(i), x′

i = xim. For each H(j), δ′
j l = x′

i−1 − iy′ = x(i−1)m −
[(i − 1)m + 1]y − (m − 1)y > δl − (m − 1)y, and we can have the lower bound
δ′
l = δl − (m − 1)y. Similarly, since δ′

ju = x′
i − iy′ = xim − imy � δu, the upper

bound is δ′
u = δu.

(3) G′ = Alterml,k(H,G).
For each granule G′(i), we have x′

i = xi + (�(i − l)/m� + 1)k. Consider the esti-
mation of δl . If k > 0, x′

i � xi + ((i − l)/m)k. Then for each granule H(j),

δ′
j l = x′

i−1 − iy′ � xi−1 +
(
i − 1 − l

m

)
k − i

(
y + k

m

)
= δjl − k

l + 1

m
.

If k < 0, x′
i � xi + ((i − 1 − l)/m+ 1)k. Then for each granule H(j),

δ′
j l = x′

i−1 − iy′ � xi−1 +
(
i − 1 − l

m
+ 1

)
k − i

(
y + k

m

)
= δjl + k

(
1 − l + 1

m

)
.

Thus, δ′
l can be estimated as follows.

δ′
l =

δl − k

l + 1

m
, if k > 0,

δl + k

(
1 − l + 1

m

)
, if k < 0.

Now consider the estimation of δu. If k > 0, x′
i � xi + ((i − l)/m + 1)k. Then for

each granule H(j),

δ′
ju = x′

i − iy′ � xi +
(
i − l

m
+ 1

)
k − i

(
y + k

m

)
= δju + k

(
1 − l

m

)
.

If k < 0, x′
i � xi + ((i − 1)/m)k. Then for each granule H(j),

δ′
ju = x′

i − iy′ � xi + i − l

m
k − i

(
y + k

m

)
= δju − k

l

m
.

Thus, δ′
u can be estimated as follows.

δ′
u =

δu + k

(
1 − l

m

)
, if k > 0,

δu − k
l

m
, if k < 0.

With the above recursive estimation, we can always get the δl and δu for G′ in time
linear to the number of involved operations. As a result, we can always be certain that
the real value of any up conversion from H to G is within the interval [i+δl/y, i+δu/y].

P. Ning et al. / An algebraic representation of calendars 31

For example, for up conversions from day to month (see section 3.3 for correspond-
ing algebraic expressions), δl/y = −1.158 and δu/y = 0.138. Then for all estimated
up conversion i, the real up conversion is bounded by [i − 1.158, i + 0.138]. With the
estimated error bounds, the up conversion can be done by an estimation of the up conver-
sion followed by a binary search within the bound. The the complexity becomes O(nb),
where n is the number of operations and b = �(δu − δl)/y�.

The error bounds are estimated conservatively. The estimated bounds are usually
looser than the real error. This suggests that the search for the up conversion within the
bound should be biased towards the estimated value.

5.5. Computation of next conversion

Next conversion is trivial for layer 1 granularities because of the contiguity of their
labels (NextG(i, n) = i + n). However, it can be a difficult problem for the granularities
in layers 2 and 3, where labels may not be contiguous any more.

A desirable solution would be getting the result with the information of the oper-
ations. For example, given a granularity that stands for the first day of every month, to
get the nth granule after a base granule, say i, we only need to get the nth month after
the month containing granule i, and finding the result would be easy. In this case, the
next conversion for one granularity is translated into a trivial one for another granularity.
However, this is not a general solution for all granularities. In this paper, we outline
several alternative ways.

There are two straightforward ways to solve this problem in addition to making use
of the information of the operations.

1. Search for the nth granule by testing. The basic construct is to determine whether an
integer is a valid label or not. To get the result, the algorithm tests the integers one by
one until the nth valid granule is found.

2. Enumerate the valid labels. This involves precomputation and storage of valid labels.
For periodical granularities, enumeration of one period is enough.

Obviously, the first method is only suitable for small n and granularities that do not
have big gaps between adjacent labels. In other cases, it will result in unacceptable per-
formance. Although the second method has good computation performance, it does not
scale well when the period gets big. In the following, we propose several enhancements
that can improve the scalability.

Our first enhancement is to use a hash table to maintain the valid label informa-
tion for a granularity. We distinguish two kinds of hash tables, the first one is a positive
hash table, in which valid labels within a period are stored, and the second one is a
negative hash table, in which missing labels (i.e., the integers that are not valid labels)
are stored. It is easy to see that the positive hash table and the negative hash table are
complementary. The positive hash table is used when most of the integers in a period
are not valid labels, while the negative hash table is used when most of the integers in
a period are labels. The distinction of positive and negative hash tables reduces the size

32 P. Ning et al. / An algebraic representation of calendars

of the enumeration by at least a half. However, this may not solve the scalability prob-
lem. Nevertheless, we can improve the scalability by sacrificing some computational
efficiency. If the hash table gets too big, we can reduce the size by only storing a part of
valid labels.

An alternative enhancement is to use bitmap for the valid labels of a granularity.
Similarly, bitmap is only necessary for a period. Each bit in the bitmap corresponds
to an integer. A bit is 1 if the corresponding integer is a valid label, 0 if not. Finding
the nth granule after a base granule is just counting n 1s in the bitmap and finding the
corresponding integer. The advantage of such representation is that only generalized
granularities defined by selecting operations need precomputed bitmap. If a granularity
is defined by a set operation, then the corresponding bitmap can be easily composed with
the bitmaps of the operands. Suppose A and B are granularities with bitmaps a and b,
respectively. Then the bitmaps for A ∪ B, A ∩ B and A− B are a OR b , a AND b and
a AND (NOT b), respectively. To save the space, compression method, e.g., run length
encoding, can be utilized, which can make the counting of 1s even faster. However, the
bitmap method may not scale well for granularities with long periods.

Note that the above two specific enhancements may be applied to calendar rep-
resentation schemes that are based on enumeration. The difference, though, is that
these enhancements are among other possibilities. Other methods that directly take ad-
vantage of the compact algebraic representations of this paper may not be available to
enumeration-based representation schemes. Since the “rules” with which the granular-
ities are generated are encoded in the calendar expressions and can be recovered when
needed, the algebraic representation gives rise to more opportunities for optimizing our
computations involving granularities. For example, suppose we define a granularity
FirstDayOfMonth = Select-down1

1(day,month), where day and month are de-
fined in section 3.3. From the calendar expressions associated with PseudoMonth and
month, it is easy to figure out that there is exactly one granule of FirstDayOfMonth
contained in each granule of month. Then the next conversion for FirstDayOf-
Month can be transformed to a conversion to month with respect to covered-by (or
overlap), followed by a next conversion for month, which is trivial since month is full-
integer labeled, and then followed by a conversion with respect to covering (or overlap).
Nevertheless, a general framework that can take full advantage of the algebraic repre-
sentations is beyond the scope of this paper.

5.6. Vector labels: relative representation of granules

The mapping viewpoint of granularity reveals the nature of time granularities, and
time can be processed based on the labels (or indices) of the granularities, which are
countable and easy to process with computers. However, human users are used to rela-
tive and textual representation of granules. It is rather difficult for human beings to use,
for example, the 731,854th granule of day.

Computer applications that interact with human users often provide textual repre-
sentation for time. For example, database applications usually print a SQL DATE as a

P. Ning et al. / An algebraic representation of calendars 33

label consisting of the year, month and day of the particular date. However, the textual
representations are usually predefined for specific time granularities (e.g., granularity
day in the above example). Textual representation of user-defined granularities would
require special care.

The idea of label mappings for formally defined granularities has been suggested
in [1] to provide a relative representation of granules. Several works, though proposed
before [1], can be used to partially address this issue. The 1-dimensional space proposed
in [13] can be used to provide a relative representation of granules with a sequence of
granularities. However, the granularities used with a 1-dimensional space are restricted
to those that have “regular” relationships between each other, i.e., each granule of a
coarser granularity must have the same number of granules of a finer granularity. Thus,
we cannot use granularities, for example, year, month and day to provide a relative
representation for days. The Set of Composite Numbers [14], which was proposed for
nonmetric measurement systems, and the representation mechanism for time spans using
multiple granularities [9] can be used to provide relative representations for unanchored
temporal data (i.e., time durations). However, they cannot be directly applied to relative
representations of granules. (Indeed, they both have restrictions when representing time
durations. Details will be discussed in section 6.)

In this subsection, by applying the granule conversions discussed in the previous
section, we introduce a notion of vector label to provide more general label mappings
for granules. Note that vector labels do not address the relative representations of time
spans (i.e., time durations).

We assume that all the “words” used in the textual representation of granules are
enumerable, so they can be encoded as integers. For example, the English words for
months, i.e., January, February, March, . . . , and December, can be encoded as integers
1 to 12. As a result, we need only deal with integers for the textual representation.

Definition 12. Given a granularity G, let Gk,Gk−1, . . . ,G1 be a sequence of granular-
ities, where G is a label-aligned subgranularity of G1. A vector (jk, jk−1, . . . , j1) in
Nk is said to be a vector label of granule G(i) with respect to overlap/covered-by if by
letting j ′

k = jk and Gl(j
′
l), 1 � l < k, be the jlth granule of all the granules of Gl that

overlap/are covered-by Gl+1(j
′
l+1) we can have G1(j

′
1) = G(i). If any of the above jlth

granule does not exist, then the above vector is not a vector label of any granule. The
sequence of granularities Gk,Gk−1, . . . ,G1 are called the referent granularities for the
vector label.

For example, consider the granularity Sunday (which is label-aligned subgranu-
larity of itself) and the referent granularities year, month, Sunday. Then (1998, 7, 2)
is a vector label with respect to overlap (or covered-by) that represents the second Sun-
day in July 1998. In addition, since Sunday is label-aligned subgranularity of day, we
can also use year, month, day as referent granularities. In this case, the vector (1998,
5, 3) (i.e., May 3rd, 1998), which is the first Sunday in May 1998, is a valid vector label
with respect to overlap (or covered-by) for Sunday, while the vector (1998, 5, 4) (i.e.,

34 P. Ning et al. / An algebraic representation of calendars

May 4, 1998, which is a Monday) is not a vector label, since it cannot be mapped to any
granule of Sunday.

In the above examples, the vector labels with respect to overlap are exactly the same
as the vector labels with respect to covered-by. This is because the referent granularities
form a total order with respect to the finer-than relationship. (Sunday (day) is finer
than month, which is finer than year.) When this total order does not exist, the vector
labels with respect to overlap and covered-by will have different meanings. For example,
with the referent granularities year and week, the vector label (1998, 1) with respect to
overlap refers to the first week that overlaps with year 1998, which includes December
28, 1997 through January 3, 1998, and the vector label (1998, 1) with respect to covered-
by refers to the first week that is contained in year 1998, which includes January 4
through 10 in 1998.

In the formalism of vector labels, we used the conversion semantics overlap and
covered-by, but did not use the conversion semantics covering. Intuitively, vector la-
bels with respect to overlap (covered-by) correspond to locating smaller granules of
“finer” granularities through bigger granules of “coarser” granularities using the overlap
(covered-by) conversion semantics; however, it cannot locate nothing to use the covering
semantics with vector labels. On the other hand, it is against human intuition to locate
bigger granules of “coarser” granularities through smaller granules of “finer” ones. For
example, human users never refer to a year as the first year that contains the 731,854th
day.

Vector labels can be easily converted into labels by granule conversions. For exam-
ple, given referent granularities year, month, Sunday and a vector label (1998, 7, 2)
with respect to overlap, we can get the label, say lm, of the 7th month that overlaps with
the year 1998 by a granule conversion between year and month and then get the label,
say l, of the 2nd Sunday that overlaps with the above month by another granule conver-
sion between month and Sunday. On the other hand, vector labels can be generated
from labels by granule conversions as well. For example, given the label l of the above
Sunday, we can first compute the label lm of the month that overlaps with this Sunday,
then by another granule conversion get the set of Sundays that overlaps with month lm,
and find out this is the 2nd Sunday in the month, that is, the last position of the vector
label is 2. Similarly, we can compute that year 1998 overlaps with the month lm and
the month is the 7th among all the months overlapping with year 1998. Thus, the vector
label with respect to overlap of the Sunday is (1998, 7, 2).

6. Related work

Much work has been done on the problem of granularity representation in temporal
database area as well as other areas like artificial intelligence and real time systems.
Some of them address the formalization of time granularity systems [4,6,7,15]. Our
work is an instantiation of the general framework proposed in [4].

A symbolic representation of granularities that allows natural language expression
was proposed in [10] on the basis of structured collections of intervals. This represen-

P. Ning et al. / An algebraic representation of calendars 35

tation was later implemented in POSTGRES [5]. As the foundation of the system, the
primitive collections, e.g., day, month, year, have to be enumerated, though there exist
some patterns in them. Another formalism was later introduced in [16] as an alterna-
tive to the above one. On the basis of existing granularities, it defines a new, periodical
granularity by enumerating a set of starting points and durations within a period. The ex-
pressiveness of these representations were studied in [3] and an extension to the former
one was proposed. Both of the two representations (and the extension) require enumer-
ation of either the primitive granularities (collections) or the newly defined ones. Our
work does not require explicit enumeration but tries to capture the patterns of the granu-
larities; thus, our approach usually requires less space and can encode the relationships
between granularities in a more compact and direct way.

There are also other proposals for granularity representation. Wijsen proposed
a string-based model called granspec to represent periodical granularities as repeated
string patterns over a set of three symbols [19]. The canonical representation of gran-
specs and the symbolic computation over granspecs were also studied. In [11], a gran-
ularity (called calendar in [11]) was modeled as a totally ordered set of intervals with
additional semantics, and several calendar operations are introduced to generate user de-
fined time granularities. Both of these proposals define a new granularity by the relative
pattern of its granules with respect to the granules of another granularity. Similar to the
primitive collections in [10], this is basically enumeration. Our approach can achieve
the same results with a subset of operations without enumeration.

To accommodate mixed granularities in TSQL2 (the temporal extension to SQL),
Dyreson et al. proposed to organize multiple granularities into a lattice and support the
query language using two operations, scale and cast [18]. This approach was further
refined in [8,12]. Specifically, the user specifies granularities by providing conversion
functions (scale and cast) between some pairs of granularities. Two types of mappings
were distinguished: regular mapping, which has well-defined formula, and irregular
mapping, which is specified by user supplied functions. On the one hand, their con-
version approach could be more efficient than ours, since the user supplied conversion
functions could be optimized for the granularities involved. On the other hand, our
approach involves less development cost and is easier to use. In addition, we general-
ized the conversion function scale to granule conversion with respect to covered-by, and
included granule conversions with respect to covering and overlap, which cannot be ex-
pressed by the original scale function. We do not have the cast function; however, it can
be easily added into our model, since cast is defined on the basis of scale.

Lorentzos introduced two generic data types, named (compound) 1-Dimensional
(1-D) Space and Set of Composite Numbers (SCN), to provide compound representation
and operations for non-metric data types [13,14]. Though targeted more generic data
types, 1-D space and SCN can be used to provide relative representation for time points
and durations, respectively, using mixed granularities. However, both compound 1-D
space and SCN are quite restrictive, since they can only deal with “regular situations”
where the granules of the finer granularities are evenly distributed in the granules of the
coarser ones. For example, 1-D space and SCN can deal with granularities with “regular”

36 P. Ning et al. / An algebraic representation of calendars

relationship (e.g., Hour, Minute and Second), but they cannot accommodate those
with “irregular” relationship like Month and Day, since one month may have 28 to
31 days. Our formalism of vector labels and Up and Down conversion functions are
more general than 1-D space and the associated functions in the sense that they can
accommodate both the “regular” granularities (generated by the Group operation) and
the “irregular” ones generated by other calendaric operations.

Goralwalla et al. studied representation of unanchored temporal data, conversion
between time spans represented in mixed granularities as well as canonical forms for
unanchored time spans [9]. We consider this work as complementary to ours, since our
work focuses on the representation of anchored temporal granularities and conversion
between anchored temporal data. Indeed, our Up and Down conversions can be used to
derive the “conversion functions” defined in [9], which are the foundation of the conver-
sions between unanchored time spans represented in mixed granularities. In other words,
our work can be combined with the approach proposed in [9] to address the conversions
of unanchored temporal data. The approach proposed in [9] has two limitations. First,
it does not consider the granularities with gaps within granules (e.g., business month).
Second, the conversions discussed in [9] are based on a (hidden) assumption (reflected
by the definition of conversion function) that in a totally ordered list of granularities,
each granule of a coarser granularity consists of an integral number of granules of a finer
granularity.

Finally, there is an interesting program called Remind that provides a script lan-
guage to define sophisticated “calendars” and alarms [17]. However, the word “calen-
dar” here really means schedule or arrangement. Indeed, the script language in Remind
is designed to specify complex event patterns (i.e., triggers and alarms) on the basis of
existing calendars (i.e., Gregorian and Hebrew calendars), while our calendar algebra is
to define the calendars themselves. Thus, we consider the script language in Remind as
complementary to ours, and it can be used on top of the granularities defined using the
calendar algebra.

7. Conclusion

In this paper, we presented an algebraic representation of time granularities. This
representation is natural and flexible in the sense that it captures the ways in which
human calendars are organized. As a consequence, the calendar algebra usually leads
to compact representations. Given the assumption that there exists a bottom granularity
known to the system, the calendar algebra can represent all the granularities that are
either periodical or finite with respect to the bottom granularity.

The granularities generated by calendar algebraic operations from the bottom gran-
ularity can be organized into a calendar. We partition the granularities in one calendar
into three layers to help check the preconditions of the algebraic operations. With the
three-layer restriction, validation of operations can be performed efficiently. Although
all the granularities in a calendar are originated from the bottom granularity, they do not
necessarily depend on each other. We say one granularity is defined-only-on another

P. Ning et al. / An algebraic representation of calendars 37

granularity if the generation of the former one depends solely on the latter one. If one
granularity is defined-only-on another granularity, then the latter one groups into the
former one.

To make the calendar algebra useful for applications such as temporal databases,
we studied the granule conversion problem. General conversion between granularities
can be performed on the basis of three basic conversions (up conversion, down con-
version, and next conversion). The computation of the three basic conversions are the
foundation of granule conversion. In layer 1, all the three basic conversions can be per-
formed quite efficiently. In layers 2 and 3, the computation is more complex and may be
affected by the correspondence of the granules of the operand granularities. As an inter-
esting application, granule conversion was applied to provide a relative representation of
granules.

Acknowledgements

The authors are grateful to the anonymous reviewers for their valuable comments.
The work was partially supported by a grant from the U.S. Army Research Office un-
der the contract number DAAG-55-98-1-0302 and a grant from the National Science
Foundation with the grant number 9633541. The work of Wang was also partially sup-
ported by a Career Award from the National Science Foundation under the grant number
9875114.

References

[1] C. Bettini, C.E. Dyreson, W.S. Evans, R.R. Snodgrass and X. S. Wang, Temporal databases: research
and practice, in: Lecture Notes in Computer Science, Vol. 1399 (Springer, 1998) chapter “A glossary
of time granularity concepts”.

[2] C. Bettini, S. Jajodia and X.S. Wang, Time Granularities in Databases, Data Mining, and Temporal
Reasoning (Springer, 2000).

[3] C. Bettini and R.D. Sibi, Symbolic representation of user-defined time granularities, in: Proc. of 6th
Int’l Workshop on Temporal Representation and Reasoning (1999) pp. 17–28.

[4] C. Bettini, X.S. Wang and S. Jajodia, A general framework for time granularity and its application to
temporal reasoning, Annals of Mathematics and Artificial Intelligence 22(1–2) (1998) 29–58.

[5] R. Chandra, A. Segev and M. Stonebraker, Implementing calendars and temporal rules in next gener-
ation databases, in: Proceedings of ICDE (1994) pp. 264–273.

[6] J. Clifford and A. Rao, A simple, general structure for temporal domains, in: Proc. of the Conference
on Temporal Aspects in Information Systems (1987) pp. 23–30.

[7] T. Dean, Using temporal hierarchies to efficiently maintain large temporal databases, Journal of ACM
36 (1989) 687–718.

[8] C.E. Dyreson, W.S. Evans, H. Lin and R.T. Snodgrass, Efficiently supporting temporal granularities,
IEEE Transactions on Knowledge and Data Engineering 12(4) (2000) 568–587.

[9] I.A. Goralwalla, Y. Leontiev, Özsu, D. Szafron and C. Combi, Temporal granularity for unanchored
temporal data, in: Proc. of the 1998 ACM CIKM Internat. Conference on Information and Knowledge
Management (1998) pp. 414–423.

[10] B. Leban, D. McDonald and D. Foster, A representation for collections of temporal intervals, in:
Proceedings of AAAI (1986) pp. 367–371.

38 P. Ning et al. / An algebraic representation of calendars

[11] J.Y. Lee, E. Ramez and J. Won, Specification of calendars and time series for temporal databases, in:
Int’l Conf. on the Entity Relationship Approach (1996) pp. 341–356.

[12] H. Lin, Efficient conversion between temporal granularities, Technical report 19, Time Center (1997).
[13] N.A. Lorentzos, DBMS support for time and totally ordered compound data types, Information Sys-

tems 17(5) (1992) 347–358.
[14] N.A. Lorentzos, DBMS support for nonmetric measurement systems, IEEE Transactions on Knowl-

edge and Data Engineering 6(6) (1994) 945–953.
[15] A. Montanari, E. Maim, E. Ciapessoni and E. Ratto, Dealing with time granularity in the event calcu-

lus, in: Proc. of the Internat. Conference on Fifth Generation Computer Systems, Tokyo, Japan (1992)
pp. 702–712.

[16] M. Niezette and J. Stevenne, An efficient symbolic representation of periodic time, in: Proceedings
of CIKM (1992) pp. 161–168.

[17] D.F. Skoll, Remind calendar program, available at http://www.roaringpenguin.com/remind.html.
[18] R.T. Snodgrass (ed.), The TSQL2 Temporal Query Language (Kluwer Academic, Dordrecht, 1995).
[19] J. Wijsen, A string-based model for infinite granularities, in: AAAI-2000 Workshop on Spatial and

Temporal Granularities (2000) pp. 9–16.

