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Abstract-The question posed in this study is whether optimal 
control and state estimation can explain selection of control 
strategies used by humans, in response to small perturbations 
to stable upright balance. To answer this question, a human 
sensorimotor control model, compatible with previous work by 
others, was assembled. This model incorporates linearized equa- 
tions and full-state feedback with provision for state estimation. A 
form of gain-scheduling is employed to account for nonlinearities 
caused by control and biomechanical constraints. By decoupling 
the mechanics and transforming the controls into the space of 
experimentally observed strategies, the model is made amenable 
to the study of a number of possible control objectives. The 
objectives studied include cost functions on the state deviations, 
so as to control the center of mass, provide a stable platform for 
the head, or maintain upright stance, along with a cost function 
on control effort. Also studied was the effect of time delay on the 
stability of controls produced using various control strategies. 
An objective function weighting excursion of the center of mass 
and deviations from the upright stable position, while taking 
advantage of fast modes of the system, as dictated by inertial 
parameters and musculoskeletal geometry, produces a control 
that reasonably matches experimental data. Given estimates of 
sensor performance, the model is also suited for prediction of 
uncertainty in the response. 

I. INTRODUCTION 

IOMECHANICAL models of varying complexity have B been used extensively in the study of mammalian co- 
ordination of movement, e.g., [SI, [28], [4]. However, much 
of the current work in modeling has limited applicability to 
issues studied by motor control scientists. It is hoped that these 
models can be adapted and used to address specific issues in 
systems neurophysiology. Control of balance in human upright 
standing is particularly well-suited for modeling, and is also a 
popular experimental paradigm [26]. Human posture therefore 
serves as an ideal starting point for applying modeling to 
specific problems in motor control. 

Investigators have reported that standing human subjects, 
when perturbed by backwards translation of a moving support 
surface and instructed not to move their feet, typically respond 
by moving in the sagittal plane, using one or a combination 
of two strategies [26]. For small disturbances [14], they tend 
to keep the knees, hips, and neck fairly straight, moving 
predominantly about the ankles (the “ankle strategy”). For 
disturbances that place their center of mass near the perimeter 
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of foot support, they tend to use a motion coordinating flexion 
or extension of the hips with smaller concurrent extension 
or flexion of the ankles (the “hip strategy”), keeping the 
other joints fairly straight. These strategies have also been 
reported using ground reaction forces and electromyograms, 
but with some ambiguity of definition [l], [14], [26]. In this 
paper, analysis of these strategies is explicitly restricted to the 
kinematic definitions above. 

Modeling of this experimental paradigm (disturbances to 
posture in the sagittal plane) is particularly convenient, as 
the dynamics can be linearized without significant impact on 
simulation accuracy, the motion is 2-D, and the response in- 
corporates the three main components of sensorimotor control: 
detection, control, and actuation. For example, Hemami and 
colleagues [13], [ 111, [7] developed one- and two-link inverted 
pendulum models to study the use of constant state feedback 
gains to stabilize posture. They found that reasonable pre- 
dictions of behavior can be made using linearized dynamics. 
They also computed minimal sets of stable feedback gains and 
performed system identification to find those gains. 

Barin [3] used multiple regression to compute state feedback 
gains from experimentally derived kinematics, and found 
that a two-segment model, used with the computed feedback 
controls, is sufficient to accurately model and predict center- 
of-pressure excursion. 

He er al. [IO] developed a complex model of the cat neuro- 
musculo-skeletal system based on optimal (linear quadratic 
regulator) control. They used this model to analyze various 
control schemes, including joint position servo, muscle length 
servo, muscle stiffness, and full-state (mechanical states aug- 
mented with sensor and muscle states) feedback control. 

There remains a gap, however, between these models and 
their application to issues in neural control of movement. For 
example, these models neither explain nor predict the selection 
of ankle and hip control strategies described in [26]. Linear 
models predict only scaled responses that vary with perturba- 
tion size; but human responses to large perturbations are not 
merely amplified responses to small perturbations [ 141. Using 
“feasible acceleration sets,” a method for characterizing the 
entire set of angular accelerations achievable about the joints, 
Kuo and Zajac [ 191, [20] found indications that biomechanical 
and control constraints play a role in forcing selection of 
strategies. As perturbations increase in size, subjects place 
greater reliance on the hip strategy, which also appears to be 
more effective in stabilizing the center of mass than the ankle 
strategy, even when constraints are inactive. Control models 
should therefore account for such constraints. 
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Models (to date) also require complete state observability 
or measurability. For example, Hemami et al. [13], using 
simplified models, assumed that vestibular organs provide 
information conceming trunk angle, and joint proprioceptors 
information on lower body angles. He et al. [lo] presumed 
the majority of states to be directly measurable by sensors. 
Joint angle information, by virtue of being observable, was 
presumed to be estimated by the CNS from muscle receptors. 
While the high redundancy of physiological sensors would 
strongly suggest full observability, it remains open to question 
whether the CNS actually performs the necessary calculations 
to provide full state information. 

The question addressed here, then, is whether the modeling 
and control systems analysis techniques described above can 
be adapted to account for constraints. If so, will these new 
models provide an explanation for the selection of ankle and 
hip strategies? In addition, is there evidence in support of 
state estimation in the CNS, thereby justifying state feedback 
models? 

Such explanation is naturally dependent on hypotheses 
conceming the objectives of the CNS. In experiments studying 
movement of the head, Allum et al. [2] have postulated that 
the selection of strategies may be driven partially by the 
desire to stabilize the head, where visual, and perhaps more 
importantly, vestibular sensors are located. McCollum and 
Leen [24] showed that stiffening the body so that it acts as 
a one-segment inverted pendulum (as in the ankle strategy) 
provides a longer time constant than if the body is stiffened as 
a two-segment inverted pendulum (as in the hip strategy). They 
concluded that the ankle strategy thereby provides greater 
chance of stability given transmission delays in the CNS 
controller. These delays may greatly affect children learning 
to stand, for whom mechanical time constants are smaller 
than, while transmission delays are similar to, those of adults. 
However, a controller has considerable flexibility in altering 
a system’s eigenvalues (and hence, its time constants). Thus, 
the time constants of an uncontrolled pendulum may have little 
relation to those of the controlled system. The stability of the 
control (whether or not it is duplicating the behavior of a one- 
or two-segment inverted pendulum) is therefore not necessarily 
related to the time constants of inverted pendula. 

The challenge, then, is to develop a model that is compatible 
with and builds upon the modeling work of others, and that can 
account for the constraints described in [19], [20], all within 
the framework of a control systems analysis. In this paper, a 
constraint-based state-feedback model is presented, in which 
control strategies can be incorporated in the objective equation. 
The relative efficacy of the ankle and hip strategies can thus be 
tested in relation to their ability to satisfy various objectives. 
The objectives tested include minimization of “neural effort,” 
along with stabilization of the center of mass [20], and the 
head [2]. The resulting controllers are tested for satisfaction 
of constraints, settling time, and tolerance to transmission 
delays [24]. Moreover, arguments for the incorporation of 
state estimators in the optimal control model are presented, 
based on similar research on vestibular function in movement 
perception [27]. This model is substantially compatible with 
and integrates the work of others, and is ideally suited to 

examining issues raised in the experimental study of pos- 
ture. 

This paper is presented in five sections. In Section 11, 
the requirements of the model and the foundation for its 
development are laid out. The mathematical formulation of 
the model is given in Section 111. An objective function 
for simulating human responses is determined and tested in 
Section IV. The results are discussed and future work outlined 
in Section V. 

11. MODEL SPECIFICATIONS AND RATIONALE 

Development of a model that can be applied directly to ex- 
perimental paradigms requires that both model and experiment 
share certain features. These features, as outlined below, serve 
both as assumptions about the experimental conditions and as 
specifications the model must meet. 

A .  Input-Output Behavior 

The motor control system is presumed to receive a desired 
state vector, Xd. from higher levels of the CNS, compare it 
with the measured state, and generate the motor command U ,  

as shown in Fig. l(a). Joint torques produced by the muscles 
and extemal forces produced by disturbances, lumped together 
in the vector T ,  act upon the body, resulting in movement 
described by joint angles, velocities, and accelerations (vectors 
8, 8, and 8, respectively). Because these (kinematics 8, 8, 8, 
and the torques/forces T )  are the only variables which can be 
reliably measured (or estimated) for comparison to a model, 
they will serve as the ideal inputs and outputs for a CNS 
controller model. The first requirement for the model is that it 
adequately represents the input-output behavior of the human 
system comprised of sensors, controller, and actuators. We 
will not concem ourselves with the actual information intemal 
to that system (such as the intemal coding of the state or 
motor commands), because those instruments that provide 
such information generally provide indirect or ambiguous 
data. For example, electromyograms provide indicators of the 
motor commands or muscle forces, but are affected by muscle 
shortening velocities, cross-talk, and various nonlinearities 
[34]. Electrodes in various locations can provide indicators of 
cortical, sensory, and other functions, but the sheer quantity 
of information makes it difficult to ascertain the meaning of 
the data, much less the actual “state representation.” 

B. Linearity 

Because the body dynamics have been demonstrated to be 
fairly linear in this region [13], and (for a given perturbation) 
the closed-loop system comprised of both the controller and 
the body dynamics appears to be linear [3], the controller 
can be expected to behave linearly as well. Using multi-input 
multi-output transfer-function matrix, the model can therefore 
be analyzed using the rich set of tools from linear system 
theory. It is assumed that the CNS, though comprised of 
many nonlinear neural elements, will behave linearly about 
the operating point corresponding to upright static standing. 
Nonlinearities seen over a range of perturbation magnitudes 
are modeled using constraints [20], and are addressed through 
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Fig. 1 .  (a) Diagram of feedback system. Central nervous system (CNS) 
produces control signals acting on the body. Resulting motion is fed back 
to controller. (b) Gain-selecting model accepts desired state Xd from higher 
centers, control selection center triggers a feedforward trajectory or set of 
feedback gains (or both). Body performs according to command signals, and 
motion is detected by sensors. State estimator uses efference copy U and 
sensory information y to form the state estimate !i used by the lower level 
regulator or higher centers. 

selection of specific linear controllers for each perturbation 
(see Section 11-E). 

C .  Full-State Feedback 

Studies of minimal sets of state feedback have shown that 
a controller requires less than a full set of mechanical states 
to stabilize the body [9], [7]. However, full-state feedback 
appears to provide the best match to experimental results [3]. 
He et al. [lo] demonstrated observability of the states and 
found that full-state feedback used in the objective function 
produced the best stabilizing control of cat posture. 

Experimental evidence also suggests that full-state informa- 
tion is available and is used in selection of control strategy. 
In order to discriminate between disturbances small enough 
to be countered by the ankle strategy, and those large enough 
to require the hip strategy, the CNS must have information 
from both lower and upper body sensors to estimate the 
motion of the center of mass [23]. However, stabilization is 
possible given only a subset of complete sensory information. 
For example, experiments have been performed in which the 
support surface is either rotated or translated backwards so 
as to produce similar ankle disturbances, hence rendering 
somatosensory information from the ankles and feet unreliable 
[ 11. Proper stabilization by subjects demonstrates that upper- 
body sensors are sufficient to differentiate the two types of 
disturbance, that ankle joint information is not used exclusively 
in determining the response, and that there exists a feedback 
path from upper-body sensors to the leg muscles. Patients 
with vestibular deficits, on the other hand, are also able to 
withstand disturbances, indicating that utilization of ankle or 
foot somatosensors alone is sufficient for stability [ 151. 

It is therefore assumed that all of the rigid body mechanical 
states, in an arbitrary realization, are available to or estimated 
by the CNS for use in forming a control response. The actual 
state realization used by the CNS is unimportant in this paper; 
of more importance is the input-output transfer-function mamx 

behavior, which is independent of realization [ 171. The issue of 
how the state information is acquired is addressed in Section 11. 

D. Feedforward andlor Feedback 

Some researchers have suggested that response to a distur- 
bance is in the form of a feedforward trajectory, i.e., a motor 
tape that is played based on the sensory input, e.g., [25]. Others 
have proposed that the response is in the form of direct state 
feedback [ 31. The proposed model maintains compatibility 
with both schemes in any combination (see Fig. l(b)). In order 
to choose the correct response, a control selection center uses 
the mechanical state to select the type and amount of response 
necessary to counter the disturbance. This center evaluates 
the difference between an estimated state and the desired 
state, and chooses the appropriate feedforward trajectory, the 
appropriate feedback gains, or both. If the feedback component 
is presumed to reside at lower levels of the CNS, e.g., the 
spinal cord, this model is then compatible with a hierarchical 
concept of motor control. If the effect of the feedforward 
component is presumed small, and state feedback is the main 
component of the response, then control selection effectively 
chooses the appropriate gain matrix, in a scheme similar to the 
popular control engineering technique of gain-scheduling [ 331. 

E .  Compatibility with Constraints and Feasible Accelerations 

Constraints placed on the system by the mechanics of the 
human body and the musculoskeletal configuration interact 
heavily to influence the control choices available. Constraints 
include keeping the knees straight (as has been experimentally 
observed in human responses to backward perturbations of the 
support surface which pitch the body forward), keeping the feet 
flat on the ground (as subjects are instructed to do), as well 
as limits on maximal muscle forces. The characterization of 
these constraints is summarized briefly here (see [19], [21]). 

The feasible acceleration set (FAS) is the set of all joint 
angular accelerations (assembled in vector 0) that can be 
produced by any combination of feasible muscle activations 
(that is, with normalized activation levels within the range 0 
5 ai 5 1 for i = 1 , 2 , .  . . m muscles). The FAS can be found 
from the mapping 

This mapping (see Fig. 2) is derived from the equations of 
motion (where L is a linear mapping and g represents a con- 
stant term), musculoskeletal geometry, and muscle properties, 
assuming that muscles are shortening slowly and excitation- 
contraction dynamics are fast in relation to the movement [35]. 
For a sagittal plane model that allows ankle, knee, and hip 
motion, this set is a polyhedron in joint angular acceleration 
space (Fig. 3(a)). 

Acceleration vectors reaching the boundary of the FAS 
require at least one muscle to be fully activated. The FAS 
can therefore be used as a measure of the amount of acceler- 
ation that can be achieved in any direction in ankle-knee-hip 
acceleration space for a given amount of neural effort, defined 
as ((a((m, the maximum of the muscle activations a. This is 
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Fig. 2. Generation of feasible acceleration sets (FAS) is performed by charactenzing the set of all feasible normalized muscle activations, which are confined 
to a hypercube, followed by generation of a mappmg descnbing the effects of musculoskeletal geometry and equations of motion, into the set of all feasible 
joint angular accelerations. Result is a polytope m n-dmensional space, where n is the number of degrees of freedom studied In this example, the feasible 
activations of three muscles are confined to a cube. These activations are. mapped into feasible accelerations constramed withm a 3-D polyhedron. 

e, 

nkle 

Fig. 3. (a) Ankle-knee-hip feasible acceleration set describes all combinations of joint angular accelerations achievable given any set of muscle activations. 
Enforcement of control constraint to keep knees straight, as human subjects do in natural response to backwards platform movement, is modeled by intersecting 
FAS with the plane corresponding to zero knee motion. (b) Enlargement of resulting ankle-hip FAS (keeping knees straight), showing effect of additional 
control constraints on avoiding lifting of toes and heels off the ground (dark region). 

a convenient method for describing the aggregate cost of a 
given combination of joint angular accelerations, taking into 
account not only the joint torques needed (as with the model 
of [9]), but also the muscle forces needed to achieve those 
torques. Note that, given the assumptions above, neural effort 
is equivalent to the amount of muscle force (normalized to 
maximum possible force). 

Visualization of the FAS aids in understanding constraints 
relevant to human posture. Researchers have reported that the 
knees are kept relatively straight while countering disturbances 
that pitch the body forward [26], [3]. The reasons behind and 
effects of this behavior (see [20]) are not discussed here, but 
this constraint must nevertheless be modeled. This modeling 
of constrained knee motion is accomplished by intersecting 
the polyhedron with the plane corresponding to &nee = 0. The 
resulting polygon represents the set of all feasible accelerations 
of the ankles and hips when keeping the knees straight (see 
Fig. 3(b)) [20]. 

The length of the foot (or the support surface underneath 
the foot) dictates limits both to stable body configurations and 
to angular accelerations that can be achieved without lifting 
either the toes or heels off the ground, a common experimental 
requirement [26]. The body position constraints characterize 
the horizontal location of the body center of mass, which 
must remain over the base of support for stable stance. The 
linearized equation is of the form 

(2) 

where 8 is the vector of joint angles. The desire to keep the 
feet flat on the ground is similarly written as the constraints 

ccmo i cTmo I c c m 1  

c;f,,]e I CheelO (34  

When displayed in ankle-hip space (that is, with knees kept 
fixed), the constraint boundaries are approximately aligned 
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Visualization of the FAS aids in understanding constraints 
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knees are kept relatively straight while countering disturbances 
that pitch the body forward [26], [3]. The reasons behind and 
effects of this behavior (see [20]) are not discussed here, but 
this constraint must nevertheless be modeled. This modeling 
of constrained knee motion is accomplished by intersecting 
the polyhedron with the plane corresponding to &nee = 0. The 
resulting polygon represents the set of all feasible accelerations 
of the ankles and hips when keeping the knees straight (see 
Fig. 3(b)) [20]. 

The length of the foot (or the support surface underneath 
the foot) dictates limits both to stable body configurations and 
to angular accelerations that can be achieved without lifting 
either the toes or heels off the ground, a common experimental 
requirement [26]. The body position constraints characterize 
the horizontal location of the body center of mass, which 
must remain over the base of support for stable stance. The 
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where 8 is the vector of joint angles. The desire to keep the 
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When displayed in ankle-hip space (that is, with knees kept 
fixed), the constraint boundaries are approximately aligned 
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x,= 

111. MATHEMATICAL DESCRIP~ON OF MODEL 

The LQG regulator is a state feedback that minimizes an 
objective of the form 

J = E [xTQx + uTRu] dt ,  (6) 

where Q and R are weighting matrices for states x and controls 
U ,  respectively [6]. The system dynamics are described by a 
set of time-invariant first-order linear equations of the form 

X = Ax+ Bu+ w 
y = Cx + Du + 

( 7 4  
(7b) 

@kne 
@hip 

eank 
fkne 

.@hip - 

Tank 
> um = Tkne . LhiP 1 . 

where y is a vector of output or sensor states, and system 
matrices A, B ,  C ,  and D include both the mechanics of the 
body and the dynamics of sensors, depending on the desired 
complexity of the model. Process noise w and sensor noise 
U are modeled as Gaussian white-noise random processes 
with power spectral density matrices W and V ,  respectively. 
Though the estimator is an integral part of the model, this 
paper does not deal with specific effects of noise, and W and 
V are left unmodeled. From the certainty-equivalence principle 
[6], the controller can be designed independently of the state 
estimator implementation. 

A. State Equations for Rigid Body Mechanics 

The first step in developing equations for rigid body me- 
chanics is determination of state realization and dimension. 
Many realizations will produce the same transfer function ma- 
trix and input-output behavior. It is difficult, if not impossible, 
to determine the actual physiological states employed by the 
CNS because of their quantity and relative inaccessibility [29]. 
The particular state realization selected, while affecting some 
measures of relative controllability and observability, such as 
the grammian functions [17], is of little importance here. For 
modeling the mechanics of human standing in conditions in 
which the knees remain relatively straight, it is reasonable to 
choose a reduced-order four-state system, corresponding to the 
two-joint system utilized by others [9], [3]. Its realization is 
arbitrarily based on joint angles (ankle and hip), as these are 
commonly measured in experiments. 

Using the feasible acceleration set for upright standing with 
'the knees kept straight (Fig. 3(b)), it is possible to decouple the 
model, so that controls are described in strategy space rather 
than torque space (see above). With the reduced-order state 
and controls defined as 

and system matrices 

0 0 1 0  

A T =  [. 0 0 0 0  '1, B , r  [': 1 -7.7 ' ] 
0 0 0 0  0 24.5 

this double-integrator model is in the form of (7) 

k ,  = ATxT + B,U,. (8) 

Note that values for B, are taken from (4), leaving out the 
terms for knee acceleration. 

The feedback K, for this decoupled system, found using Q 
and R as described in [33], must retum a specific combination 
of ankle and hip strategies U ,  given the states x ,  

U ,  = -K,x, (9) 

where K, E RZx4. The desired joint angular accelerations e d  

can be found by 

e d  = BT2 . U ,  (10) 

The model of (8) maintains compatibility with other linear 
where BT2 is the lower half of B,. 

models (e.g., [3]), such as 

Xm=Amxm+Bmum (11) 

where A ,  E R6x6, B, E R6x3 are derived from the 
linearized equations of motion, and the states and controls are 

r@ank 1 

Note that constraining motion of the knee as in this study 
does not imply absence of torque about the knee, which is 
necessary to keep the knee straight. Conversion to the three- 
joint, torque-based model (1 1) is accomplished as follows. 
First, the matrices A,, B,, and K, must be expanded to 
correspond to x,, U,, including the knee (though it is kept 
motionless). Written compactly, the result is 

As3) [o o r3x3 1, B!3) [:I, 
[KTZ~ 0 K~22 Kr23 

~ b 3 )  ~ K~11 0 K~12 Kr13 

The desired accelerations 8d  can be expanded to @f) E R3 
for ankle, knee, and hip joints, leaving the knee acceleration 
zero. Then, using (4), 

similar to (10). Joint torques necessary to execute these desired 
accelerations are found from 

where Am2 and Bm2 are taken from the lower half of (11). 
This relation can be used in solving (1 1) to compute the feed- 
forward components of the ankle, knee, and hip joint torques 
necessary to execute the selected control strategies, keeping 
the knee straight. (The resulting knee torque is presumed 
to be supplied by active muscle force or by constraints on 
knee motion.) However, this model does not include a direct 
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feedback of knee angle, which would be necessary in practice, 
but which is assumed to be relatively small in magnitude if 
the feedforward component is accurate. 

Inclusion of sensory dynamics is described in Appendix A. 

Iv .  FORMULATION AND TESTING OF OBJECTIVES 

With x = x, and U = U, (assuming no knee motion), 
the weighting matrices R and Q of (6 )  can be chosen so 
as to penalize excessive exertion of control effort (or neural 
effort as defined in Section 11) and undesired excursions of 
the state from stable upright posture. However, R and Q 
contain a total of 13 independent entries (of 4 entries in 
R and 16 entries in Q, due to symmetry), which prove 
difficult to specify based on either theoretical considerations or 
experimental data. Simplification of the objective function is 
accomplished first by reducing the number of free entries, and 
then parametrizing R and Q so that physically meaningful 
objectives subject to constraints may be implemented. For 
example, Q is parametrized by variables corresponding to 
the size of perturbation and the relative amount of hip and 
ankle strategies used, which are related to the constraints to 
keep the feet flat on the ground. The controller is to evaluate 
the state after a perturbation and then set then gain matrix 
parameters. Preliminary experimental data are used to provide 
rough estimates of equivalent parameter values used by the 
CNS. 

A .  Formulation of Weighting Matrix on Controls 

With state feedback, the closed-loop system poles can be 
placed arbitrarily; matrix R models the effort associated with 
movement of these poles. If R is chosen to be the identity 
matrix, 

R =  [' '11 
0 1 '  

it will have the effect of weighting the relative costs of the 
ankle and hip strategies equally. Equation (4) defines the basis 
b,  describing accelerations resulting from each strategy, so 
that for equal neural effort, the hip strategy will produce 
accelerations of larger magnitude than the ankle strategy. 
The cost of executing the ankle or hip strategies is thereby 
factored into R. Fig. 4(a) illustrates this cost in joint angular 
acceleration space. Alterations to (14) can also be used to 
change the relative weightings of the two strategies. 

B .  Formulation of Weighting Matrix on States 
The Q matrix in (6) is chosen so as to simplify the equations 

governing the feedback gain matrix. First, Q is constrained 
to be positive definite (rather than the LQR requirement of 
positive semi-definiteness), so that there are no states other 
than the origin (upright stance) that minimize the objective 
on states. Second, Q is constrained to weight only joint angle 
deviations, excluding joint velocity weighting. Thus, 

- 
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(a) (b) 

Fig. 4. (a) Three-dimensional plot of cost function on the controls. In 
angular acceleration space, this function is modeled on the ankle-hip feasible 
acceleration set, shown in the ankle-hip acceleration plane (see Fig. 3). (b) 
Three-dimensional plot of cost function on the states. The [cm] objective, 
which models the desire to avoid horizontal excursion of the body center of 
mass beyond the support surface (unstable region), and the [up] objective, 
which models maintenance of upright stance, combine to form this surface. 
Note that minimum is at the origin, corresponding to upright position. 

where o is a scalar governing the relative weighting of Q and 
R (the maximum singular value of Q11 E gZx2 is constrained 
to be unity, i.e., iF(Q11) = 1). Such a formulation reduces the 
number of parameters needed to specify the objective to three 
(for positive definite Q). This reduction comes at the expense 
of control over the joint velocity weightings and hence, the 
relative damping of the system. Instead, the inherent properties 
of the LQR-designed controller are assumed to provide a well- 
damped control that adequately approximates both the desired 
and actual behavior. 

C. Selection of State Objectives 

Although Q of (15) could be chosen by trial-and-error 
selection of each entry, the specification of the state ob- 
jectives is vastly simplified by choosing Q so that certain 
physical quantities relevant to posture are regulated. These 
choices reduce the solution space to be searched and reflect 
the constraints imposed by the biomechanics of the system. 
The control responses dictated by the regulation of each 
physical quantity can be examined, providing clues as to 
which combinations produce behavior most similar to that 
observed experimentally. It is proposed that relevant quantities 
include center-of-mass position, upright body position, and 
head position. 

It is assumed that the body is subject to constraints in ankle- 
hip position space-that is, the horizontal location of the center 
of mass should be regulated to remain within the base of 
support, as in (2). This constraint can be modeled as a penalty 
function of the form (c:,O)' , where c,, [-0.98 - 0.23IT 
(see [ 19]), so that larger costs are associated with progressively 
less balanced configurations. This center of mass stabilization 
objective, [cm], is presumed to be a large factor in the state 
cost function. 

Because the CNS controls the body not only for balance 
but for maintenance of upright stance, another factor in the 
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TABLE I 
COST FUNCTIONS AND Q MATRICES FOR VARIOUS OBJECTIVE FUNCTIONS 

Cost function 0 matrix Obiective 

OTO 

QM =[‘:-;:“ . :] 
cost function should be regulation of body position. This 
hypothetical objective, [up], is of the form B T B ,  so as to 
penalize all positions away from upright stance. 

The objective can also be based on the proposed desire to 
regulate head position so as to provide a stable platform for the 
eyes [2]. Head angle, which is not included in the state vector 
z,, can be regulated with respect to the horizontal regardless 
of movement of the body, so that the stable platform can be 
maintained without requiring alterations to objectives on 2,. 
However, due to the existence of noise and thresholds in the 
controller, deviations in head angle can be expected to increase 
with increased body motion. To minimize this uncertainty, the 
body should provide a stable platform for the head [hd] by 
keeping the trunk vertical. As the trunk angle is derived from 
the sum of the ankle and hip angles, a cost function (czd0)’, 
where Chd [I I]*, penalizes movement of the trunk away 
from vertical. 

The sample cost functions for hypothetical objective [up], 
[cm], and [hd] are summarized in Table I. It is expected that 
a cost function emulating human behavior would consist of 
a combination of one or more of these costs. To gain insight 
into the effects of each of these objectives, it is possible to plot 
their resultant trajectories to gauge how various combinations 
would perform. Ankle-hip trajectories for the [cm], [up], and 
[hd] objectives are plotted in Fig. 5. The [cm] and [hd] 
objectives were augmented with small proportions of [up] to 
ensure positive definiteness. Note that [cm] produces curved 
trajectories similar to the hip strategy discussed in [26], while 
the [up] objective tends to attract the trajectory to the ankle 
axis. The [hd] objective produces curved trajectories which 
are opposite in direction to those from [cm]. This indicates 
that combinations of [cm] and [up] might produce trajectories 
similar to the ankle strategy. The form of such a combined 
objective is shown in Fig. 4(b). 

D. Parametrization of Objective 

Final determination of Q involves selection of parameters 
to specify combinations of the objectives discussed above. As 
seen in (15), Q is specified by three independent entries, and 
therefore three free parameters. With proper formulation, the 
objective parameters may be interpreted in a number of phys- 
ically meaningful ways. As formulated here, one parameter is 
used to select the type of response, another selects the speed 
or gain of the response, and one is left unused. 

Using the proposed combination of [cm] and [up] objectives 
as a framework, it is natural to choose a parameter p to govem 

Fig. 5. Ankle-hip trajectories for various objectives. (a) [cm] objective 
(regulation of body center of mass) results in counterclockwise curved 
trajectories. (b) [up] objective (regulation of upright stance) controls hip 
angle quickly, followed by motion about the ankles toward upright. (c) [bd] 
objective (minimization of excessive head motion needed to maintain level 
gaze) produces curved trajectories opposite in direction to those of [cm]. 

the proportion of [cm] and [up] in Q. Another parameter CT 
can be used to regulate the overall magnitude of Q relative 
to R, leaving one additional parameter, 4, which is arbitrarily 
defined as the rotation of the [cm] and [up] components in 
the ankle-hip plane (about the vertical axis in Fig. 4(b)). This 
parameter is left at 4 = 0 in this formulation. The resulting 
objective can then be written as 

Ensuring that 0 5 p < 1 and CT > 0 guarantees that Q is 
positive definite. Normalizing by the maximum singular value 
of the numerator, a(.), guarantees that variation of p does not 
interfere with the magnitude-scaling properties of 0. Thus, the 
entire response properties of the system are specified by the 
two parameters p and (T (leaving the third unused). 

There are several functions that can be ascribed to p and CT 
so as to aid understanding. The proportion of [cm] and [up] 
as govemed by p is equivalent to specifying the ratio of hip 
and ankle strategies. The parameter CT is subject to a number of 
interpretations relating to the speed or gain of the response. For 
example, magnitude-scaling of Q with 0 also parametrizes the 
gain matrix K,. As discussed in Appendix A, the relation is 

where K1, K2 E RZx2 are nominal matrices found by solving 
the Riccati equation with CT = 1. 
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The relation between c and the center of mass acceleration 
is also simplified. If the effect of the disturbance can be 
modeled as a perturbation on the initial values of 0 while 
having little effect on 0 (because the support surface is started 
and stopped quickly), that is, 

L J  

then the linearized expression for horizontal acceleration of 
the center of mass, zcm, is a linear function of joint angular 
accelerations [20], 

(18) 

and can be related to x,  using (9) and (lo), to form the relation 

T ’. 
i c m  = ccmO 

Zcm = cTmBrZKrxr. (19) 

For a minimum-phase system such as this, the maximum value 
of [Zcml occurs at initial time and is found by substituting 
initial conditions into (19). Also substituting (17), 

Zlmaxl = max1.L = IacTm~rZK10oI (20) 

where 00 f [Oank &ip] at initial time, so that there is a 
linear relationship between a and Z I  max 1 .  This proportionality 
implies that and can be used interchangeably as parameters. 

The constraints (3) for keeping the feet flat on the ground 
are similar in form to (18), implying that a is also linearly 
related to heel- and toe-off conditions. Thus, the parameter a 
has a direct relationship to the feedback K,, the maximum 
center of mass acceleration, and heel- or toe-off. Depending 
on the application, a can then be interpreted alternatively as 
a measure of the relative cost of state deviations, the speed of 
the response, the gain of the feedback, the amount by which 
we are willing to move the system poles, or the danger of 
lifting the toes or heels off the ground. 

The actual values for p and a are chosen by the control 
selection center (Fig. l(b)) based on the size of disturbance. 
It is expected that the penalty [cm] is of greater importance 
when responding to larger perturbations, when the constraint 
of keeping the center of mass within the base of support 
is likely to become active. As perturbations increase, the 
acceleration of the body required to offset the perturbation 
will also increase. The control selection center is therefore 
expected to increase both p and a as pertubations increase 
in size. The model implements the selected control for the 
duration of the response. 

T 

E. Comparison with Experimental Observations 

The model utilizing objective function (16) was compared 
with natural human responses, where subjects were released 
from various initial positions and allowed to retum naturally 
to upright stance. Ankle-hip trajectories were found to exhibit 
a curved shape similar to those described in [26]. Thus, 
the simple LQR objective scheme, in conjunction with body 
dynamics, was sufficient to reproduce major characteristics of 
human responses without need for more complex objectives 
involving switching between strategies and minimizing the 
number of muscles used [26]. 

Measured ankle and hip trajectories were used to find rough 
estimates of parameter values and to test predictions on how 
these parameters varied with initial conditions. Use of initial 
conditions rather than platform movement as disturbance was 
used to simplify the model validation procedure. 

To compare with experimental results, objective function 
parameters were chosen to best match experimental trajecto- 
ries. The parameter a was used to scale the temporal response 
to match natural responses, while p was adjusted to match 
ankle and hip angle trajectories and model the enforcement of 
constraints that become active as perturbations become larger 
or initial conditions approach the position constraints of (2). 
Simulations with these parameter values show that the model 
(8), using objectives [cm] and [up], minimizing neural effort, 
produces curved trajectories similar to those described in [26], 
as shown in Fig. 6 (this is only a subspace of the full 4-D state 
space, which is difficult to illustrate). For larger disturbances, 
values of p = 0.997 produce reasonable matches, similar to the 
kinematics of the hip strategy; for small disturbances, values 
of p = 0.980 produce trajectories similar to the kinematics of 
the ankle strategy. (Note that the small range of values for p 
is an artifact of the parametrization, and is not indicative of a 
sensitivity problem in the model or the CNS.) 

For a given initial condition, zlmaxl can linearly parametrize 
c using (20). Elements of feedback gain matrices K, are 
plotted versus varying values of Zlmaxi (and hence a)  and p 
in Fig. 7. Note that the feedback gain increases with zlmaxi, 
verifying that control effort increases in magnitude with the 
speed of the response required to offset a disturbance. As p 
decreases, lowering the proportion of [cm] in the objective, the 
relative proportion of ankle strategy is increased. Large values 
of p produce gains utilizing higher proportions of the hip 
strategy. This indicates that for a given ilmaxl, ankle strategy 
movements tend to require more control effort than hip strategy 
movements. 

Fig. 8 illustrates the performance of the controller for vary- 
ing values of zl max 1 and p. Note that susceptibility to lifting of 
the heels off the ground, c;feelj, increases as Z I  max I increases 
and as p decreases (Fig. 8(a)). Thus, a secondary effect of the 
[cm] objective is that the constraints (3) are not active for large 
values of p, so that the feet are automatically kept flat on the 
ground. Fig. 8(b) shows that settling times (time for response 
to return within 10% of zero) are fairly invariant with p; the 
choice of objective, and therefore strategy, has little bearing 
on response time. 

An important consideration in a biological system is that the 
controller must be stable even with substantial transmission 
delays. The maximal time delay tolerable before a system 
becomes unstable may be estimated by determining the phase 
margin of the system and dividing by the cross-over frequency 
to find the largest tolerable pure lag. Maximum tolerable time 
delays for varying values of ilmaxl and p, are shown in 
Fig. 8(c). Note that, except for slow responses (small values 
of Zl max I), there is little variance in robustness to time delays 
with respect to p. For very small disturbances that can be 
stabilized with small Zlmaxl, larger values of p, corresponding 
to controls similar to the hip strategy, are more robust with 
respect to time delays. 
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vs. time BhiP vs. time 

Fig. 6. Comparison of experimental data (dotted lines) with computed simulations (solid lines). Data are from a typical subject released from various initial 
positions, returning to upright stance. Shown are ankle angle &,k versus time, hip angle @hip versus time, and @hip versus Bank. (a) Starting with ankle 
extended, hip flexed. CT = 1.4, p = 0.997. (b) Starting with ankle flexed, hip extended. U = 2.4, p = 0.997. (c) Starting with ankle flexed, hip extended. 
U = 1.6, 1 = 0.990. (d) Starting with ankle flexed, hip flexed. U = 0.6, p = 0.980. 

V. DISCUSSION 

A .  Modeling Deficiencies 
Many of the difierences between experimental and simu- 

lated trajectories can be attributed to simplifications in the 
modeling and formulation of the objective. Errors in prediction 
will arise due to flexibility within the human body segments, 
and particularly, nonnegligible knee motion. In particular, 
inclusion of knee motion in the model is believed to increase 
fidelity to experimental results, though at the cost of increased 
complexity. The additional degree of freedom increases the 
dimension of the state vector, and may require one or more 
additional parameters to form the cost function. 

Knee motion can also be presumed to be dependent on the 
direction of the disturbance. A person falling forward over 

the toes might be expected to bend forward over the hips 
while rotating backwards about the ankles slightly (thereby 
moving the center of mass backwards), keeping the knees 
straight and fully extended. A person falling backward might 
be constrained from reversing this response due to limitations 
on hip extension, and may rely on flexing the knees to move 
the center of mass horizontally. Thus, knee motion, if modeled, 
must be made dependent on the direction of the disturbance 
and constraints on hyperextension. This nonlinearity could 
be accounted for by using the gain-selector with two linear 
mode l s4ne  for each direction of perturbation. 

The LQG controller produces an optimal retum trajectory 
that is a function of the states. To study platform perturba- 
tions, it is necessary to provide reasonable estimates of initial 
conditions on the states which are used to compute the retum 
trajectory. Because the platform imparts changed velocities, 
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Fig. 7. (maximum center of mass 
acceleration) and p .  First row is gain feeding back to ankle strategy, and 
second row feeds back to hip strategy. First column is feedback from ankle 
position. Second column is feedback from hip position. Note that gain 
increases, indicating larger control effort, as the speed increases. Decrease 
of /I causes greater proportion of ankle strategy. Increase in p causes greater 
proportion of hip strategy. 

Gain matrix elements K ,  versus 

as well as positions to the system, the initial conditions on 
positions (used here to model standing up after release from 
nonerect stance) must be augmented with velocity information. 
Altematively, perturbations may be modeled as exogenous 
force or acceleration inputs, which would require additional 
degrees of freedom for support surface movement. 

The model here also relies on feasible acceleration sets 
to model the cost of activating muscles. Other possible cost 
functions utilizing metabolic or mechanical energy expenditure 
(see, e.g., [31]) are difficult to implement using quadratic 
functions. Minimization of neural effort serves as an adequate 
cost in that it penalizes increased activation of muscles and 
integrates this cost over the entire trajectory. It does not 
account for the velocity of movement, whether the muscles 
are lengthening or contracting, or whether muscles are co- 
contracting. 

Both regulator and estimator portions of the LQG controller 
are implemented using steady-state feedback gains. Steady- 
state gains are appropriate for the middle portion of a long 
trajectory. Linear quadratic regulators are expected to use 
time-varying gains near the end of a trajectory, when terminal 
objectives, which are not part of the objective in the current 
model, may have precedence. Similarly, state estimators are 
expected to use time-varying gains near the beginning of 
a trajectory, when initial conditions on the state estimate 
may have precedence over the computed values [6]. The 
use of steady-state gains greatly simplifies computation and 
simulation, at the expense of accuracy at the initial and final 
portions of the trajectory. This accuracy could be improved 

by implementing a terminal objective and time-varying gains 
for a finite-time task. 

B .  Analysis of Time Delay Robustness 
The optimal control model appears to be useful for testing 

motor control hypotheses, despite the deficiencies outlined 
above. For example, it is possible to examine the robustness 
of the ankle and hip strategies to transmission delays. (Note 
that robustness of an LQG controller can be recovered using 
loop transfer recovery [8].) Analysis (Fig. 8(b)) shows that 
controllers utilizing the hip strategy (larger values of p )  can 
tolerate greater time latencies before going unstable than 
those utilizing the ankle strategy (smaller values of p).  These 
findings are in contrast with those of [24], in which time 
constants for the inverted pendula corresponding to the two 
strategies were computed and compared. It was concluded 
in [24] that because a response must be produced within a 
quarter-period of the movement, the slower ankle strategy is 
more tolerant to time latencies. The difference in results can 
be explained by analyzing the feedback control system. State 
feedback can be used to move system poles (and hence, time 
constants) to arbitrary locations. This movement of poles is 
limited by the cost of the control large feedback gains are 
necessary to move poles far from their open-loop locations. 
While the hip strategy is naturally faster than the ankle strategy 
as shown in [20] and [24], it also requires smaller feedback 
gains to achieve a given speed of response. 

This analysis shows that when the controllers are analyzed 
with respect to center of mass acceleration (21 max I), a given 
disturbance can be countered either by a hip strategy ( p  = 
0.997) with low gain, or an ankle strategy ( p  = 0.980) with 
higher gain. Because the magnitude of feedback gain, rather 
than the strategy used, is the primary determinant of time 
delay robustness, there is little or no advantage to the ankle 
strategy-a hip strategy can stabilize the body just as quickly, 
but with lower gain. As a result, the hip strategy can actually 
tolerate longer transmission delays while maintaining stability. 

C. Interpretation of Objective Function 

Once a cost function has been shown to produce a reason- 
able approximation of natural behavior, it is natural to interpret 
the objective being achieved. For example, the controller 
introduced here appears to regulate center-of-mass position 
above the support surface with an additional objective of 
maintaining upright stance (the [cm] and [up] objectives). 
The gain-selecting model that matches human behavior would 
choose slow movements (small values for a) mostly of the 
ankle strategy (,U zz 1.00) for small disturbances. As dis- 
turbances to posture become larger, the gain-selector would 
choose progressively faster responses (larger values for a) 
using the hip strategy ( p  zz 0.98) to avoid lifting the feet off 
the ground. The resulting controller behaves functionally like 
the CNS, choosing the ankle strategy for smaller disturbances, 
switching to the hip strategy for larger disturbances. 

It is quite possible that such a cost function results in a 
controller that approximates natural behavior well. It is also 
quite possible that there exist neural circuits that compute 
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Fig. 8. Performance of system versus 21 max 1 and p.  (a) Susceptibility to lift-off of the heels, cCeelt9, increases with speed of movement and use of ankle 
strategy (low p) .  (b) Settling time from disturbance remms approxunately the same for both ankle and h p  strategies ([cm] and [up] objectives). Slower 
movements have slower settling tunes. (c) Maximum tolerable tune delay, calculated from phase margm of stabilized control system. Note that neither strategy 
has a large advantage, but for extremely slow movements, [cm] objective appears most robust. 

such a cost function. However, it is fruitless to attach an 
interpretation (e.g., that the CNS desires to regulate position 
of the center of mass) to the cost function, because there 
are many other possible interpretations that produce the same 
results. For example, a controller could be implemented using 
a combination of [cm] and [hd] objectives, and with the 
appropriate choice of rotation 4, could exactly duplicate the 
cost function (16). Such a controller was rejected based on 
intuitive interpretations of ankle-hip trajectories in Fig. 5 and 
to avoid use of additional parameter 4. But none of the above 
results provide any evidence for rejecting [hd] as a component 
of the actual objective used by humans. The use of [cm] and 
[up] objectives in (15) was based primarily on the desire to 
reduce the size of the parameter space to be searched. Thus, 
while intuition aids in formation of hypotheses concerning 
objectives, and some objectives may be deemed unlikely after 
examination of the trajectories, the results have limited utility 
for interpretation. 

Nevertheless, the existence of simple objectives is subject to 
interpretation. Evidence that the CNS flexibly adjusts controls 
based on mechanical constraints suggests that the CNS is 
not subject to certain neural constraints, as hypothesized in 
[26]. Rather, neural circuitry is programmed to stabilize the 
body subject to the varying effects of external mechanical 
constraints. More experimentation is required to accurately 
describe the objectives which describe how this flexibility is 
used. 

More careful models of the cost function can produce 
predictions with greater fidelity to experimental results and 
superior predictive capability. The three degree-of-freedom 
quadratic cost function (15) could be replaced by more com- 
plex, possibly nonquadratic functions. However, the successful 
use of a simple quadratic function leaving velocity states 
unweighted indicates that only a few states are important to 
the CNS when adapting to changing situations. 

Identification of significantly improved objective functions 
is ultimately limited by feasibility of the experiments, res- 
olution of the data, and inter- and intrasubject variability. 
However, clever design of perturbations and conditions should 

aid in identification of much finer details of the objective than 
are discussed here. One use of these model mechanical systems 
is to identify which of the many variants of these experiments 
will provide the most powerful tests of competing hypotheses. 

D. Compatibility Issues 

Though more general nonlinear objective functions may 
improve fidelity, the LQG controller has a number of inherent 
advantages. First, the optimal return trajectory can be de- 
scribed as either a feedforward trajectory or a feedback control 
with constant gains in the steady state (see Section 11). While 
there is considerable debate concerning the proportion of feed- 
forward and feedback used by the CNS [21], [12], this model 
produces the same trajectories regardless of the proportion. 
This also makes the model compatible with feedback error- 
learning models [ 181, which incorporate both components. 
More complicated optimal control formulations generally pro- 
duce only feedforward trajectories, without feedback gains 
which are of particular interest to neurophysiologists [ 101. 
An exception is the technique of dynamic programming [33], 
which is highly susceptible to problems of dimensionality. 

Second, LQG is a simple technique for design of full- 
state feedback systems compatible with those of [91, [3]. 
Such systems are also amenable to state space identification 
techniques, providing further avenues for experimental study. 

The linearity of the controller is disadvantageous in that it 
requires a control selection center (Fig. 1) to estimate the size 
of the disturbance and whether constraints are active, and to 
select controller parameters ( p  and o) accordingly. However, 
others have proposed a hierarchical motor control scheme 
in which low-level regulation occurs in lower levels of the 
CNS (such as the spinal cord), with successively higher levels 
of feedback to portions of the brain [22]. The necessity of 
a control selection center is therefore compatible with such 
hierarchical control hypotheses. 

The successful performance of the model does not, how- 
ever, imply that the CNS functions as a linear quadratic 
regulator and estimator: nor is it proposed that there are 
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specific functions of the model (see Fig. 1) being performed 
in specific locations within the CNS. In fact, the separation 
of the regulator and the estimator in the model is only 
due to mathematical (the certainty-equivalence principle) and 
conceptual simplicity, and is not necessary in a controller 
implemented in neural circuitry. The only presumption is that 
for the specific operating conditions outlined here, the CNS 
achieves the same functionality as the LQG model, in that 
the system can stabilize against small perturbations, making 
efficient use of body biomechanics and (redundant) sensory 
information to produce the control. 

The state estimator model of sensory output processing 
has significant advantages over the Sherringtonian concept 
of reflex loops from sensors to actuators [32]. The sugges- 
tion that the CNS utilizes an intemal model of the body 
is compatible with data conceming responses to ambiguous 
sensory information, such as circularvection [5]. Incorporation 
of sensory information throughout the body to estimate states 
may also explain the enormous degree of divergence and 
convergence of neurons seen physiologically. The implication 
is that output from sensors is not used directly as a trigger 
or in multiplicative feedback to produce a response, as in the 
Sherringtonian view. Rather, it appears that a complex set of 
computations, including filtering and integration, as well as 
summation of input, occurs prior to formation of the response. 

E .  Future Work 

This model of control of balance appears to serve as an ideal 
framework for studying responses to ambiguous sensory input. 
This framework must be tested with additional experiments 
similar to the preliminary trials described in Section IV. Such 
experiments will reveal limitations to this model and indicate 
areas in which additional complexity is required. 

The model can also be used to study integration of sensory 
information. Experiments in posture have explored alteration 
of visual, proprioceptive, and vestibular input in conjunction 
with platform perturbations [15]. Modeling can be used to 
predict and explain many types of behavior arising from such 
altered sensory input conditions. 

The LQG controller can be used to study how system per- 
formance is related to the precision of sensors. One approach 
would be to describe the signal-to-noise ratio or precision 
of each sensor with a power spectral density matrix. The 
linear system with noise would then be modeled as a Gauss- 
Markov random process [6], which can be used to predict the 
covariance of the output states. Thus, loss of sensory input 
could be modeled to calculate increases in uncertainty of the 
state. Certain elements of the state estimate are affected by 
some sensors more than others, so that a ranking of importance 
could be established in terms of the amount a particular sensor 
is relied upon in formation of the estimate. 

With age, various components of the neuro-musculo-skeletal 
system are presumed to degrade [ 151. Sensor noise, transmis- 
sion delays, and actuator weakness may all increase in the 
elderly. In addition, the intemal model of the system and 
the control may or may not adapt accordingly. The effects 
of such adaptation may also be modeled in the LQE and LQR 

components, so that predictions can be made to test hypotheses 
conceming the process of aging or the effects of disease or 
trauma affecting sensors. 

VI. CONCLUSION 

This work demonstrates first that biomechanics and task 
requirements place substantial constraints on the set of mean- 
ingful choices available to the CNS when it is faced with 
the necessity of stabilizing the body. Second, the multilink 
dynamics dictate not only feasibility, but also ease of achieving 
certain combinations of joint angular accelerations. Third, the 
decisions remaining to the CNS appear to be made so as to 
preserve upright balance while maintaining an economy of 
movement. 

The proposed model therefore combines elements of biome- 
chanics and sensor-based control and serves as a framework 
for studying motor control objectives and constraints relevant 
to the CNS. Aside from the formulation of objectives, it serves 
as a convenient method for producing feedback gains that 
can be used in control systems analyses to test motor control 
hypotheses within a structure that is compatible with a number 
of existing models and theories (e.g., [3], [9]). Finally, the 
integration of sensory input provides predictive and analytic 
capabilities that are useful for studying sensory processing and 
changes to the system. 

APPENDIX A 

The LQG controller is formed by augmenting the model 
of (11) with sensor dynamics, and then selecting weighting 
matrices for the linear quadratic estimator. Together, the 
estimator and regulator form the full LQG controller. Loop 
transfer recovery can be applied to adjust for loss of robustness 
in the estimator-based controller [8]. 

A. Inclusion of Sensor Dynamics 

form (7)  if written in the form 
Sensor dynamics are integrated into the system equations of 

?s = Asxs  + Bsus 
ys = c s x s  + Dsus 

where the sensor inputs are defined as us 
system equations are put in the form of (7) by 

(A.la) 
(A.lb) 

x'. The complete 

(A.2a) 

C =  [Os C s ] ,  D = O  (A.2b) 

where ys is the sensory output available to the CNS. 

B .  Weighting Matrices for Linear Quadratic Estimator 

The gains for the optimal state estimator are determined by 
the power spectral density matrices W and V of (7). Given a 
reasonably accurate internal model and initial conditions, com- 
puter simulations of an LQG system without injection of noise 
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give accurate state estimates, rendering implementation of the 
filter necessary only for prediction of state covariance matrices, 
which describe the probable deviations from expected values. 
The certainty-equivalence principle [6] also guarantees that the 
LQR can be designed independently of the LQG. Therefore, 
the state estimator is designed and implemented based on (8). 

Note that the estimator can also be used to model direct 
feedthrough of sensory measurements as in [lo] by rendering 
the intemal model unreliable. This is done by increasing its 
uncertainty (process noise w), so that the state estimator then 
depends purely on sensors. The resulting covariance matrices 
can be compared to those computed with an intemal model 
to determine the performance of the system with and without 
an intemal model. 

APPENDIX B 
The gain matrix K, of (17) is linearly related to parameter 

o. This is shown by noting that 

K, = R-’ BTS (B.1) 

where S is the stable steady-state solution to the Riccati 
equation 

S = -ATS - SA, + SB,R-’BTS - 0 2 Q  = 0 (B.2) 

as described in [6 ] .  Defining 

z = B , ~ R - ~ B ~  

and rewriting (B.2) in block form combined with (15) produces 

L 1 

Rearranging terms reveals 

the upper-left block of which shows that solutions for Sal are 
linear in o. The lower-right block of (B.4) shows that S22 is 
therefore linear in fi. 

Writing (B.l) as 

K, = RP1[0 BSI [it: E] = R- l .  B Z .  [Szl ,9221 

(B.5) 
leads directly to (17). 
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