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Low-voltage resistance in small Josephson junctions 
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AbbrlmcL Recent experiments ly lansili a 01 on m a l l  Josephson junctions display 
various nnvel features: n finite mistance Ro associated with the low-voltage state, the 
m-existence of Coulomb blockade and Josephson tunnelling, ... Since the aistence 
of Ro cannot he explained by the simple RSI model, nor by any classical model at 
low-temperatures, we adopt a quantum Langevin equation approach which incorporates 
frequency-dependent disvipation as well as dissipative quantum tunnelling. We oblain 
good agreemenl h l w e e n  our theory and the results of lansiti a d which reflecu the 
influence of the environment. 

1. Introduction 

Recently [la], new lithographic and low-temperature techniques have allowed the 
fabrication and measurement of Josephson junctions with small arcas for which the 
Josephson coupling energy E, = h l , / 2 e  (where I ,  is the ideal critical current) is of 
the order of the charging energy E, = e2/2CJ (where C, is the capacitance of the 
junction). Several experimental studies of this type of junction have revealed a new 
kind of current-voltage (I-V) characteristic that exhibits both hysteresis and a small 
voltage associated with the nominal zero-voltage branch [1-4]. This low-voltage state 
can he  characterized by a resistance R,, which is not possible to explain within the 
simplest classical model, the  resistivity and capacitively shunted junction (RSJ) model, 
which rules out the simultaneous presence of hysteresis and a low-voltage state in a 
single I-V curve 141. Many theoretical efforts 11-41 have been made towards a full 
understanding of this novel phenomenon. 

Ono d al [I]  have proposed that the coexistence of hysteresis and a low-voltage 
state in a single I-V curve can he explained either by an extended RSJ model where 
the shunt conductance of the junction is frequency-dependent, or by a dissipative 
quantum tunnelling model. Kautz and Martinis 141 (KM) have fully explored the 
possibility of an extendcd RSI model explanation by using models in which the 
damping increases with frequency. In the KM model, the isolation resistor and lead 
capacitance of the experimental apparatus are approximately accounted for by adding 
R, and Cb respectively to the R S I  circuits as shown in figure 1. Since the role 
played by R, and Cb in figure 1 is significant only in the high-frequency range, the 
damping in the circuit is low at zero frequency and high at microwave frequency. The 
analysis of KM is restricted to the classical regime ( EJ >> E,) and their evaluation 
of the finite resistance Ro associated with the low-voltage state depended crucially 
on the existence of thermal noise. Thus, in the low-temperature regime another 
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explanation is required. In particular, Iansiti e1 a1 131 have explored the possibility of 
the dissipative quantum tunnelling model explanation and provided a semiquantitative 
account of their superconducting tunnel junction experiment in the low-temperature 
regime. Nevertheless, their explicit calculation of the resistance R, considered only 
the tunnelling rate in the absence of damping. Also, large discrepancies between 
the theory and experiments exists in the region where E, < E,. These studies 
11-41 clearly established the  basic physical elements associated with the  low-voltage 
state in a small current-biased low-temperature Josephson junction: (i) dissipative 
quantum tunnelling plays an important role; (ii) the frequency-dependent damping 
behaviour brings the system originally thought to he in the weak-damping region 
into the strong-damping region. In this paper, we will first show that the frequency- 
dependent damping can he studied in the dissipative quantum tunnelling model, after 
which we calculate the T = 0 resistance R, in the presence of frequency damping by 
applying the KM model to the quantum regime. 
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Figure 1. 
equivalent to an w model with a frequency-dependent shunt. 

Josephmon tunnelling junction in Ilie KauU and Maninis model, which is 

The dissipative quantum tunnelling model [S-7) pioneered hy Caldeira and 
Leggctt (CL) is widcly uscd in the literature and, with few exceptions [8], the path 
integral method is used to calculate the tunnelling rate. However, such a calculation 
is non-trivial, particularly in the wse of frequcncy-dependent damping. Thus, various 
authors were motivated to present a new approach based on the use of the generalized 
quantum Langevin equation (GLE) [9-111. The latter, which is derived from the Same 
microscopic Hamiltonian used by CL and others, incorporates frequency-dependent 
damping by a frequency-dependent memory term. For a particle in a parabolic 
potential, Ford, Lewis and OConnell  (FLO) were able to obtain an  exact result [9] 
and show, in agreement with CL, that dissipation always decreases the tunnelling rate 
(except in the presence of mass renormalization [lo]). 

While the GLE method is simpler to use than the path integral method (and it 
is particularly appealing for the problem at hand) the problem is that, so far, it 
is restricted to quadratic potentials. O n  the othcr hand, the CL method, has been 
applied to the cubic (more precisely, ‘quadratic plus cubic’) potential which is a good 
representation of the sinusoidal ’washboard’ potential associated with the quantum 
tunnelling process in a current-biased Josephson junction provided that the external 
current la is comparable to the  critical current I, .  
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2. Derivation of results 

What we plan t o  d o  here is to combine the hest features of both the a and GLE 
approaches and obtain theoretical results with a single adjustable parameter. l3 
explain what we have in mind we, first of all, review the case of weak coupling and 
ohmic damping since accurate results have been obtained by a and others. At  zero 
temperature, the decay rate from a metastable well is generally written as [SI 

r = Aexp( -E / t l ) .  (1) 

It is convenient to write 

B = E,R,/Q E OB, (2) 

where R, and 57 are the small-oscillation frequencies at the local minimum of the 
potential, in the absence and presence of dissipation, respectively. In addition, for a 
current-biased Josephson junction in the cubic potential model, one has [SI 

E, = F V , / R ,  ( 3 4  

v, = 2E,l[l-  (LJL)211’2 - ( L l / L )  c o S - , ( L / L ) } .  

where V,, the barrier height, is given by [4] 

(3h) 

Also for the cubic polenlial and in the case of ohmic damping, CL obtained 

02,/Q = 1 + b,  (4) 

where 

b, = [4S<(3)/2rr3]y/57, = 0.87(y/RU) (5)  

rcpresents the effect of dissipation to lowest order in y. where y corresponds to 
the damping parameter used by FLO [9]. For ease of comparison, we note that y is 
twice the corresponding quantity used by CL and that the a used by these authors is 
our (y/CLo). Finally, we refer to Freidkin el al [6] for an analysis of the effects of 
dissipation on A; the calculation is complicated and the result obtained is 

A = Q,(60E,/27rtl)’/2 exp(1.430y/CLu). (6) 

It is clear that the  effects on the tunnelling rate due to dissipation term in A a re  
much less important than those due  to b,. 

The corresponding ohmic calculation in the case of the quadratic potential was 
carried out by FLO and these authors found a 6, value cqual to (y /20u) .  It is thus 
clear that if we used an ‘effective’ coupling y:,, = 1 . 7 4 ~  in the quadratic calculation, 
we would conclude that the effects of dissipation, as given by b,, are  exactly the same 
as for the cubic calculation with a coupling constant y. Another way of stating this 
(which will be useful when we turn to the non-ohmic problem) is that we replace p 
obtained from the quadratic calculation by pew. We conclude that the GLE method, 
originally designed for quadratic potentials is capable of treating the more complicated 
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cubic potential if we introduce a single adjustable parameter. This motivates US to 
use a similar approach in the more general case of non-ohmic dissipation and a more 
complicated potential (such as the 'washboard potential'). It should he  emphasized 
that the cubic potential is only a good representation of the 'washboard potential' for 
Iefi  Y I,. However, the latter condition is not applicable in the present context (since 
the essence of the experiments under discussion is that I,, is vanishingly small) and 
thus the path integral approach in its present development is not adequate. O n  the 
other hand, for our purposes, we will use the A and Bo values associated with the 
cubic model (given, respectively, by equations (6) and (30)) since r is only weakly 
dependent on the pre-factor A and also B, is multiplied by the adjustable parameter 
@. 

We now turn to the non-ohmic problem. In the GLE approach, the presence 
of non-ohmic effects is reflected by the presence of a frequency-dependent memory 
function b(w),  which reduces to my for ohmic dissipation, where m is a suitably 
defined 'mass' (see below). Thus, it is not unreasonable to calculate non-ohmic effects 
by carrying out the corresponding calculation for the quadratic model keeping in mind 
that we should replace 13 by /je,, at the end of the calculation (or, alternatively, regard 
/3 as an adjustable parameter) in order to make comparison with the experimental 
results. Whereas our approach does not give absolute numbers it should also he 
stressed that the experiments under discussion (in the non-ohmic regime) d o  not 
provide them either, in contrast to experiments carried out in the ohmic regime. 
However, an important test of our approach will he provided hy the  functional 
dependence of /? on the environmental parameters (such as C,, and R, appearing 
in (8) below). In fact we obtain an explicit analytic expression for this functional 
dependence (see equations (14) and (9) below). 

The essence of the GLE approach is the calculation of (.Q,/fL) appearing in (2). 
This is achieved by solving the  following equation (equations (17) of [9]): 
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[c l ( in) ] - '  maZ + n i . ( in )  - = o (7) 
where f i ( w )  is the Fouricr transform (denoted by a superposed tilde) of the memory 
function appearing in the GLE for the prohlem of interest and n ( w )  is the generalized 
susceptibility associated with the  same GLE. Thus, in essence, our prohlem reduces to 
a determination of b(w) .  

For the case of a Josephson junction, 711 = @iCJ, where @, = h / 2 e  is the 
flux quantum, and also r11.Q; = E, 11 - ( I e ~ / ~ c ) * ] l z ,  where I,, is the external 
steady current and I, is the critical Josephson current. For the RSJ model we have 
F ( w )  = m y ,  where y = ( C J R J ) - '  and RJ is resistance ol the junction i.e. we have 
ohmic dissipation. However, as already pointed out, this modcl is inadequate for our 
present purposes. 

Since our goal is to calculate the finite resistance R, associated with the low- 
voltage state a t  low-temperature detected in the current-biased small Josephson 
junction, we will use the KM model which explains similar phenomenon quite well in 
the classical and finite temperature region. In the KM model, the isolation resistor 
and lead capacitance of the experimental apparatus, a re  modelled by the R, and (7b 

respectively in the circuit shown in figure 1. Also I,, and I,,, refer to currents due  
to Johnson-Nyquist noise of the  resistance RJ and R,, respectively. Starting from 
the equation of motion (see equations (32) and (33) of [4]), it is straightfonvard to 
derive the GLE for the system, after which we obtain 

b ( w )  = (@i/R,)[(l - iwC,,RsR,/R,,)/(l - iwCbR,)l (8) 
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where I /Rl l  = 1/R,  + l / R J .  The real part of @ ( w )  was first obtained by KM in [4]. 
We next substitute (8) in (7) and obtain, 

a3 + n,vR,RZ + ( arnu - 1p;n - n,n; = 0 (9) 
where 

a, G (Q,RJCJ)-I = (y/R,) a, = (R,R,Cb)-l  = 1 + R,Rll/CbCj. 

(10) 
Substituting the positive solution of (9) into (2) , and using (1) and (6), we obtain 

the T = 0 quantum decay rate for the KM model in the weak damping (a, << 1) 
limit 

r = ~u(60B,/2afi)1/2e-BDPI" (1 1) 
where /3 (R, /R)  is the positive solution of (9). 

We are  now in a position to apply the above-established dissipative quantum 
tunnelling theory to calculate the resistence R, associated with low-voltage state of 
the Josephson junction at T - 0, and compare our theory with the experimental 
results of lansiti et af [3].  

It was first suggested by Ono  er a1 [I] that the low-voltage state ohsewed in their 
experiments corresponds to occassional quantum tunnelling, in which the phase slips 
by 27r with each tunnelling event and an average voltage appears across the junction 
given by V, = 7 r W / e ,  where r is the decay rate. It follows, that the resistance R, 
associated with this low-voltage state V, is 

R, = dK/dI<*I,&U = (~h /c )d r /d I , , l ,& .  (12) 
Based on this idea, lansiti el a1 [3] calculated the R, in the absence of damping, 
which gives an upper bound of R, and provides a useful starting point. Here we 
apply the formalism developed in this paper to calculate the R, of (12) hy means of 
the KM model where the damping is frequency-dependent. 

Using (3) and (11), and after some algcbra, we obtain from (12) an  explicit 
expression for the tunnclling rate in the presence of damping 

R, = /~/eZ(2437rfi /10B,)1~Z[2Bu/~~ - I ]e-B"/hB (13) 
where /3 is given hy the solution of (9). 

Some comments about (13) are in order. First of all, (13) demonstrates that after 
one includes the quantum tunnelling effect, the zero-voltage state originally appearing 
in the classical treatment of the Josephson junction is actually a low-voltage state with 
resistance R,. In other words, the DC Josephson zero-voltage state is true only in the 
sense that for convcntional samples E, - 0, BJfi >> 1, and the tunnelling rate is 
negligibly small. Secondly, in the presence of current bias, the minimum of a potential 
well decreases consecutively along the forward direction of the current. Therefore, any 
backward tunnelling from the ground state is energetically unfavourable at T = 0. 
Equation (13) has included this fact and is a T = 0 forward tunnelling formula. 
Thirdly, damping plays a crucial role in obtaining (12) and (13) since it ensures that, 
after each tunnelling event, the phase falls into the local minimum before tunnelling 
again to give another 27r phase slip. Since we arc working in the I, - 0 limit, (13) 
is valid at any finite damping, which guarantees the dissipation of the energy gained 
by a 2n  phase slip. Finally, (13) is a particularly convenient form for evaluating R,, 
once f i  is known, as we will discuss in the following. 
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3. Comments 

In general, the value of R, can he evaluated by first obtaining p = R,/n from (9) 
and then applying (13). The solution for the cubic algebra equation (9) is readily 
derived hut it is lengthy and So will not be presented here. Instead, we discuss some 
of the special cases, which are of much physical interest. In the R, - a3 limit, the  
effects of R, and C, can he neglected, and  (8) and (9) reduce to the ohmic case [9], 
F ( W )  = el>i/R, and RZ + yR = R& respectively. In that case, the normal mode 
frequency R is always close to 0, in the weak damping region ( y  <(flu).  When R, 
becomes finite (in fact, as < 1 in practice), even in the weak damping region, (9) has 
low-frequency solutions. In this case, one notices that 7 is the only quantity in (9) 
which is significantly larger than one, and (8) has an approximate solution 
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{ j  E R,/R = J;i(l- I ( 2 a J T j ) ) .  (1 4) 
For the KM model in the weak damping region ( a ,  <( I ) ,  we simply use (13) and 
(14) to calculate R,. The  feSUlts  a re  illustrated in figure 2, where three different 
values of p = I, 1.6, and 2.6 a re  used in the calculation (case / j  = 1 corresponds to 
the no  damping situation). We recall that since we are  in the weak damping region 
( y  (< R,,), large values of 13 (such as the 1.6 and 2.6 lines) only occur in cases where 
the environment plays a significant role. Two features of R., c a n  he  clearly identified 
by a comparison between the lines of different 0 in figure 2. First, a t  limed value 
of 0 ,  R ,  decreases with decreasing E c / E J ,  and the rate of decrease is enhanced 
dramatically for E, /E ,  << 1. This implies that R, quickly becomes negligibly small 
when E,/E,  drops to about 0.1. The second feature predicted by our theory is that 
a t  fvted E,/E,. R, dccreases with increase of /3, which reflects the fact that the 
frequency-dependent environmental damping reduces the tunnelling in our model. 

For comparison, also shown in the figure, are the experimental data taken from 
[3]. These correspond to measuremenu o n  samples with different capacitances C, and 
normal resistance R.,. The values of R, for the four data points shown in figure 2 are, 
in increasing order of E c / E J ,  14.8,34, 70, and 110 (kn), respectively. The agreement 
between the theory and cxpcriments is remarkable. As can be Seen from the figure, 
when the junction capacitance C:, is relatively large ( E ,  C E,) the experimental data 
basically fall into the range of the  / j  = 1 theoretical curve. This suggests that when 
E, < E, and r/n, < 1, the environment effect on the tunnelling is unimportant. 
On the other hand, when C, is small ( E ,  > E,), the /3 = 1 curve is far from the  
experimental data, which fall into the region where / j  > 1. In fact, one observes that 
the p = 1.6 and 2.6 curves fit the  experimenral data a t  about E, /E ,  = 0.85 and 
5.0 respectively. This is really what one would expect: the smaller the C, the larger 
the influence of the C,, and R., from the external source. Thus we conclude that the  
discrepancy between the experimental data and the no-damping (0 = 1) theory for 
the R, in the E, > E, region can he solved once we take into account the  damping 
effect of the environment (leads, etc). If we use the KM model and take a value 
C:,/C:, = 15 (a typical value used in [4]) to fit the data of [3], we conclude, from 
(14) and (lo), that the values of /3 = 1.6 and 2.6 requires R,/R, ~ 0 . 0 1  and 0.001, 
to achieve a good fit to the experimental data for R., = 34 kfl ,  110 kS2 respectively. 

4. Conclusion 

In summary, in this paper we have studied frequency-dependent dissipative quantum 
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tunnelling by adopting the generalized quantum h n g e v i n  equation approach. By 
using the KM model for the frequency-dependent damping in the small Josephson 
tunnelling junction, we ohtain the analytic expression (13) for the resistance R, 
associated with the low-voltage state at T - 0. The theory fits the experimental data 
of Iansiti ci nl [3] very well and suggests that the experimentally measured value of 
R, in the E, > E, region reflects the influence of the environment (leads, etc). 

Finally, with a view toward outlining what we feel are key i w e s  for further study, 
we recall previous detailed work on dissipative macroscopic quantum tunnelling. 
In particular, the review of Clarke and collaborators [U]  points out the excellent 
agreement which has been obtained between experiments on Josephson tunnel 
junctions a t  low-temperatures and the theoretical work of Caldeira and Leggett IS]. 
Particularly impressive here is the fact that the parameters of the junction have been 
independently determined. On the other hand, these investigations were confined 
to the case of ohmic damping (corresponding to a Markovian interaction i.e. the  
absence of so-called memory effccts) and an external current regime such that I,, is 
comparable to I ,  (so that the washhoard potential could he suhstituted for the more 
complicated cubic potential). 

By contrast, we note that in the experiments of lansiti ef a1 12, 31 all the junction 
parameters are not known exactly. However, these experiments are exploring a new 
dimension viz. the realm of non-ohmic dissipation (corresponding to a non-Markovian 
interaction, reflecting the  presence of memory effects) and a realm in which the cubic 
potential is not an adequate representation of the washhoard potential. Whereas the  
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path integral method used by CL and others has also been applied hy Esteve el a1 [13] 
to the case of a non-trivial memory function (describing the influence of a transmission 
line), these authors did not consider the more complicated potential relevant to the 
experiments presently under discussion. The method which we have presented here 
treats the problem at the expense of having a single adjustable parameter p. We 
see from figure 2 that whereas the /3 = 1 curve (no dissipation) is at variance with 
observations, the p # 1 curves can explain the observations and the curves with 
the larger /3 values correspond to the experimental samples displaying the largest 
dissipation. 

Thus, there is a challenge to experimentalists to determine all the junction 
parameters indcpcndcntly in the non-ohmic case and there is a challenge to theorists 
to calculate numhers with no adjustable parameters. Since we believe that the latter 
endeavour is a non-trivial task using the method of [SI, we decided to use a method 
based on a formula, equation (7) ahove, which is derived exactly from the generalized 
quantum Langevin equation in the case of a harmonic potential. The latter restriction 
means that we need to introduce one adjustable parameter but the advantage of our 
proccdure is that we can treat arbitrary non-ohmic dissipative environments in a 
relatively simple manner. 
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