
Volume 125, number 3 CHEMICAL PHYSICS LETTERS 4 April 1986 

FAR-UNFIRED SPECTROSCOPY ON OD + 
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The rotational transition iv = 2 -1 of the OD+ ion in the X ‘Z-, o = 0 state has been observed with parttally resolved 

hyperfine structure. Spectra were recorded using a tunable laser sideband spectrometer. Analysis yielded improved values of 

rotational constants. 

1. Introduction 

Spectroscopic information on the molecular ions 
OH+ and OD+ was, until recently, limited to uftra- 
violet emission spectra of the A 3 II,-X 3 Z- system, 
thoroughly investigated by Merer et al. [l] . In 1985 
we reported the observation and analysis of the low- 
est rotational transition (N= 1 + 0) in the X 3B:-, u 
= 0 ground state of the OH+ ion [2] and Oka and 
colleagues measured the fundamental vlbration-rota- 
tion band of OH+ [3]. Like the ions HCO’, CO’, 
N,H+ observed earlier [4J, this ion is of interstellar 
interest. Detection of OH+ in interstellar clouds, 
which has not been reported yet, may be facilitated 
by the accurate molecular constants we presented. As 
announced in the report on OH+ 121, we now present 
the obviation of the N = 2 + 1 rotational traction 
of the isotopic OD’ ion, together with more experi- 
mental details on the measurements. 

2. Experimental details 

Spectra of OD’ were recorded with the same spec- 
trometer (fig. 1) used for the detection of O&. 
Tunable far-infrared radiation is generated by mixing 
radiation of klystrons and a HCN laser in Schottky- 
barrier diodes. The HCN laser [S] , operated at either 
891 GHz or 964 GIIz, has a maximum power output 
of -50 mW. The uncertainty in frequency of the free 
running laser during a measurement is estimated to be 

1 MHz. Klystrons in the range 50- 110 GHz are used. 
They are phase locked, via an intermediate K-band 
klystron, to a synthesized frequency generator (HP 
8660B, frequencies up to 1 GHz). As an ultimate 
reference oscillator a Rb frequency standard is used. 
Sideband radiation is generated in a Schottky-barrier 
diode mounted in an open mixer [6] and re-radiated 
in the direction opposite to that of the fundamental 
laser beam. Spatial separation of fundamental and 
sideband radiation is established by means of a di- 
plexer 161. A monoc~omator is used for further 
wavelength selection. Thus, using fundamental and 
second-harmonic frequency of the klystrons, side- 
band radiation is obtained in the range 700- 1200 
GHz with a maximum power of *SO pW. An increase 
of power level by an order of magnitude has been 
achieved by changing the conjuration of the open 
mixer. 

Molecular ions are produced inside a hollow-cathode 
dc discharge cell which is temperature controlled with 
liquid nitrogen [4J. This cell, sealed off with poly- 
ethylene Brewster windows, was designed for single- 
pass operation. A coil wrapped around the tube en- 
ables application of magnetic fields for additional 
identification of spectral lines or, if desired, Zeeman 
modulation. A wide range of gas flows and pressures is 
made possible by a pumping line consisting of a dif- 
fusion pump, a Roots pump and a rotary pump. The 
pumping capacity is -20 mbar Q/s. 

For phase-sensitive detection a square-wave modu- 
lation of the discharge current at -300 Hz is applied. 
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Fig. 1. A schematic view of the far-infrared spectrometer. 

A disadvantage of this modulation scheme is the addi- 
tional modulation of the refractive index of the plasma. 
In combination with a relatively high pressure in the 
discharge cell (up to 0.1 mbar) this causes a slight off- 
set of the baseline with periodic variations superim- 
posed, due to interfering reflections in the apparatus. 
The amplitude of these variations sometimes exceeds 
the noise level by a factor of 50 and the period is 
about ten times the linewidth, which greatly compli- 
cates searching for weak spectral lines. A better base- 
line behaviour was achieved by using a TPX plate (4 
mm thickness) mounted on a galvo driver in the radia- 
tion beam. Wobbling this plate at a frequency of a60 
Hz with an amplitude of alOo causes a modulation of 
the optical path length and thus a smoothening of the 
baseline offset. In combination with a typical RC 
time of 1 s, the periodic variations were suppressed 
by a factor of five. When recording the spectra, an 
additional suppression of baseline variations was 
achieved by using signal averaging techniques; scans 
without D2 admitted to the discharge medium were 
subtracted from scans with D, . For detection a He- 
cooled bolometer is used. 

The OD+ ions were produced by discharging He 
with a S-10% admixture of equal amounts of 0, and 
D2. An increase in gas flow to -10 mbar Q/s was es- 
sential for observation of the spectra, but a further in- 
crease by a factor of three did not improve the signal- 
to-noise ratio (at best 40 at RC= 1 s). The pressure in 
the pumping line just below the cell was =5 X 10m2 
mbar. The hollow cathode was cooled with liquid 
nitrogen. Optimum discharge current was =600 mA. 
Under these circumstances the plasma inside the hol- 
low cathode had a dark blue-green colour with weak 
pink “flames”. The colour of the positiye column in 
a side tube of the cell varied from creamy blue at the 
anode side to creamy pink at the cathode side. 

The observation absorption coefficients for OD+ 
vary from =6 X 10m5 to aloe6 cm-‘. Assuming a 
rotational temperature of 200 K and assuming that 
OD+ has about the same transition dipole moment as 
OH+ (2.32 D [7]) we estimate the concentration of 
OD+ ions to be a:5 X 10’ cmd3. 
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3. Results and discussion 

We have observed three of the six components of 
the spin multiplet of the N = 2 + 1 rotational transi- 
tion of OD+. Of the remaining three components, one 
has a very small intensity (J = 1 + 2) and the other 
two (J = 1 + 0, J = 2 f 2) are predicted in a frequen- 
cy region that can only be reached using the second 
harmonic frequency of a klystron. In such a region 
the maximum available power is ~1 PW, yielding sig- 
nals below the present detection limit. 

For the searches we used frequencies calculated 
from the rotational constants determined by Merer et 

al. [l].ThecomponentsJ=3+2,J=2+1andJ 
= 1 + 1 have been observed with partially resolved 
hyperfme structure; the experimental frequencies are 
listed in table 1. The spectral lines have collision 
broadened widths of =S MHz. Fig. 2 shows a record- 
ing of the J = 1 4 1 transition and part of the J = 

3 + 2 transition 
The observed frequencies have been fitted to a 

Hamiltonian describing the rotational and fine struc- 
ture [8] and the magnetic hype&e structure [9] of 
a 3 2 state. The hyperfme parameters b t c/3 and c 
associated with the deuterium nucleus are related to 
those of the hydrogen nucleus via the ratio of their 

Table 1 
Observed frequencies (in MHz) of the N = 2 + 1 transition of 
OD+ 

OD+, X3X-, v=O, N=2+1 

J-3-2 

F= 3+2,4+3,2+1 

1045150 1045160 MHZ 

J=l+l 

F=Zc2 
2--l 

F=l+Z .&I 
1+-l 

F=O--1 ,+. 

I I I I I 

972390 972410 972430 MHz 

Fig. 2. Recordings of the N = 2 + 1 rotational transition of 
OD+. The upper trace was recorded in a single scan. The low- 
er trace is the result of applying signalaveraging techniques. 
The bar spectrum shows the line positions calculated from 
the constants in table 2. 

J’ t J” F’ c F” Observed Obs. -talc. 

0.5 
1045155.3(1.0) -0.4 

-0.6 
1045170.1(1.7) 0.3 
1045177.1f1.7) 0.7 

0.2 
0.8 

-0.5 
1050817.2(1.0) o 7 

2 1 1 1 -0.1 
2 1 1 2 1.4 
1 1 0 1 972390.8(1.5) 0.3 
1 1 1 2 0.7 
1 1 1 1 972402.3f1.5) -0.8 
1 1 10 -1.2 

972426.8(1.7) -0”‘; 

respective magnetic g factors [lo] and have been cal- 
culated from the constants of OH+ [2]. By using 
these constants and an estimated value of qQ = 150 
kHz for the contribution of the quadrupole interac- 
tion, the hyperfme spectrum of each spin component 
was calculated. The experimental frequencies, in 
some cases representing a composition of two or 
more (up to six) closely spaced unresolved transitions, 
confirmed this calculation and yielded the following 
hyperfine-free origins of the @-I components: 

vo(J=3+-2)=1045156.81(65)MHz, 

vo(J= 2 + 1) = 1050817.29(85) MHz, 

yo(J = 1 + 1) = 972414.55(73) MHz. 
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Table 2 
Molecular constants (in MHz) for the X 3 Z, u = 0 ground 
state of OD+ 

B 
D 

h 
7 
(b + c/3)D 
CD 

This work 

262834.91(83) 
16.32(10) a) 

64192.4(2.2) 
-2407.25(98) 

-11.64(8) b, 
19.28(15) b, 

Ref. (11 

262845(21) 
16.32(10) 

64177(260) 
-2368(33) 

a) Parameter constrained within its uncertainty to value from 
ref. [l]. 

b, Parameter calctdated from OH+ values [ 21. 

No significant value for the quadrupole interaction 
constant eqQ could be obtained. 

With these origins the rotational constant B, the 
spin-spin interaction constant A and the spin-rota- 
tion interaction constant y were determined. The 

centrifugal distortion constant D could not be deter- 
mined since only one rotational transition was ob- 
served. It was therefore constrained within its uncer- 
tainty to the value obtained from the optical spectrum 
[ 11. Table 2 shows all molecular constants determin- 
ed. The somewhat larger uncertainty in the rotational 
constant B, compared with the result for OH+ [2], is 
due to the greater effect of the uncertainty in D in 
case of a N = 2 + 1 transition. The larger uncertainty 
in X and y is caused by a weaker dependence of the 
observed frequencies on these constants. 

We conclude that the improved values of the rota- 
tional and fine structure constants for the electronic 
and vibrational ground state determined from the pres- 
ent high-resolution spectra of the OD+ ion are in rea- 
sonable agreement with values of Merer et al. [ 11, 

considering the extensive deperturbation they had to 

apply. 
Recently we have been able to compare our experi- 

mental values for the hyperfme constants of OH with 

values computed to third order in many-body pertur- 
bation theory by Veseth [ ill. It turned out that the 
experimental and calculated values are in agreement 
within 6%. 
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