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Abstract: The main aim of this article is to generalize the famous Orlicz sequence space by using 
difference operators and a sequence of non-zero scalars and investigate some topological structure 
relevant to this generalized space. 
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Orlicz Fark Dizi Uzayları Üzerine 
 
 
Özet: Bu makalenin amacı, sıfırdan farklı skalerlerden oluşan bir diziyi ve fark operatörlerini kullanarak 
Orlicz dizi uzaylarını genelleştirmek ve bu yeni tanımladığımız uzayın topolojik yapısını incelemektir.  
 
Anahtar kelimeler: Fark dizi uzayı, çok indisli dizi uzayı, Orlicz fonksiyonu, AK-BK uzayı, toplojik 
izomorfizm, Köthe-Toeplitz duali. 
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1. Introduction 
 
Throughout this paper w, ∞l , ℓ1,  c and °c denote the spaces of all, bounded, absolutely 
summable, convergent and null sequences =x ( )kx  with complex terms respectively. 
The notion of difference sequence space was introduced by Kizmaz [1], who studied the 
difference sequence spaces ( )∆∞l , ( )∆c  and ( )0c ∆ , where 

                      ( ) ( ){ }( ) :k kZ x x w x Z∆ = = ∈ ∆ ∈ , 

where x∆ = ( )kx∆ = ( )1k kx x +− and 0
kx∆ = kx for all k, for Z= ∞l , c and 0c .  

 
An Orlicz function :[0, ) [0, )M ∞ → ∞  is a function, which is continuous,                  
non-decreasing and convex with (0) 0M = , ( ) 0M x > , for 0x >  and ( )M x →∞ ,        
as x →∞ . 
 
An Orlicz function M can always be represented in the following integral form: 

M(x) = ∫
x

dttp
0

)( , 

where p, known as kernel of M, is right differentiable for  t ≥0,  p(0) = 0,  p(t) > 0  for    
t > 0,  p is non-decreasing, and ( )p t →∞  as  t →∞ .  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357332316?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


H. Dutta 

 

 120

Consider the kernel p(t) associated with the Orlicz function M(t), and let 
q(s) = sup{t: p(t) ≤ s } 

Then q possesses the same properties as the function p. Suppose now 

∫=Φ
x

dssqx
0

)()(  

Then Φ  is an Orlicz function. The functions M and Φ  are called mutually 
complementary Orlicz functions. 
         
Now we state the following well known results which can be found in [2]. 
Let M and F  are mutually complementary Orlicz functions. Then we have (Young’s 
inequality) 
                          (i) For x, y ≥ 0, xy ≤ M(x) + )(yΦ                                                          (1) 
We also have 
                          (ii) For x≥ 0, xp(x) = M(x) + ( ))(xpΦ                                                    (2)  
                         (iii) M(λx) < λM(x)                                                                                 (3)  
 
for all  x ≥ 0 and λ with 0< λ<1.                               
 
An Orlicz function M is said to satisfy the ∆2-condition for small x or at 0 if for each 
k>0 there exist Rk>0 and xk>0 such that 
 

M(kx) ≤ RkM(x)   
for all x∈(0, xk]. 
 
Moreover an Orlicz function M is said to satisfy the ∆2-condition if and only if 

∞<
→ )(

)2(suplim
0 xM

xM
x

. 

 
Two Orlicz functions M1 and M2 are said to be equivalent if there are positive constants 
α, β and x0 such that 
                                                    M1(αx)≤ M2(x) ≤ M1(βx)                                              (4) 
 
for all x with 0 ≤ x ≤ x0.                        
      
Lindenstrauss and Tzafriri [3] used the Orlicz function and introduced the sequence 
space Ml  as follows: 

( )
1

: , for some 0k
M k

k

x
x w M ρ

ρ

∞

=

   = ∈ < ∞ >  
   

∑l . 

For more details about Orlicz functions and sequence spaces associated with Orlicz 
functions one may refer to [2-5]. 
 
Let Λ = (λk) be a sequence of non-zero scalars. Then for a sequence space E, the 
multiplier sequence space E(Λ), associated with the multiplier sequence Λ is defined as 
 

E(Λ) = ( ) ( ){ }Exwx kkk ∈∈ λ: . 
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The scope for the studies on sequence spaces was extended by using the notion of 
associated multiplier sequences. Goes and Goes [6] defined the differentiated sequence 
space dE and integrated sequence space ∫ E  for a given sequence space E, using the 
multiplier sequences (k-1) and (k) respectively. A multiplier sequence can be used to 
accelerate the convergence of the sequences in some spaces. In some sense, it can be 
viewed as a catalyst, which is used to accelerate the process of chemical reaction. 
Sometimes the associated multiplier sequence delays the rate of convergence of a 
sequence. Thus it also covers a larger class of sequences for study. In the present article 
we shall consider a general multiplier sequence Λ = (λk) of non-zero scalars.  
 
The notion of duals of sequence spaces was introduced by Köthe and Toeplitz [7]. Later 
on it was studied by Kizmaz [1], Kamthan [8] and many others. 
 
Let E and F be two sequence spaces. Then the F dual of E is defined as 

EF = {(xk)∈w : (xkyk)∈F for all(yk)∈E }. 

For F = ℓ1, the dual is termed as Köthe-Toeplitz or α-dual of E and denoted by Eα. More 

precisely, we have the following definition of Köthe Toeplitz dual of E: 









∈∞<== ∑
k

kkk ExxaaaE allfor,:)(α . 

It is known that if X YÌ , then Yα ⊂  Xα. If EFF=E, where EFF= (EF)F, then E is said to be 
F-reflexive or F-perfect. In particular, if Eαα = E, then E is also said to be a Köthe space. 
 
Let Λ = (λk) be a sequence of non-zero scalars. Then we define the following spaces. 
 
Definition 1.1. Let M be any Orlicz function. Then we define 

( ) ( ) ( )
1

, : ,M k k
k

x w M x M xδ λ
∞

Λ
∆

=

 
∆ Λ = ∈ = ∆ < ∞ 

 
∑%l , 

where 1 1k k k k k kx x xλ λ λ + +∆ = −  for all k ≥ 1.  
 
We can write ( )0 ,M ∆ Λ%l = ( )ΛMl

~  and if λk= 1 for all k ≥ 1, then we write 

( )0 ,M ∆ Λ%l  = Ml
~ . 

Similarly we can define ( ),M ∇ Λ%l , where 1 1k k k k k kx x xλ λ λ − −∇ = −  for all k ≥ 1. 
          
Definition 1.2. Let M and Φ be mutually complementary functions. Then we define 

( )
1

, : ( ) converges for allM k k k
k

x w x y yλ
∞

Φ
=

 
∆ Λ = ∈ ∆ ∈ 

 
∑ %l l . 

We call this sequence space as Orlicz difference sequence space associated with the 
multiplier sequence Λ = (λk).  
 
We can write ( )0 ,M ∆ Λl = ( )ΛMl  and if λk= 1 for all k ≥ 1, then we write 
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( )0 ,M ∆ Λl  = Ml . 
 
Similarly we can define ( ),M ∇ Λl  where 1 1k k k k k kx x xλ λ λ − −∇ = −  for all k ≥ 1. 
 
One can easily observe in the special case M(x) = xp with 0<p<∞ and 
Λ= ( )kλ = ( )1,1,1,... =e, the sequence space ( ),M ∇ Λl  is reduced in the case 1 p≤ < ∞  
to the Banach space bvp introduced by Başar and Altay [9] and is reduced in the case 
0 1p< <  to the p-normed complete space bvp introduced by Altay and Başar [10], 
where bvp denotes the space of all sequences x = (xk) such that  

x∇  = ( )1k kx x −− p∈l . 
 
2. Main Results 
 
In this section we investigate the main results of this article. 
 
Proposition 2.1. For any Orlicz function M,  

(i) ( ),M ∆ Λ%l ⊂ ( ),M ∆ Λl , 

(ii) ( ),M ∇ Λ%l ⊂ ( ),M ∇ Λl . 

Proof.    (i) Let x∈ ( ),M ∆ Λ%l . Then ( )
1

k k
k

M xλ
∞

=

∆∑ < ∞. Now using (1), we have 

( ) ( )
1 1 1 1
( ) ( )k k k k k k k k k

k k k k
x y x y M x yλ λ λ

∞ ∞ ∞ ∞

= = = =

∆ ≤ ∆ ≤ ∆ + Φ∑ ∑ ∑ ∑ < ∞, 

for every y =(yk) with y∈ Φl
~ . Thus x∈ ( ),M ∆ Λl . 

        
              (ii) Since the proof is similar to the proof of part (i), we omit it.    
 

Proposition 2.2. (i) For each x∈ ( ),M ∆ Λl , ( )
1

sup ( ) : , 1i i i
i

x y yλ δ
∞

=

 
∆ Φ ≤ 

 
∑ < ∞, 

 

                           (ii) For each x∈ ( ),M ∇ Λl , ( )
1

sup ( ) : , 1i i i
i

x y yλ δ
∞

=

 
∇ Φ ≤ 

 
∑ < ∞. 

 
Proof.   (i) Suppose that the result is not true. Then for each n ≥1, there exists yn with 
( ) 1, ≤Φ nyδ  such that  

1

( ) n
i i i

i

x yλ
∞

=

∆∑ > 2n. 

Without loss of generality we may assume that ( )i ixλ∆ , yn ≥ 0. Now, we can define a 
sequence z = {zi} by 

zi =∑
∞

=1 2
1

n

n
in y . 
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By the convexity of Φ, 
2

1
1

1 1

1 1 1( ) ( ... ) ... ( )
2 22 2 2

l ll
n ni i
i i in l n

n n

y y
y y y

−
= =

   
Φ ≤ Φ +Φ + + ≤ ≤ Φ        
∑ ∑  

and hence, using the continuity of Φ, we have 

),( zΦδ = ( )∑
∞

=

Φ
1i

iz ≤∑∑
∞

=

∞

=

Φ
1 1

)(
2
1

i n

n
in y ≤∑

∞

=1 2
1

n
n =1. 

But for every l ≥1, 

1
( )i i i

i
x zλ

∞

=

∆∑ ≥
1 1

1( )
2

l
n

i i in
i n

x yλ
∞

= =

∆∑ ∑ =
1 1

( )
2

nl
i

i i n
n i

yxλ
∞

= =

∆∑∑ ≥ l. 

Hence
1

( )i i i
i

x zλ
∞

=

∆∑ diverges and this implies that x∉ ( ),M ∆ Λl . This contradiction leads 

us to the required result. 
 
              (ii) Proof is similar to that of part (i). 
  
The preceding result encourage us to introduce the following norms .

M

∆  and .
M

∇   on 

( ),M ∆ Λl  and ( ),M ∇ Λl , respectively. 
 
Proposition 2.3.    
              (i) ( ),M ∆ Λl  is a normed linear space under the norm .

M

∆  defined by 

                             
M

x ∆ = 1 1xλ + ( )
1

sup ( ) : , 1i i i
i

x y yλ δ
∞

=

 
∆ Φ ≤ 

 
∑                                   (5) 

              (ii) ( ),M ∇ Λl  is a normed linear space under the norm .
M

∇  defined by 

                             
M

x ∇ = ( )
1

sup ( ) : , 1i i i
i

x y yλ δ
∞

=

 
∇ Φ ≤ 

 
∑ .                                            (6) 

 
Proof.   (i) It is easy to verify that ( ),M ∆ Λl  is a linear space. Now we show that .

M

∆  is 

a norm on ( ),M ∆ Λl . 

If x = θ, then obviously 
M

x ∆ =0. Conversely assume 
M

x ∆ =0. Then using the definition 
of norm, we have  

1 1xλ + ( )
1

sup ( ) : , 1i i i
i

x y yλ δ
∞

=

 
∆ Φ ≤ 

 
∑ =0. 

This implies  
                                                                  1 1xλ = 0                                                         (7) 
and 

( )
1

sup ( ) : , 1i i i
i

x y yλ δ
∞

=

 
∆ Φ ≤ 

 
∑ =0. 
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This implies that 
1

( )i i i
i

x yλ
∞

=

∆∑ = 0 for all y such that ( ) 1, ≤Φ yδ .  

Now considering y ={ei} if Φ(1)≤1  otherwise considering  y ={ei/Φ(1)} so that  
 
                                                           i ixλ∆ =0 for all i≥1.                                              (8) 
 
Combining (7) and (8), we have xi = 0 for all i≥1, since (λk) is a sequence of non-zero 
scalars and thus x = θ.  
 
It is easy to show 

M
xα α∆ =

M
x ∆ and

M M M
x y x x∆ ∆ ∆+ ≤ + . 

 
              (ii) Let x = θ, then obviously 

M
x ∇ =0. Conversely assume 

M
x ∇ =0. Then using 

the definition of norm, we have 

( )
1

sup ( ) : , 1i i i
i

x y yλ δ
∞

=

 
∇ Φ ≤ 

 
∑ =0. 

This implies 
1

( )i i i
i

x yλ
∞

=

∇∑ = 0 for all y such that ( ) 1, ≤Φ yδ .  

 
Now considering y ={ei} if Φ(1)≤1  otherwise considering  y ={ei/Φ(1)} so that  
 

i ixλ∇ =0 for all i≥1. 
Taking i=1, we have 

1 1xλ∇ = 1 1 0 0x xλ λ− =0. 
This implies λ1x1 = 0, by taking x0 =0. Proceeding in this way we have ii xλ =0 for all  i≥1 
and so xi = 0 for all i≥1, since (λk) is a sequence of non-zero scalars. Thus x = θ.  
It is easy to show 

M
xα α∇ =

M
x ∇ and

M M M
x y x x∇ ∇ ∇+ ≤ + . 

This completes the proof. 
 

Remark.
1
( ) for allk k k

k
x y yλ

∞

Φ
=

∆ < ∞ ∈∑ %l if and only if 
1
( ) for allk k k

k
x y yλ

∞

Φ
=

∇ < ∞ ∈∑ %l . 

 Also it is obvious that the norms .
M

∆  and .
M

∇  are equivalent. 
 
Proposition 2.4. (i) ( ),M ∆ Λl  is a Banach space under the norm .

M

∆ , 

                           (ii) ( ),M ∇ Λl  is a Banach space under the norm .
M

∇ . 
 
Proof. We shall give proof of part (i). Proof of part (ii) is easy than part (i). 
           
Let (xi) be any Cauchy sequence in ( ),M ∆ Λl . Then for any ε > 0, there exists a positive 
integer n0 such that 
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i j

M
x x

∆
−  < ε ,  

for all i, j ≥ n0. Using the definition of norm, we get           

1 1 1( )i jx xλ − + ( )
1

sup ( ( )) : , 1i j
k k k k

k
x x y yλ δ

∞

=

 
∆ − Φ ≤ 

 
∑ < ε, 

for all i, j ≥ n0. This implies that 1 1 1( )i jx xλ − < ε, for all i, j ≥ n0. Thus ( )1 1
ixλ  is a Cauchy 

sequence in C and hence it is a convergent sequence in C.  
  
Let  
                                                          1 1lim i

i
xλ

→∞
= z1.                                                          (9) 

Again we have  

( )
1

sup ( ( )) : , 1i j
k k k k

k
x x y yλ δ

∞

=

 
∆ − Φ ≤ 

 
∑ < ε 

for all i, j ≥ n0 and so 

1
( ( ))i j

k k k k
k

x x yλ
∞

=

∆ −∑ < ε 

for all y with ( ) 1, ≤Φ yδ  and i, j ≥ n0 . 
 
Now considering y ={ei} if Φ(1)≤1  otherwise considering  y ={ei/Φ(1)} we have ( )i

k kxλ∆  
is a Cauchy sequence in C for all k≥1 and hence it is a convergent sequence in C for all 
k≥1. 
 
Let 
                                                          lim i

k ki
xλ

→∞
∆ = yk                                                     (10) 

for all k≥1. Using (9) and (10) we have i
kki

xλ
∞→

lim  exists for each k≥1 and so i
ki

x
∞→

lim =xk, 

say exists for each k≥1. 
 
Now 

1 1 1lim ( )i j

j
x xλ

→∞
− = 1 1 1( )ix xλ − < ε 

for all i ≥ n0. Also we can have 

( )
1

sup ( ( )) : , 1i
k k k k

k
x x y yλ δ

∞

=

 
∆ − Φ ≤ 

 
∑ < ε 

for all i≥ n0  as j→ ∞. Thus 

1 1 1( )ix xλ − + ( )
1

sup ( ( )) : , 1i
k k k k

k
x x y yλ δ

∞

=

 
∆ − Φ ≤ 

 
∑ < 2ε 

for all i≥ n0 and as j→ ∞. It follows that (xi-x)∈ ( ),M ∆ Λl  and ( ),M ∆ Λl  is a linear 

space and hence x=(xk)∈ ( ),M ∆ Λl . 
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From above proof we can easily conclude that i

M
x

∆
→0 implies that i

kx →0  for each 

i≥1. Hence we have the following Proposition. 
 
Proposition 2.5. ( ),M ∆ Λl  and ( ),M ∇ Λl  are BK spaces under the norms defined by (5) 
and (6), respectively. 
 
Our next aim is to show that ( ),M ∆ Λl  and ( ),M ∇ Λl  can be made BK spaces under 
different but equivalent norms. 
 
Proposition 2.6. 
              (i) ( ),M ∆ Λl  is a normed linear space under the norm 

( )
.

M

∆  defined by 

                                    
( )M

x ∆ = 1 1xλ +
1

inf 0 : 1k k

k

x
M

λ
ρ

ρ

∞

=

  ∆ > ≤  
   

∑ ,                       (11) 

              (ii) ( ),M ∇ Λl  is a normed linear space under the norm 
( )

.
M

∇  defined by 

                                    
( )M

x ∇ =
1

inf 0 : 1k k

k

x
M

λ
ρ

ρ

∞

=

  ∇ > ≤  
   

∑ .                                 (12) 

 
Proof.    (i) Clearly 

( )M
x ∆ =0   if x=θ. Next suppose 

( )M
x ∆ =0. Then from (11) we have 

 
                                                      1 1xλ =0 and so 1 1 0xλ = .                                         (13) 

Again 
1

inf 0 : 1k k

k

x
M

λ
ρ

ρ

∞

=

  ∆ > ≤  
   

∑ =0. This implies that for a given 0ε > , there 

exists some ( )ερρ εε <<0  such that  

sup 1k k

k

x
M

ε

λ
ρ

 ∆
≤ 

 
. 

This implies that 1k kx
M

ε

λ
ρ

 ∆
≤ 

 
  for all k≥ 1. Thus  

1k k k kx x
M M

ε

λ λ
ε ρ

   ∆ ∆
≤ ≤   

   
 

for all k≥ 1. 

Suppose 0
i in nxλ∆ ≠ , for some i. Let 0ε → , then i in nxλ

ε

∆
→∞ . It follows that 

i in nx
M

λ

ε

 ∆
  →∞
 
 

 as 0ε → for some Nni ∈ . This is a contradiction. Therefore                

                                                               k kxλ∆ =0                                                         (14) 
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for all k≥ 1. Thus, by (13) and (14), it follows that kk xλ =0 for all k≥ 1. Hence x θ= , 
since (λk) is a sequence of non-zero scalars. 
         
Let x = (xk) and y = (yk) be any two elements of ( ),M ∆ Λl . Then there exist 1ρ , 2ρ >0 
such that  

1

sup 1k k

k

x
M

λ
ρ

 ∆
≤ 

 
     and    

2

sup 1k k

k

y
M

λ
ρ

 ∆
≤ 

 
. 

Let 1 2ρ ρ ρ= + . Then by convexity of M, we have 

( )
sup k k k

k

x y
M

λ
ρ

 ∆ +
 
 
 

1

1 2 1

sup k k

k

x
M

λρ
ρ ρ ρ

 ∆
≤  +  

+ 2

1 2 2

sup k k

k

y
M

λρ
ρ ρ ρ

 ∆
 +  

1≤ . 

 
Hence we have 

( )M
x y ∆+ =

( )
1 1 1( ) inf 0 : sup 1k k k

k

x y
x y M

λ
λ ρ

ρ

  ∆ + + + > ≤      
 

                    

                                   1 1xλ≤ + 1
1

inf 0 : sup 1k k

k

x
M

λ
ρ

ρ
  ∆ > ≤  
   

1 1yλ+  

 

                                               2
2

inf 0 : sup 1k k

k

y
M

λ
ρ

ρ
  ∆ + > ≤  
   

. 

 
This implies 

( )M
x y ∆+ ≤

( )M
x ∆ +

( )M
x ∆ . 

 
Finally, let ν be any scalar. Then 

( )M
xν ∆ = 1 1 inf 0 : sup 1k k

k

x
x M

νλ
νλ ρ

ρ
  ∆ + > ≤  
   

 

                                       1 1 inf 0 : sup 1k k

k

x
x r M

r
λ

ν λ ν
  ∆ = + > ≤  
   

 

                                   ν=
( )M

x ∆  

where
ν
ρ

=r . This completes the proof. 

          
         (ii) Proof is easy than part (i).  

 
Remark. It is obvious that the norms 

( )
.

M

∆  and 
( )

.
M

∇  are equivalent.  

 
Proposition 2.7. For x∈ ( ),M ∇ Λl , we have  
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1

1 ( )

1
|| ||

k k

k M

x
M

x
λ

−

∞

∆
=

 ∇
  ≤
 
 

∑ . 

         
Proof. Proof is immediate from (12). 
 
Now we show that the norms 

( )
.

M

∇  and .
M

∇  are equivalent. To prove this some other 

results are required. First we prove those results. 
 
Proposition 2.8. Let x∈ ( ),M ∇ Λl  with 

M
x ∇ ≤1. Then ( ){ }n np xλ Φ∇ ∈ %l  and 

( ){ }( ), n np xδ λΦ ∇ ≤1.  

 
Proof. For any z Φ∈ l

~ , we may write 
 

                                       
1

|| || if ( , ) 1
( )

( , ) || || if ( , ) 1
M

i i i
i M

x z
x z

z x z

δ
λ

δ δ

∇∞

∇
=

 Φ ≤∇ ≤ 
Φ Φ >

∑  .               (15) 

 
Let now x∈ ( ),M ∇ Λl  with 

M
x ∇ ≤1. Also x(n) = (x1,… xn, 0,0, …..)∈ ( ),M ∇ Λl  for n ≥1. 

We observe that 

M
x ∇ ≥ ( )

1

( ) n
i i i

i
x yλ

∞

=

∇∑ = ( )

1

( )n
i i i

i
x yλ

∞

=

∇∑ ,      n ≥1 

for every y Φ∈ l
~ with ),( yΦδ ≤1 and thus 

( )n

M
x

∇
≤ 

M
x ∇  ≤ 1. 

Since 

( )( )
1

n

i i
i

p xλ
=

Φ ∇∑ = ( )( )( )

1
i

n
i

i
p xλ

∞

=

Φ ∇∑ . 

We find that   ( ){ }( )n
i ip xλ∇ Φ∈ l

~    for each n ≥1. Let l ≥1 be an integer such that 

( )( )
1

l

i i
i

p xλ
=

Φ ∇∑ >1. 

Then ( )( )( )

1
i

l
i

i
p xλ

∞

=

Φ ∇∑ >1.  Using (2), we have 

( )( ) ( ) ( )( )( ) ( ) ( )
i i i

l l l
i i ip x M x p xλ λ λΦ ∇ < ∇ +Φ ∇  

                                                          = ( )l l
i i i ix p xλ λ∇ ∇   

for all i, l ≥1. So by (15), we get 

( )( )( )

1
i

l
i

i
p xλ

∞

=

Φ ∇∑ < ( ){ }( )( )|| || ,l l
M i ix p xδ λ∇ Φ ∇ . 
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This implies that ( )|| ||l
Mx ∇ >1, a contradiction. This contradiction implies that 

( )( )
1

l

i i
i

p xλ
=

Φ ∇∑ ≤1 

for all l ≥1. Hence ( ){ }i ip xλ Φ∇ ∈ %l   and  ( ){ }( ), i ip xδ λΦ ∇ ≤1. 

 
Proposition 2.9. Let x∈ ( ),M ∇ Λl  with 

M
x ∇ ≤1. Then x∈ ( ),M ∇ Λ%l  and  

( , )M xδ Λ
∇ ≤

M
x ∇ . 

 
Proof. Let y= ( ){ }/ sgn( )i i i ip x xλ λ∇ ∇ . Then from Proposition 2.8, y Φ∈ l

~  and 

( )y,Φδ ≤1. By (2), we get 

                                   ( ) ( ) ( )( )
1 1 1

i i i i i i
i i i

M x M x p xλ λ λ
∞ ∞ ∞

= = =

∇ ≤ ∇ + Φ ∇∑ ∑ ∑  

                                                           = ( )
1

i i i i
i

x p xλ λ
∞

=

∇ ∇∑  

                                                           =
1

( )i i i
i

x yλ
∞

=

∇∑ ≤ 
M

x ∇ . 

This implies that ( , )M xδ Λ
∇ ≤

M
x ∇ . 

  

Proposition 2.10. For x∈ ( ),M ∇ Λl , we have 
1

1
|| ||

k k

k M

x
M

x
λ∞

∇
=

 ∇
≤ 

 
∑ . 

 
Proof. Proof is immediate from Proposition 2.9. 
 
Theorem 2.11. For x∈ ( ),M ∇ Λl ,  ( )|| || Mx ∇ ≤ || ||Mx ∇ ≤2 ( )|| || Mx ∇ . 
 
Proof. We have 

( )M
x ∇ =

1

inf 0 : 1k k

k

x
M

λ
ρ

ρ

∞

=

  ∇ > ≤  
   

∑ . 

Then using Proposition 2.10, we get 
( )|| || Mx ∇ ≤ || ||Mx ∇ . 

Let us suppose that x∈ ( ),M ∇ Λl  with 
( )M

x ∇ ≤1. Then x∈ ( ),M ∇ Λ%l  and ( , )M xδ Λ
∇ ≤1. 

Indeed, 

( )
1( )

1
|| || i i

iM

M x
x

λ
∞

∇
=

∇ ≤∑
1 ( )

1
|| ||

i i

i M

x
M

x
λ∞

∇
=

 ∇
≤  

 
∑ , 

by Proposition 2.7. 
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Thus 
( )|| || M

x
x ∇ ∈ ( ),M ∇ Λ%l  with 

( )

,
|| || M

xM
x

δ ∇

 
  
 

≤1. We further observe that for an 

arbitrary z∈ ( ),M ∇ Λ%l ,  

|| ||Mz ∇ = ( )
1

sup ( ) : , 1i i i
i

z y yλ δ
∞

=

 
∇ Φ ≤ 

 
∑  ≤ 1+ ( , )M zδ Λ

∇  

using (1). Hence taking  z =
( )|| || M

x
x ∇ , we have 

( )|| || M M

x
x

∇

∇ ≤ 1+
1 ( )|| ||i M

x
M

x

∞

∇
=

 
  
 

∑ ≤ 2 

 
by Proposition 2.7. Thus || ||Mx ∇ ≤ 2 ( )|| || Mx ∇ . This completes the proof. 
         
Proposition 2.12. For any Orlicz function M,  ( ),M ∇ Λl = ( )/ ,M ∇ Λl ,  where 

( )/ ,M ∇ Λl =
1

: , for some 0k k

k

x
x w M

λ
ρ

ρ

∞

=

  ∇ ∈ < ∞ >  
   

∑ . 

 
Proof. Proof follows from Proposition 2.10. 
 
In view of above Proposition we give the following definition. 
 
Definition 2.13. For any Orlicz function M,  

( ),Mh ∇ Λ =
1

: , for each 0k k

k

x
x w M

λ
ρ

ρ

∞

=

  ∇ ∈ < ∞ >  
   

∑ . 

Clearly ( ),Mh ∇ Λ  is a subspace of ( ),M ∇ Λl . Henceforth we shall write ||.|| instead of  

( )
.

M

∇  provided it does not lead to any confusion. The topology of ( ),Mh ∇ Λ  is the one it 

inherits from  ||.||.  
         
Proposition 2.14. Let M be an Orlicz function. Then ( ( ),Mh ∇ Λ ,||.||) is an AK-BK space. 
 
Proof. First we show that ( ),Mh ∇ Λ  is an AK space. Let x∈ ( ),Mh ∇ Λ . Then for each ε, 
0< ε < 1, we can find an n0 such that 

0

1i i

i n

x
M

λ
ε≥

 ∇
≤ 

 
∑ . 

Hence for n ≥ n0, 

||x-x(n)|| = 
1

inf 0 : 1i i

i n

x
M

λ
ρ

ρ≥ +

  ∇ > ≤  
   

∑ ≤ inf 0 : 1i i

i n

x
M

λ
ρ ε

ρ≥

  ∇ > ≤ <  
   

∑ . 
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Thus we can conclude that ( ),Mh ∇ Λ  is an AK space. 

Next to show ( ),Mh ∇ Λ  is an BK space it is enough to show ( ),Mh ∇ Λ  is a closed 

subspace of ( ),Mh ∇ Λ . For this let {xn} be a sequence in ( ),Mh ∇ Λ  such that  
||xn-x|| →0, 

where x∈ ( ),Mh ∇ Λ . To complete the proof we need to show that x∈ ( ),Mh ∇ Λ , i.e.,  

1

i i

i

x
M

λ
ρ≥

 ∇
< ∞ 

 
∑  

for every ρ>0. To ρ>0 there corresponds an l such that ||xl-x|| ≤ 
2
ρ . Then using 

convexity of M, 

1

i i

i

x
M

λ
ρ≥

 ∇
 
 

∑ =
( )

1

2 2

2

l l
i i i i i i

i

x x x
M

λ λ λ

ρ≥

 ∇ − ∇ − ∇
 
 
 

∑  

                                                    ≤ 
1

21
2

l
i i

i

x
M

λ

ρ≥

 ∇
 
 
 

∑ +
1

2 ( )1
2

l
i i i

i

x x
M

λ

ρ≥

 ∇ −
 
 
 

∑  

                                                    ≤ 
1

21
2

l
i i

i

x
M

λ

ρ≥

 ∇
 
 
 

∑ +
1

2 ( )1
2 || ||

l
i i i
l

i

x x
M

x x
λ

≥

 ∇ −
 
 − 

∑ < ∞ 

 
by proposition 2.7. Thus x∈ ( ),Mh ∇ Λ  and consequently ( ),Mh ∇ Λ  is a BK space. 
 
Proposition 2.15. Let M be an Orlicz function. If M satisfies the ∆2-condition at 0, then 

( ),M ∇ Λl  is an AK space. 
 
Proof.  In fact we shall show that if M satisfies the ∆2-condition at 0, then  

( ),M ∇ Λl = ( ),Mh ∇ Λ  and the result follows. Therefore it is enough to show that 

( ),M ∇ Λl ⊂ ( ),Mh ∇ Λ . Let x∈ ( ),M ∇ Λl , then ρ > 0, 

1

i i

i

x
M

λ
ρ≥

 ∇
< ∞ 

 
∑ . 

This implies that 

                                                      i ix
M

λ
ρ

 ∇
 
 

→ 0 as i →∞.                                      (16) 

Choose an arbitrary l > 0. If ρ ≤ l, then 
1

i i

i

x
M

l
λ

≥

 ∇
< ∞ 

 
∑ . Let now l < ρ and put k=

l
ρ . 

Since M satisfies ∆2-condition at 0, there exist R ≡ Rk>0 and r ≡ rk > 0 with 
M(kx)≤RM(x)  for all x∈(0, r]. By (16) there exists a positive integer n1 such that  

i ix
M

λ
ρ

 ∇
 
 

< 







22
1 rrp  
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for all i ≥ n1. We claim that i ixλ
ρ

∇
≤ r for all i ≥ n1. Otherwise, we can find j > n1 with 

j jxλ

ρ

∇
> r, and thus 

j jx
M

λ

ρ

 ∇
 
 
 

≥
2/

( )
j jx

r
p t dt

λ

ρ

∇

∫ > 







22
1 rrp  

Is a contradiction. Hence our claim is true. Then we can find that 

1

i i

i n

x
M

l
λ

≥

 ∇
 
 

∑ ≤
1

i i

i n

x
M

λ
ρ≥

 ∇
 
 

∑ , 

and hence 

1

i i

i

x
M

l
λ

≥

 ∇
< ∞ 

 
∑   

for every l > 0. This completes our proof. 
 
Proposition 2.16. Let M1 and M2 be two Orlicz functions. If M1 and M2 are equivalent 
then ( )

1
,M ∇ Λl = ( )

2
,M ∇ Λl  and the identity map 

I: ( )( )1 1
, , .M M

∇∇ Λl  → ( )( )2 2
, , .M M

∇∇ Λl  

is a topological isomorphism. 
 
Proof.  Let M1 and M2 are equivalent and so satisfy (4). Suppose x∈ ( )

2
,M ∇ Λl , then   

2
1

i i

i

x
M

λ
ρ

∞

=

 ∇
 
 

∑ < ∞ 

for some ρ > 0. Hence for some  l ≥1, i ix
l
λ
ρ

∇
≤ x0    for all i ≥1. Therefore, 

1
1

i i

i

x
M

l
α λ

ρ

∞

=

 ∇
 
 

∑ ≤ 2
1

i i

i

x
M

λ
ρ

∞

=

 ∇
 
 

∑ < ∞. 

Thus ( )
2

,M ∇ Λl ⊂ ( )
1

,M ∇ Λl . Similarly ( )
1

,M ∇ Λl  ⊂ ( )
2

,M ∇ Λl . Let us abbreviate 

here 
1

.
M

∇  and 
2

.
M

∇  by  
1

.  and 
2

. ,  respectively. For x∈ ( )
2

,M ∇ Λl , 

2
1 2

i i

i

x
M

x
λ∞

=

 ∇
  
 

∑ ≤ 1. 

One can find µ >1 with 















22
0

2
0 xpx µ ≥1, where p2 is the kernel associated with M2. 

Hence 

2
2

i ix
M

x
λ ∇

  
 

≤ 















22
0

2
0 xpx µ  
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for all i ≥1. This implies that 
2

i ix
x
λ

µ
∇

≤ x0   for all i ≥1. Therefore 

1
1 2

i i

i

x
M

x
α λ
µ

∞

=

 ∇
  
 

∑ <1 

and so 
21

xx 





≤
α
µ . Similarly we can show 

12
xx βγ≤  by choosing γ with γβ >1 

such that 















22
0

1
0 xpxγβ ≥1. Thus 

1
1 x−αµ ≤

12
xx βγ≤  which establishes that I is a 

topological isomorphism.     
 
 
Proposition 2.17. (i) ( )M Λl ⊂ ( ),M ∇ Λl , 

                            (ii) ( )M Λl ⊂ ( ),M ∆ Λl . 
 
Proof.    (i) Proof follows from the following inequality: 

                                  
1 2

i i

i

x
M

λ
ρ

∞

=

 ∇
 
 

∑ ≤ 1 1

1 1

1 1
2 2

i i i i

i i

x x
M M

λ λ
ρ ρ

∞ ∞
− −

= =

   
+   

   
∑ ∑ , 

              (ii) Proof is similar to that of part (i). 
 
Proposition 2.18. Let M be an Orlicz function and p the corresponding kernel. If       
p(x) = 0 for all x in [0, x0] where x0 is some positive number, then ( ),M ∇ Λl  is 

topologically isomorphic to ( ),∞ ∇ Λl and ( ),Mh ∇ Λ  is topologically isomorphic to 

( )0 ,c ∇ Λ .  
 
Proof.  Let  p(x) = 0 for all x in [0, x0]. If  y∈ ( ),∞ ∇ Λl , then we can find a ρ > 0 such 

that i iyλ
ρ

∇
≤ x0  for i ≥ 1 , and so 

1

i i

i

y
M

λ
ρ

∞

=

 ∇
 
 

∑ < ∞, giving thus  y∈ ( ),M ∇ Λl . On 

the other hand let y∈ ( ),M ∇ Λl , then 
1

i i

i

y
M

λ
ρ

∞

=

 ∇
 
 

∑ < ∞, for some ρ > 0 and so 

i iyλ∇ <∞ for all i ≥ 1, giving thus y∈ ( ),∞ ∇ Λl . Hence y∈ ( ),∞ ∇ Λl if and only if 

y∈ ( ),M ∇ Λl . We can easily find an x1 with  M(x1) ≥ 1. Let y∈ ( ),∞ ∇ Λl  and  

α=||y||∞= ( )sup i i
i

yλ∇ >0. (It is easy to show that ||y||∞= ( )sup i i
i

yλ∇  is a norm on 

( ),∞ ∇ Λl ). For every ε, 0< ε < α, we can determine yj with j jyλ∇ > α-ε and so  

1

1

i i

i

y x
M

λ
α

∞

=

 ∇
 
 

∑ ≥ 





 −

α
εα 1)( xM . 
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Since M is continuous, we find 1

1

i i

i

y x
M

λ
α

∞

=

 ∇
 
 

∑ ≥1, and so ||y||∞≤ x1||y||, for otherwise 

1 || ||
i i

i

y
M

y
λ∞

=

 ∇
 
 

∑ >1 is a contradiction by Proposition 2.7. Again, 0

1

i i

i

y x
M

λ
α

∞

=

 ∇
 
 

∑ =0 

and it follows that ∞≤ ||||1||||
0

y
x

y . Thus the identity map 

I: ( )( ), , .M ∇ Λl  → ( )( ), , .∞ ∇ Λl  
is a topological isomorphism. 
 
For the last part, let y∈ ( ),Mh ∇ Λ , then for any ε > 0, i iyλ∇ ≤ εx1, for all sufficiently 

large i, where x1 is some positive number with p(x1) > 0. Hence  y∈ ( )0 ,c ∇ Λ . Next let  

y∈ ( )0 ,c ∇ Λ . Then for any ρ>0, i iyλ
ρ

∇
< 02

1 x  for all sufficiently large i. Thus 

i iy
M

λ
ρ

 ∇
 
 

<∞  for all ρ>0 and so  y∈ ( ),Mh ∇ Λ . Hence ( ),Mh ∇ Λ = ( )0 ,c ∇ Λ  and we 

are done. 
 
Corollary 2.19. Let M be an Orlicz function and p the corresponding kernel. If  p(x) = 0 
for all x in [0, x0] where x0 is some positive number, then ( ),M ∇ Λl  is topologically 

isomorphic to ∞l and ( ),Mh ∇ Λ  is topologically isomorphic to 0c . 
 
Proof. Let us define the mapping for Z = ∞l , 0c   

T: ( ),Z ∇ Λ → Z  

by  Tx = ( )k kxλ∇ , for every  x∈ ( ),Z ∇ Λ . Then clearly T is a linear homeomorphism. 
 
Hence the proof follows from Proposition 2.18. 
 
Lemma 2.20. Let M be an Orlicz function. Then x∈  ( ),M ∆ Λl  implies ( )1

k kk xλ−
∞∈l . 

 
Proof. Let x∈ ( ),M ∆ Λl . Then, one can easily prove that ( )k kxλ ∞∆ ∈l  which gives the 

result ( )1
k kk xλ−

∞∈l .  
 
Proposition 2.21. Let M  be an Orlicz function and p be the corresponding kernel of M. 
If p(x) = 0 for all x in [0, x0], where x0 is some positive number, then  
              (i) Köthe-Toeplitz dual of ( ),M ∆ Λl  is D1, where 

D1= 1

1
( ) :k k k

k
a k aλ

∞
−

=

 
< ∞ 

 
∑ , 
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               (ii) Köthe-Toeplitz dual of D1 is D2, where 

D2={ }1( ) : supk k k
k

b k bλ− < ∞ . 

 
Proof.   (i) Let a∈  D1 and x∈ ( ),M ∆ Λl . Then  

                      ∑
∞

=1k
kk xa = 1 1

1
k k k k

k
k a k xλ λ

∞
− −

=
∑ ≤ 1 1

1
sup k k k k

k k
k x k aλ λ

∞
− −

=
∑ < ∞. 

 
Hence a∈ ( ),M

α
 ∆ Λ l . Thus, the inclusion D1⊂ ( ),M

α
 ∆ Λ l  holds. 

Conversely suppose that a∈ ( ),M
α

 ∆ Λ l . Then ∑
∞

=1k
kk xa < ∞ for every  x∈ ( ),M ∆ Λl . 

So we can take 1
k kx kλ−=  for all k ≥1, because then (xk)∈ ( ),∞ ∆ Λl  and hence 

(xk)∈ ( ),M ∆ Λl  as shown in Proposition 2.18. 

Now 1

1
k k

k
k aλ

∞
−

=
∑ =∑

∞

=1k
kk xa < ∞ and thus a∈  D1. Hence, the inclusion ( ),M

α
 ∆ Λ l ⊂D1 

holds. 
           (ii) Proof follows by similar arguments used in the prove of case (i). 
 
Proposition 2.22. Let M  be an Orlicz function and p be the corresponding kernel of M. 
If p(x) = 0 for all x in [0, x0], where x0 is some positive number, then Köthe-Toeplitz 
dual of ( ),Mh ∆ Λ  is D1, where D1 is defined as in Proposition 2.21. 
                                   
Proof. Let a∈  D1 and x∈ ( ),Mh ∆ Λ . Then  

∑
∞

=1k
kk xa = 1 1

1
k k k k

k
k a k xλ λ

∞
− −

=
∑ ≤ 1 1

1
sup k k k k

k k
k x k aλ λ

∞
− −

=
∑ < ∞. 

Hence a∈ ( ),Mh
α

 ∆ Λ  , that is the inclusion D1⊂ ( ),Mh
α

 ∆ Λ   holds. 

Conversely suppose that a∈ ( ),Mh
α

 ∆ Λ   and 1Da∉ . Then there exists a strictly 
increasing sequence (ni) of positive integers such that n1 < n2 <…, such that  

1 1

1

i

i

n

k k
k n

k aλ
+ −

= +
∑ > i. 

Define (xk) by 
1

1
1

0 , 1

sgn / ,k
k k i i

k n
x

k a i n k nλ−
+

≤ ≤= 
< ≤

 

Then (xk)∈ ( )0 ,c ∆ Λ  and so by Proposition 2.18, (xk)∈ ( ),Mh ∆ Λ . Then we have 
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∑
∞

=1k
kk xa = ∑

+=

2

1 1

n

nk
kk xa +…+ ∑

+

+=

1

1

i

i

n

nk
kk xa +… 

                                                     = 
2

1

1

1

n

k k
k n

k aλ−

= +
∑ +…+

1
1

1

1 i

i

n

k k
k n

k a
i

λ
+

−

= +
∑ +…> 1+1+…= ∞. 

This contradicts to a Î ( ),Mh
α

 ∆ Λ  . Hence a∈  D1, i.e. the inclusion ( ),Mh
α

 ∆ Λ  ⊂D1 
also holds. This completes the proof. 
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