

SDU Journal of Science (E-Journal), 2010, 5 (1): 119-136

On Orlicz Difference Sequence Spaces

Hemen Dutta

Gauhati University, Department of Mathematics, Kokrajhar Campus, Assam, INDIA e-mail: hemen dutta08@rediffmail.com

Received: 13 November 2008, Accepted: 9 February 2010

Abstract: The main aim of this article is to generalize the famous Orlicz sequence space by using difference operators and a sequence of non-zero scalars and investigate some topological structure relevant to this generalized space.

Key words: Difference sequence space, multiplier sequence space, Orlicz function, *AK-BK* space, topological isomorphism and Köthe-Toeplitz dual.

Orlicz Fark Dizi Uzayları Üzerine

Özet: Bu makalenin amacı, sıfırdan farklı skalerlerden oluşan bir diziyi ve fark operatörlerini kullanarak Orlicz dizi uzaylarını genelleştirmek ve bu yeni tanımladığımız uzayın topolojik yapısını incelemektir.

Anahtar kelimeler: Fark dizi uzayı, çok indisli dizi uzayı, Orlicz fonksiyonu, AK-BK uzayı, toplojik izomorfizm, Köthe-Toeplitz duali.

2000 Mathematics Subject Classification: 40A05, 40C05, 46A45.

1. Introduction

Throughout this paper $w, \ell_{\infty}, \ell_1, c$ and c_{\circ} denote the spaces of *all*, *bounded*, *absolutely* summable, convergent and null sequences $x = (x_k)$ with complex terms respectively. The notion of difference sequence space was introduced by Kizmaz [1], who studied the difference sequence spaces $\ell_{\infty}(\Delta), c(\Delta)$ and $c_0(\Delta)$, where

$$Z(\Delta) = \left\{ x = (x_k) \in w : (\Delta x_k) \in Z \right\},\$$

where $\Delta x = (\Delta x_k) = (x_k - x_{k+1})$ and $\Delta^0 x_k = x_k$ for all k, for $Z = \ell_{\infty}$, c and c_0 .

An Orlicz function $M:[0,\infty) \to [0,\infty)$ is a function, which is continuous, non-decreasing and convex with M(0) = 0, M(x) > 0, for x > 0 and $M(x) \to \infty$, as $x \to \infty$.

An Orlicz function *M* can always be represented in the following integral form:

$$M(x) = \int_0^x p(t) dt \, ,$$

where p, known as kernel of M, is right differentiable for $t \ge 0$, p(0) = 0, p(t) > 0 for $t \ge 0$, p is non-decreasing, and $p(t) \rightarrow \infty$ as $t \rightarrow \infty$.

brought to you

Consider the kernel p(t) associated with the Orlicz function M(t), and let

$$q(s) = \sup\{t: p(t) \le s\}$$

Then q possesses the same properties as the function p. Suppose now

$$\Phi(x) = \int_{0}^{x} q(s) \, ds$$

Then Φ is an Orlicz function. The functions *M* and Φ are called mutually complementary Orlicz functions.

Now we state the following well known results which can be found in [2]. Let M and F are mutually complementary Orlicz functions. Then we have (Young's inequality)

(i) For
$$x, y \ge 0, xy \le M(x) + \Phi(y)$$
 (1)

We also have

(*ii*) For
$$x \ge 0$$
, $xp(x) = M(x) + \Phi(p(x))$ (2)

$$(iii) M(\lambda x) < \lambda M(x) \tag{3}$$

for all $x \ge 0$ and λ with $0 < \lambda < 1$.

An Orlicz function *M* is said to satisfy the Δ_2 -condition for small *x* or at 0 if for each k>0 there exist $R_k>0$ and $x_k>0$ such that

$$M(kx) \le R_k M(x)$$

for all $x \in (0, x_k]$.

Moreover an Orlicz function *M* is said to satisfy the Δ_2 -condition if and only if

$$\limsup_{x\to 0} \sup \frac{M(2x)}{M(x)} < \infty \, .$$

Two Orlicz functions M_1 and M_2 are said to be equivalent if there are positive constants α , β and x_0 such that

$$M_1(\alpha x) \le M_2(x) \le M_1(\beta x) \tag{4}$$

for all *x* with $0 \le x \le x_{0}$.

Lindenstrauss and Tzafriri [3] used the Orlicz function and introduced the sequence space ℓ_M as follows:

$$\ell_{M} = \left\{ \left(x_{k} \right) \in w : \sum_{k=1}^{\infty} M\left(\frac{|x_{k}|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \right\}.$$

For more details about Orlicz functions and sequence spaces associated with Orlicz functions one may refer to [2-5].

Let $\Lambda = (\lambda_k)$ be a sequence of non-zero scalars. Then for a sequence space *E*, the multiplier sequence space $E(\Lambda)$, associated with the multiplier sequence Λ is defined as

$$E(\Lambda) = \{ (x_k) \in w : (\lambda_k x_k) \in E \}.$$

The scope for the studies on sequence spaces was extended by using the notion of associated multiplier sequences. Goes and Goes [6] defined the differentiated sequence space dE and integrated sequence space $\int E$ for a given sequence space E, using the multiplier sequences (k^{-1}) and (k) respectively. A multiplier sequence can be used to accelerate the convergence of the sequences in some spaces. In some sense, it can be viewed as a catalyst, which is used to accelerate the process of chemical reaction. Sometimes the associated multiplier sequence delays the rate of convergence of a sequence. Thus it also covers a larger class of sequences for study. In the present article we shall consider a general multiplier sequence $\Lambda = (\lambda_k)$ of non-zero scalars.

The notion of duals of sequence spaces was introduced by Köthe and Toeplitz [7]. Later on it was studied by Kizmaz [1], Kamthan [8] and many others.

Let E and F be two sequence spaces. Then the F dual of E is defined as

$$E^{\mathrm{F}} = \{(x_{\mathrm{k}}) \in w : (x_{\mathrm{k}}y_{\mathrm{k}}) \in F \text{ for all}(y_{\mathrm{k}}) \in E \}.$$

For $F = \ell_1$, the dual is termed as Köthe-Toeplitz or α -dual of *E* and denoted by E^{α} . More precisely, we have the following definition of Köthe Toeplitz dual of *E*:

$$E^{\alpha} = \left\{ a = (a_k) : \sum_k \left| a_k x_k \right| < \infty, \text{ for all } x \in E \right\}.$$

It is known that if X
i Y, then $Y^{\alpha} \subset X^{\alpha}$. If $E^{FF} = E$, where $E^{FF} = (E^F)^F$, then E is said to be *F*-reflexive or *F*-perfect. In particular, if $E^{\alpha\alpha} = E$, then *E* is also said to be a Köthe space.

Let $\Lambda = (\lambda_k)$ be a sequence of non-zero scalars. Then we define the following spaces.

Definition 1.1. Let *M* be any Orlicz function. Then we define

$$\tilde{\ell}_{M}(\Delta, \Lambda) = \left\{ x \in w : \delta_{\Delta}^{\Lambda}(M, x) = \sum_{k=1}^{\infty} M(|\Delta\lambda_{k}x_{k}|) < \infty \right\},\$$

where $\Delta \lambda_k x_k = \lambda_k x_k - \lambda_{k+1} x_{k+1}$ for all $k \ge 1$.

We can write $\tilde{\ell}_M(\Delta^0, \Lambda) = \tilde{\ell}_M(\Lambda)$ and if $\lambda_k = 1$ for all $k \ge 1$, then we write $\tilde{\ell}_M(\Delta^0, \Lambda) = \tilde{\ell}_M$.

Similarly we can define $\tilde{\ell}_M(\nabla, \Lambda)$, where $\nabla \lambda_k x_k = \lambda_k x_k - \lambda_{k-1} x_{k-1}$ for all $k \ge 1$.

Definition 1.2. Let M and Φ be mutually complementary functions. Then we define

$$\ell_M(\Delta, \Lambda) = \left\{ x \in w : \sum_{k=1}^{\infty} (\Delta \lambda_k x_k) y_k \text{ converges for all } y \in \tilde{\ell}_{\Phi} \right\}$$

We call this sequence space as Orlicz difference sequence space associated with the multiplier sequence $\Lambda = (\lambda_k)$.

We can write $\ell_M(\Delta^0, \Lambda) = \ell_M(\Lambda)$ and if $\lambda_k = 1$ for all $k \ge 1$, then we write

$$\ell_M\left(\Delta^0,\Lambda\right) = \ell_M$$

Similarly we can define $\ell_M(\nabla, \Lambda)$ where $\nabla \lambda_k x_k = \lambda_k x_k - \lambda_{k-1} x_{k-1}$ for all $k \ge 1$.

One can easily observe in the special case $M(x) = x^p$ with $0 \le p \le \infty$ and $\Lambda = (\lambda_k) = (1, 1, 1, ...) = e$, the sequence space $\ell_M(\nabla, \Lambda)$ is reduced in the case $1 \le p < \infty$ to the Banach space bv_p introduced by Başar and Altay [9] and is reduced in the case 0 to the*p* $-normed complete space <math>bv_p$ introduced by Altay and Başar [10], where bv_p denotes the space of all sequences $x = (x_k)$ such that

$$\nabla x = (x_k - x_{k-1}) \in \ell_p.$$

2. Main Results

In this section we investigate the main results of this article.

Proposition 2.1. For any Orlicz function M,

(i)
$$\ell_M(\Delta, \Lambda) \subset \ell_M(\Delta, \Lambda),$$

(ii) $\tilde{\ell}_M(\nabla, \Lambda) \subset \ell_M(\nabla, \Lambda).$

Proof. (i) Let $x \in \tilde{\ell}_M(\Delta, \Lambda)$. Then $\sum_{k=1}^{\infty} M(|\Delta \lambda_k x_k|) < \infty$. Now using (1), we have $\left|\sum_{k=1}^{\infty} (\Delta \lambda_k x_k) y_k\right| \leq \sum_{k=1}^{\infty} \left| (\Delta \lambda_k x_k) y_k \right| \leq \sum_{k=1}^{\infty} M\left(\left| \Delta \lambda_k x_k \right| \right) + \sum_{k=1}^{\infty} \Phi\left(\left| y_k \right| \right) < \infty,$

for every $y = (y_k)$ with $y \in \tilde{\ell}_{\Phi}$. Thus $x \in \ell_M(\Delta, \Lambda)$.

(*ii*) Since the proof is similar to the proof of part (*i*), we omit it.

Proposition 2.2. (i) For each
$$x \in \ell_M(\Delta, \Lambda)$$
, $\sup\left\{\left|\sum_{i=1}^{\infty} (\Delta \lambda_i x_i) y_i\right| : \delta(\Phi, y) \le 1\right\} < \infty$,

(*ii*) For each
$$x \in \ell_M(\nabla, \Lambda)$$
, $\sup\left\{\left|\sum_{i=1}^{\infty} (\nabla \lambda_i x_i) y_i\right| : \delta(\Phi, y) \le 1\right\} < \infty$.

Proof. (*i*) Suppose that the result is not true. Then for each $n \ge 1$, there exists y^n with $\delta(\Phi, y^n) \le 1$ such that

$$\left|\sum_{i=1}^{\infty} \left(\Delta \lambda_i x_i\right) y_i^n\right| > 2^n.$$

Without loss of generality we may assume that $(\Delta \lambda_i x_i)$, $y^n \ge 0$. Now, we can define a sequence $z = \{z_i\}$ by

$$z_i = \sum_{n=1}^{\infty} \frac{1}{2^n} y_i^n \, .$$

By the convexity of Φ ,

$$\Phi\left(\sum_{n=1}^{l} \frac{1}{2^{n}} y_{i}^{n}\right) \leq \frac{1}{2} \left[\Phi(y_{i}^{1}) + \Phi(\frac{y_{i}^{2}}{2} + \dots + \frac{y_{i}^{l}}{2^{l-1}})\right] \leq \dots \leq \sum_{n=1}^{l} \frac{1}{2^{n}} \Phi(y_{i}^{n})$$

and hence, using the continuity of Φ , we have

$$\delta(\Phi, z) = \sum_{i=1}^{\infty} \Phi(z_i) \le \sum_{i=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{2^n} \Phi(y_i^n) \le \sum_{n=1}^{\infty} \frac{1}{2^n} = 1.$$

But for every $l \ge 1$,

$$\sum_{i=1}^{\infty} (\Delta \lambda_i x_i) z_i \ge \sum_{i=1}^{\infty} (\Delta \lambda_i x_i) \sum_{n=1}^{l} \frac{1}{2^n} y_i^n = \sum_{n=1}^{l} \sum_{i=1}^{\infty} (\Delta \lambda_i x_i) \frac{y_i^n}{2^n} \ge l.$$

Hence $\sum_{i=1}^{\infty} (\Delta \lambda_i x_i) z_i$ diverges and this implies that $x \notin \ell_M (\Delta, \Lambda)$. This contradiction leads us to the required result.

(*ii*) Proof is similar to that of part (*i*).

The preceding result encourage us to introduce the following norms $\|.\|_{M}^{\Delta}$ and $\|.\|_{M}^{\nabla}$ on $\ell_{M}(\Delta, \Lambda)$ and $\ell_{M}(\nabla, \Lambda)$, respectively.

Proposition 2.3.

(*i*) $\ell_M(\Delta, \Lambda)$ is a normed linear space under the norm $\|.\|_M^{\Delta}$ defined by

$$\|x\|_{M}^{\Delta} = |\lambda_{1}x_{1}| + \sup\left\{\left|\sum_{i=1}^{\infty} (\Delta\lambda_{i}x_{i})y_{i}\right| : \delta(\Phi, y) \le 1\right\}$$
(5)

(*ii*) $\ell_M(\nabla, \Lambda)$ is a normed linear space under the norm $\|.\|_M^{\nabla}$ defined by

$$\left\|x\right\|_{M}^{\nabla} = \sup\left\{\left|\sum_{i=1}^{\infty} \left(\nabla \lambda_{i} x_{i}\right) y_{i}\right| : \delta\left(\Phi, y\right) \le 1\right\}.$$
(6)

Proof. (*i*) It is easy to verify that $\ell_M(\Delta, \Lambda)$ is a linear space. Now we show that $\|\cdot\|_M^{\Delta}$ is a norm on $\ell_M(\Delta, \Lambda)$.

If $x = \theta$, then obviously $||x||_M^{\Delta} = 0$. Conversely assume $||x||_M^{\Delta} = 0$. Then using the definition of norm, we have

$$\left|\lambda_{1}x_{1}\right| + \sup\left\{\left|\sum_{i=1}^{\infty} \left(\Delta\lambda_{i}x_{i}\right)y_{i}\right| : \delta\left(\Phi, y\right) \le 1\right\} = 0.$$
$$\left|\lambda_{1}x_{1}\right| = 0$$

and

This implies

$$\sup\left\{\left|\sum_{i=1}^{\infty} (\Delta \lambda_i x_i) y_i\right| : \delta(\Phi, y) \le 1\right\} = 0.$$

(7)

This implies that $\left|\sum_{i=1}^{\infty} (\Delta \lambda_i x_i) y_i\right| = 0$ for all y such that $\delta(\Phi, y) \le 1$. Now considering $y = \{e_i\}$ if $\Phi(1) \le 1$ otherwise considering $y = \{e_i | \phi(1)\}$ so that

$$\Delta \lambda_i x_i = 0 \text{ for all } i \ge 1.$$
(8)

Combining (7) and (8), we have $x_i = 0$ for all $i \ge 1$, since (λ_k) is a sequence of non-zero scalars and thus $x = \theta$.

It is easy to show

$$\|\alpha x\|_M^{\Delta} = |\alpha| \|x\|_M^{\Delta} \text{ and } \|x+y\|_M^{\Delta} \le \|x\|_M^{\Delta} + \|x\|_M^{\Delta}.$$

(*ii*) Let $x = \theta$, then obviously $||x||_M^{\nabla} = 0$. Conversely assume $||x||_M^{\nabla} = 0$. Then using the definition of norm, we have

$$\sup\left\{\left|\sum_{i=1}^{\infty} (\nabla \lambda_{i} x_{i}) y_{i}\right| : \delta(\Phi, y) \le 1\right\} = 0.$$

This implies $\left|\sum_{i=1}^{\infty} (\nabla \lambda_{i} x_{i}) y_{i}\right| = 0$ for all y such that $\delta(\Phi, y) \le 1$.

Now considering $y = \{e_i\}$ if $\Phi(1) \le 1$ otherwise considering $y = \{e_i | \phi_{(1)}\}$ so that

$$\nabla \lambda_i x_i = 0$$
 for all $i \ge 1$.

Taking *i*=1, we have

$$\nabla \lambda_1 x_1 = \lambda_1 x_1 - \lambda_0 x_0 = 0.$$

This implies $\lambda_1 x_1 = 0$, by taking $x_0 = 0$. Proceeding in this way we have $\lambda_i x_i = 0$ for all $i \ge 1$ and so $x_i = 0$ for all $i \ge 1$, since (λ_k) is a sequence of non-zero scalars. Thus $x = \theta$. It is easy to show

$$\left\|\alpha x\right\|_{M}^{\nabla} = \left|\alpha\right| \left\|x\right\|_{M}^{\nabla} \text{ and } \left\|x+y\right\|_{M}^{\nabla} \le \left\|x\right\|_{M}^{\nabla} + \left\|x\right\|_{M}^{\nabla}$$

This completes the proof.

Remark.
$$\sum_{k=1}^{\infty} (\Delta \lambda_k x_k) y_k < \infty$$
 for all $y \in \tilde{\ell}_{\Phi}$ if and only if $\sum_{k=1}^{\infty} (\nabla \lambda_k x_k) y_k < \infty$ for all $y \in \tilde{\ell}_{\Phi}$.

Also it is obvious that the norms $\|.\|_M^{\Delta}$ and $\|.\|_M^{\nabla}$ are equivalent.

Proposition 2.4. (i) $\ell_M(\Delta, \Lambda)$ is a Banach space under the norm $\|.\|_M^{\Delta}$, (ii) $\ell_M(\nabla, \Lambda)$ is a Banach space under the norm $\|.\|_M^{\nabla}$.

Proof. We shall give proof of part (*i*). Proof of part (*ii*) is easy than part (*i*).

Let (x^i) be any Cauchy sequence in $\ell_M(\Delta, \Lambda)$. Then for any $\varepsilon > 0$, there exists a positive integer n_0 such that

$$\left\|x^{i}-x^{j}\right\|_{M}^{\Delta} < \varepsilon$$

for all $i, j \ge n_0$. Using the definition of norm, we get

$$\left|\lambda_{1}(x_{1}^{i}-x_{1}^{j})\right|+\sup\left\{\left|\sum_{k=1}^{\infty}\left(\Delta\lambda_{k}(x_{k}^{i}-x_{k}^{j})\right)y_{k}\right|:\delta\left(\Phi,y\right)\leq1\right\}<\varepsilon,$$

for all $i, j \ge n_0$. This implies that $|\lambda_1(x_1^i - x_1^j)| < \varepsilon$, for all $i, j \ge n_0$. Thus $(\lambda_1 x_1^i)$ is a Cauchy sequence in *C* and hence it is a convergent sequence in *C*.

Let

$$\lim_{i \to \infty} \lambda_1 x_1^i = z_1. \tag{9}$$

Again we have

$$\sup\left\{\left|\sum_{k=1}^{\infty} (\Delta \lambda_k (x_k^i - x_k^j)) y_k\right| : \delta(\Phi, y) \le 1\right\} < \varepsilon$$

for all $i, j \ge n_0$ and so

$$\left|\sum_{k=1}^{\infty} \left(\Delta \lambda_k (x_k^i - x_k^j)) y_k\right| < \varepsilon$$

for all *y* with $\delta(\Phi, y) \leq 1$ and $i, j \geq n_0$.

Now considering $y = \{e_i\}$ if $\Phi(1) \le 1$ otherwise considering $y = \{e_i \mid \phi(1)\}$ we have $(\Delta \lambda_k x_k^i)$ is a Cauchy sequence in *C* for all $k \ge 1$ and hence it is a convergent sequence in *C* for all $k \ge 1$.

Let

$$\lim_{i \to \infty} \Delta \lambda_k x_k^i = y_k \tag{10}$$

for all $k \ge 1$. Using (9) and (10) we have $\lim_{k \to \infty} \lambda_k x_k^i$ exists for each $k \ge 1$ and so $\lim_{k \to \infty} x_k^i = x_k$, say exists for each $k \ge 1$.

Now

$$\lim_{j\to\infty} \left| \lambda_1 (x_1^i - x_1^j) \right| = \left| \lambda_1 (x_1^i - x_1) \right| < \varepsilon$$

for all $i \ge n_0$. Also we can have

$$\sup\left\{\left|\sum_{k=1}^{\infty} (\Delta \lambda_k (x_k^i - x_k)) y_k\right| : \delta(\Phi, y) \le 1\right\} < \varepsilon$$

for all $i \ge n_0$ as $j \to \infty$. Thus

$$\left|\lambda_{1}(x_{1}^{i}-x_{1})\right|+\sup\left\{\left|\sum_{k=1}^{\infty}\left(\Delta\lambda_{k}(x_{k}^{i}-x_{k})\right)y_{k}\right|:\delta\left(\Phi,y\right)\leq1\right\}<2\varepsilon$$

for all $i \ge n_0$ and as $j \to \infty$. It follows that $(x^i - x) \in \ell_M(\Delta, \Lambda)$ and $\ell_M(\Delta, \Lambda)$ is a linear space and hence $x = (x_k) \in \ell_M(\Delta, \Lambda)$.

From above proof we can easily conclude that $||x^i||_M^{\Delta} \to 0$ implies that $x_k^i \to 0$ for each $i \ge 1$. Hence we have the following Proposition.

Proposition 2.5. $\ell_M(\Delta, \Lambda)$ and $\ell_M(\nabla, \Lambda)$ are *BK* spaces under the norms defined by (5) and (6), respectively.

Our next aim is to show that $\ell_M(\Delta, \Lambda)$ and $\ell_M(\nabla, \Lambda)$ can be made *BK* spaces under different but equivalent norms.

Proposition 2.6.

(*i*) $\ell_M(\Delta, \Lambda)$ is a normed linear space under the norm $\|\cdot\|_{(M)}^{\Delta}$ defined by

$$\|x\|_{(M)}^{\Delta} = |\lambda_1 x_1| + \inf\left\{\rho > 0: \sum_{k=1}^{\infty} M\left(\frac{|\Delta\lambda_k x_k|}{\rho}\right) \le 1\right\},\tag{11}$$

(*ii*) $\ell_M(\nabla, \Lambda)$ is a normed linear space under the norm $\|.\|_{(M)}^{\nabla}$ defined by

$$\|x\|_{(M)}^{\nabla} = \inf\left\{\rho > 0: \sum_{k=1}^{\infty} M\left(\frac{|\nabla\lambda_k x_k|}{\rho}\right) \le 1\right\}.$$
(12)

Proof. (i) Clearly $||x||_{(M)}^{\Delta} = 0$ if $x = \theta$. Next suppose $||x||_{(M)}^{\Delta} = 0$. Then from (11) we have

$$\lambda_1 x_1 = 0 \text{ and so } \lambda_1 x_1 = 0.$$
 (13)

Again $\inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|\Delta\lambda_k x_k|}{\rho}\right) \le 1 \right\} = 0$. This implies that for a given $\varepsilon > 0$, there exists some $\rho_{\varepsilon} (0 < \rho_{\varepsilon} < \varepsilon)$ such that

$$\sup_{k} M\left(\frac{\left|\Delta\lambda_{k}x_{k}\right|}{\rho_{\varepsilon}}\right) \leq 1.$$

This implies that $M\left(\frac{|\Delta\lambda_k x_k|}{\rho_{\varepsilon}}\right) \le 1$ for all $k \ge 1$. Thus $M\left(\frac{|\Delta\lambda_k x_k|}{\varepsilon}\right) \le M\left(\frac{|\Delta\lambda_k x_k|}{\rho_{\varepsilon}}\right) \le 1$

for all $k \ge 1$.

Suppose $\Delta \lambda_{n_i} x_{n_i} \neq 0$, for some *i*. Let $\varepsilon \to 0$, then $\frac{\left|\Delta \lambda_{n_i} x_{n_i}\right|}{\varepsilon} \to \infty$. It follows that $M\left(\frac{\left|\Delta \lambda_{n_i} x_{n_i}\right|}{\varepsilon}\right) \to \infty$ as $\varepsilon \to 0$ for some $n_i \in N$. This is a contradiction. Therefore $\Delta \lambda_i x_i = 0$ (14)

for all $k \ge 1$. Thus, by (13) and (14), it follows that $\lambda_k x_k = 0$ for all $k \ge 1$. Hence $x = \theta$, since (λ_k) is a sequence of non-zero scalars.

Let $x = (x_k)$ and $y = (y_k)$ be any two elements of $\ell_M(\Delta, \Lambda)$. Then there exist ρ_1 , $\rho_2 > 0$ such that

$$\sup_{k} M\left(\frac{|\Delta\lambda_{k}x_{k}|}{\rho_{1}}\right) \leq 1 \quad \text{and} \quad \sup_{k} M\left(\frac{|\Delta\lambda_{k}y_{k}|}{\rho_{2}}\right) \leq 1.$$

Let $\rho = \rho_1 + \rho_2$. Then by convexity of *M*, we have

$$\sup_{k} M\left(\frac{\left|\Delta\lambda_{k}\left(x_{k}+y_{k}\right)\right|}{\rho}\right) \leq \frac{\rho_{1}}{\rho_{1}+\rho_{2}} \sup_{k} M\left(\frac{\left|\Delta\lambda_{k}x_{k}\right|}{\rho_{1}}\right) + \frac{\rho_{2}}{\rho_{1}+\rho_{2}} \sup_{k} M\left(\frac{\left|\Delta\lambda_{k}y_{k}\right|}{\rho_{2}}\right) \leq 1.$$

Hence we have

$$\begin{split} \|x+y\|_{(M)}^{\Delta} &= \left|\lambda_{1}(x_{1}+y_{1})\right| + \inf\left\{\rho > 0: \sup_{k} M\left(\frac{\left|\Delta\lambda_{k}\left(x_{k}+y_{k}\right)\right|}{\rho}\right) \le 1\right\} \\ &\leq \left|\lambda_{1}x_{1}\right| + \inf\left\{\rho_{1} > 0: \sup_{k} M\left(\frac{\left|\Delta\lambda_{k}x_{k}\right|}{\rho_{1}}\right) \le 1\right\} + \left|\lambda_{1}y_{1}\right| \\ &+ \inf\left\{\rho_{2} > 0: \sup_{k} M\left(\frac{\left|\Delta\lambda_{k}y_{k}\right|}{\rho_{2}}\right) \le 1\right\}. \end{split}$$

This implies $||x + y||_{(M)}^{\Delta} \le ||x||_{(M)}^{\Delta} + ||x||_{(M)}^{\Delta}$.

Finally, let v be any scalar. Then

$$\begin{aligned} \|vx\|_{(M)}^{\Delta} &= |v\lambda_{1}x_{1}| + \inf\left\{\rho > 0 : \sup_{k} M\left(\frac{|\Delta v\lambda_{k}x_{k}|}{\rho}\right) \le 1\right\} \\ &= |v||\lambda_{1}x_{1}| + \inf\left\{r|v| > 0 : \sup_{k} M\left(\frac{|\Delta\lambda_{k}x_{k}|}{r}\right) \le 1\right\} \\ &= |v|\|x\|_{(M)}^{\Delta} \end{aligned}$$

where $r = \frac{\rho}{|\nu|}$. This completes the proof.

(*ii*) Proof is easy than part (*i*).

Remark. It is obvious that the norms $\|.\|_{(M)}^{\Delta}$ and $\|.\|_{(M)}^{\nabla}$ are equivalent.

Proposition 2.7. For $x \in \ell_M(\nabla, \Lambda)$, we have

$$\sum_{k=1}^{\infty} M\left(\frac{\left|\nabla\lambda_{k}x_{k}\right|}{\|x\|_{(M)}^{\Delta^{-1}}}\right) \leq 1$$

Proof. Proof is immediate from (12).

Now we show that the norms $\|\cdot\|_{(M)}^{\nabla}$ and $\|\cdot\|_{M}^{\nabla}$ are equivalent. To prove this some other results are required. First we prove those results.

Proposition 2.8. Let $x \in \ell_M(\nabla, \Lambda)$ with $||x||_M^{\nabla} \le 1$. Then $\{p(|\nabla \lambda_n x_n|)\} \in \tilde{\ell}_{\Phi}$ and $\delta(\Phi, \{p(|\nabla \lambda_n x_n|)\}) \le 1$.

Proof. For any $z \in \widetilde{\ell}_{\Phi}$, we may write

$$\left|\sum_{i=1}^{\infty} (\nabla \lambda_i x_i) z_i\right| \leq \begin{cases} \|x\|_M^{\nabla} & \text{if } \delta(\Phi, z) \leq 1\\ \delta(\Phi, z) \|x\|_M^{\nabla} & \text{if } \delta(\Phi, z) > 1 \end{cases}.$$
 (15)

Let now $x \in \ell_M(\nabla, \Lambda)$ with $||x||_M^{\nabla} \leq 1$. Also $x^{(n)} = (x_1, \dots, x_n, 0, 0, \dots) \in \ell_M(\nabla, \Lambda)$ for $n \geq 1$. We observe that

$$\|x\|_{M}^{\nabla} \ge \left|\sum_{i=1}^{\infty} (\nabla \lambda_{i} x_{i}) y_{i}^{(n)}\right| = \left|\sum_{i=1}^{\infty} (\nabla \lambda_{i} x_{i}^{(n)}) y_{i}\right|, \quad n \ge 1$$

for every $y \in \tilde{\ell}_{\Phi}$ with $\delta(\Phi, y) \leq 1$ and thus

$$\left\|x^{(n)}\right\|_{M}^{\nabla} \leq \left\|x\right\|_{M}^{\nabla} \leq 1.$$

Since

$$\sum_{i=1}^{n} \Phi\left(p\left(\left|\nabla \lambda_{i} x_{i}\right|\right)\right) = \sum_{i=1}^{\infty} \Phi\left(p\left(\left|\nabla \lambda_{i} x_{i}^{(n)}\right|\right)\right).$$

We find that $\left\{ p\left(\left| \nabla \lambda_i x_i^{(n)} \right| \right) \right\} \in \tilde{\ell}_{\Phi}$ for each $n \ge 1$. Let $l \ge 1$ be an integer such that

$$\sum_{i=1}^{l} \Phi\left(p\left(\left|\nabla \lambda_{i} x_{i}\right|\right)\right) > 1.$$

Then $\sum_{i=1}^{\infty} \Phi\left(p\left(\left|\nabla\lambda_{i}x_{i}^{(l)}\right|\right)\right) > 1$. Using (2), we have $\Phi\left(p\left(\left|\nabla\lambda_{i}x_{i}^{(l)}\right|\right)\right) < M\left(\left|\nabla\lambda_{i}x_{i}^{(l)}\right|\right) + \Phi\left(p\left(\left|\nabla\lambda_{i}x_{i}^{(l)}\right|\right)\right)$ $= \left|\nabla\lambda_{i}x_{i}^{l}\right|p\left(\left|\nabla\lambda_{i}x_{i}^{l}\right|\right)$

for all $i, l \ge 1$. So by (15), we get

$$\sum_{i=1}^{\infty} \Phi\left(p\left(\left|\nabla \lambda_{i} x_{i}^{(l)}\right|\right)\right) \leq || x^{(l)} ||_{M}^{\nabla} \delta\left(\Phi, \left\{p\left(\left|\nabla \lambda_{i} x_{i}^{l}\right|\right)\right\}\right).$$

This implies that $||x^{(l)}||_M^{\nabla} > 1$, a contradiction. This contradiction implies that

$$\sum_{i=1}^{l} \Phi\left(p\left(|\nabla\lambda_{i}x_{i}|\right)\right) \leq 1$$

for all $l \geq 1$. Hence $\left\{p\left(|\nabla\lambda_{i}x_{i}|\right)\right\} \in \tilde{\ell}_{\Phi}$ and $\delta\left(\Phi, \left\{p\left(|\nabla\lambda_{i}x_{i}|\right)\right\}\right) \leq 1$.

Proposition 2.9. Let $x \in \ell_M(\nabla, \Lambda)$ with $||x||_M^{\nabla} \leq 1$. Then $x \in \tilde{\ell}_M(\nabla, \Lambda)$ and $\delta_{\nabla}^{\Lambda}(M, x) \leq ||x||_M^{\nabla}$.

Proof. Let $y = \{p(|\nabla \lambda_i x_i|) / \operatorname{sgn}(\nabla \lambda_i x_i)\}$. Then from Proposition 2.8, $y \in \tilde{\ell}_{\Phi}$ and $\delta(\Phi, y) \leq 1$. By (2), we get

$$\sum_{i=1}^{\infty} M\left(\left|\nabla\lambda_{i}x_{i}\right|\right) \leq \sum_{i=1}^{\infty} M\left(\left|\nabla\lambda_{i}x_{i}\right|\right) + \sum_{i=1}^{\infty} \Phi\left(p\left(\left|\nabla\lambda_{i}x_{i}\right|\right)\right)$$
$$= \sum_{i=1}^{\infty} \left|\nabla\lambda_{i}x_{i}\right| p\left(\left|\nabla\lambda_{i}x_{i}\right|\right)$$
$$= \left|\sum_{i=1}^{\infty} (\nabla\lambda_{i}x_{i})y_{i}\right| \leq \left\|x\right\|_{M}^{\nabla}.$$

This implies that $\delta_{\nabla}^{\Lambda}(M, x) \leq ||x||_{M}^{\nabla}$.

Proposition 2.10. For $x \in \ell_M(\nabla, \Lambda)$, we have $\sum_{k=1}^{\infty} M\left(\frac{|\nabla \lambda_k x_k|}{||x||_M^{\nabla}}\right) \le 1$.

Proof. Proof is immediate from Proposition 2.9.

Theorem 2.11. For $x \in \ell_M(\nabla, \Lambda)$, $||x||_{(M)}^{\nabla} \leq ||x||_M^{\nabla} \leq 2||x||_{(M)}^{\nabla}$.

Proof. We have

$$\|x\|_{(M)}^{\nabla} = \inf\left\{\rho > 0: \sum_{k=1}^{\infty} M\left(\frac{|\nabla\lambda_k x_k|}{\rho}\right) \le 1\right\}.$$

Then using Proposition 2.10, we get

$$||x||_{(M)}^{\nabla} \leq ||x||_{M}^{\nabla}.$$

Let us suppose that $x \in \ell_M(\nabla, \Lambda)$ with $||x||_{(M)}^{\nabla} \leq 1$. Then $x \in \tilde{\ell}_M(\nabla, \Lambda)$ and $\delta_{\nabla}^{\Lambda}(M, x) \leq 1$. Indeed,

$$\frac{1}{\|x\|_{(M)}^{\nabla}}\sum_{i=1}^{\infty}M\left(\left|\nabla\lambda_{i}x_{i}\right|\right)\leq\sum_{i=1}^{\infty}M\left(\frac{\left|\nabla\lambda_{i}x_{i}\right|}{\|x\|_{(M)}^{\nabla}}\right)\leq1,$$

by Proposition 2.7.

Thus $\frac{x}{\|x\|_{(M)}^{\nabla}} \in \tilde{\ell}_{M}(\nabla, \Lambda)$ with $\delta\left(M, \frac{x}{\|x\|_{(M)}^{\nabla}}\right) \leq 1$. We further observe that for an arbitrary $z \in \tilde{\ell}_{M}(\nabla, \Lambda)$,

$$\| z \|_{M}^{\nabla} = \sup \left\{ \left| \sum_{i=1}^{\infty} (\nabla \lambda_{i} z_{i}) y_{i} \right| : \delta (\Phi, y) \leq 1 \right\} \leq 1 + \delta_{\nabla}^{\Lambda}(M, z)$$

using (1). Hence taking $z = \frac{x}{\|x\|_{(M)}^{\nabla}}$, we have $\left\|\frac{x}{\|x\|_{(M)}^{\nabla}}\right\|_{M}^{\nabla} \le 1 + \sum_{i=1}^{\infty} M\left(\frac{|x|}{\|x\|_{(M)}^{\nabla}}\right) \le 2$

by Proposition 2.7. Thus $||x||_M^{\nabla} \le 2 ||x||_{(M)}^{\nabla}$. This completes the proof.

Proposition 2.12. For any Orlicz function M, $\ell_M(\nabla, \Lambda) = \ell'_M(\nabla, \Lambda)$, where $\ell'_M(\nabla, \Lambda) = \left\{ x \in w : \sum_{k=1}^{\infty} M\left(\frac{|\nabla \lambda_k x_k|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \right\}.$

Proof. Proof follows from Proposition 2.10.

In view of above Proposition we give the following definition.

Definition 2.13. For any Orlicz function M,

$$h_{M}(\nabla, \Lambda) = \left\{ x \in w : \sum_{k=1}^{\infty} M\left(\frac{|\nabla \lambda_{k} x_{k}|}{\rho}\right) < \infty, \text{ for each } \rho > 0 \right\}.$$

Clearly $h_M(\nabla, \Lambda)$ is a subspace of $\ell_M(\nabla, \Lambda)$. Henceforth we shall write ||.|| instead of $||.||_{(M)}^{\nabla}$ provided it does not lead to any confusion. The topology of $h_M(\nabla, \Lambda)$ is the one it inherits from ||.||.

Proposition 2.14. Let *M* be an Orlicz function. Then $(h_M(\nabla, \Lambda), \|.\|)$ is an *AK-BK* space.

Proof. First we show that $h_M(\nabla, \Lambda)$ is an *AK* space. Let $x \in h_M(\nabla, \Lambda)$. Then for each ε , $0 < \varepsilon < 1$, we can find an n_0 such that

$$\sum_{i\geq n_0} M\left(\frac{\left|\nabla\lambda_i x_i\right|}{\varepsilon}\right) \leq 1.$$

Hence for $n \ge n_0$,

$$||x-x^{(n)}|| = \inf\left\{\rho > 0: \sum_{i \ge n+1} M\left(\frac{|\nabla\lambda_i x_i|}{\rho}\right) \le 1\right\} \le \inf\left\{\rho > 0: \sum_{i \ge n} M\left(\frac{|\nabla\lambda_i x_i|}{\rho}\right) \le 1\right\} < \varepsilon.$$

Thus we can conclude that $h_M(\nabla, \Lambda)$ is an AK space.

Next to show $h_M(\nabla, \Lambda)$ is an *BK* space it is enough to show $h_M(\nabla, \Lambda)$ is a closed subspace of $h_M(\nabla, \Lambda)$. For this let $\{x^n\}$ be a sequence in $h_M(\nabla, \Lambda)$ such that

$$||x^{n}-x|| \rightarrow 0,$$

where $x \in h_M(\nabla, \Lambda)$. To complete the proof we need to show that $x \in h_M(\nabla, \Lambda)$, i.e.,

$$\sum_{i\geq 1} M\left(\frac{\left|\nabla\lambda_{i}x_{i}\right|}{\rho}\right) < \infty$$

for every $\rho > 0$. To $\rho > 0$ there corresponds an l such that $||x^l - x|| \le \frac{\rho}{2}$. Then using convexity of M,

$$\begin{split} \sum_{i\geq 1} M\left(\frac{\left|\nabla\lambda_{i}x_{i}\right|}{\rho}\right) &= \sum_{i\geq 1} M\left(\frac{2\left|\nabla\lambda_{i}x_{i}^{l}\right| - 2\left(\left|\nabla\lambda_{i}x_{i}^{l}\right| - \left|\nabla\lambda_{i}x_{i}\right|\right)}{2\rho}\right) \\ &\leq \frac{1}{2}\sum_{i\geq 1} M\left(\frac{2\left|\nabla\lambda_{i}x_{i}^{l}\right|}{\rho}\right) + \frac{1}{2}\sum_{i\geq 1} M\left(\frac{2\left|\nabla\lambda_{i}(x_{i}^{l} - x_{i})\right|}{\rho}\right) \\ &\leq \frac{1}{2}\sum_{i\geq 1} M\left(\frac{2\left|\nabla\lambda_{i}x_{i}^{l}\right|}{\rho}\right) + \frac{1}{2}\sum_{i\geq 1} M\left(\frac{2\left|\nabla\lambda_{i}(x_{i}^{l} - x_{i})\right|}{\left\|x^{l} - x\right\|}\right) < \infty \end{split}$$

by proposition 2.7. Thus $x \in h_M(\nabla, \Lambda)$ and consequently $h_M(\nabla, \Lambda)$ is a *BK* space.

Proposition 2.15. Let *M* be an Orlicz function. If *M* satisfies the Δ_2 -condition at 0, then $\ell_M(\nabla, \Lambda)$ is an *AK* space.

Proof. In fact we shall show that if M satisfies the Δ_2 -condition at 0, then $\ell_M(\nabla, \Lambda) = h_M(\nabla, \Lambda)$ and the result follows. Therefore it is enough to show that $\ell_M(\nabla, \Lambda) \subset h_M(\nabla, \Lambda)$. Let $x \in \ell_M(\nabla, \Lambda)$, then $\rho > 0$,

$$\sum_{i\geq 1} M\left(\frac{\left|\nabla\lambda_{i}x_{i}\right|}{\rho}\right) < \infty$$

This implies that

$$M\left(\frac{\left|\nabla\lambda_{i}x_{i}\right|}{\rho}\right) \to 0 \text{ as } i \to \infty.$$
(16)

Choose an arbitrary l > 0. If $\rho \le l$, then $\sum_{i\ge l} M\left(\frac{|\nabla \lambda_i x_i|}{l}\right) < \infty$. Let now $l < \rho$ and put $k = \frac{\rho}{l}$.

Since *M* satisfies Δ_2 -condition at 0, there exist $R \equiv R_k > 0$ and $r \equiv r_k > 0$ with $M(kx) \le RM(x)$ for all $x \in (0, r]$. By (16) there exists a positive integer n_1 such that

$$M\left(\frac{\left|\nabla\lambda_{i}x_{i}\right|}{\rho}\right) < \frac{1}{2}rp\left(\frac{r}{2}\right)$$

H. Dutta

for all $i \ge n_1$. We claim that $\frac{|\nabla \lambda_i x_i|}{\rho} \le r$ for all $i \ge n_1$. Otherwise, we can find $j > n_1$ with $\frac{|\nabla \lambda_j x_j|}{\rho} > r$, and thus

$$M\left(\frac{\left|\nabla\lambda_{j}x_{j}\right|}{\rho}\right) \geq \int_{r/2}^{\frac{\left|\nabla\lambda_{j}x_{j}\right|}{\rho}} p(t) dt > \frac{1}{2} rp\left(\frac{r}{2}\right)$$

Is a contradiction. Hence our claim is true. Then we can find that

$$\sum_{i\geq n_1} M\left(\frac{|\nabla\lambda_i x_i|}{l}\right) \leq \sum_{i\geq n_1} M\left(\frac{|\nabla\lambda_i x_i|}{\rho}\right),$$

and hence

$$\sum_{i\geq 1} M\left(\frac{|\nabla\lambda_i x_i|}{l}\right) < \infty$$

for every l > 0. This completes our proof.

Proposition 2.16. Let M_1 and M_2 be two Orlicz functions. If M_1 and M_2 are equivalent then $\ell_{M_1}(\nabla, \Lambda) = \ell_{M_2}(\nabla, \Lambda)$ and the identity map

$$I: \left(\ell_{M_{1}}(\nabla, \Lambda), \left\|.\right\|_{M_{1}}^{\nabla}\right) \to \left(\ell_{M_{2}}(\nabla, \Lambda), \left\|.\right\|_{M_{2}}^{\nabla}\right)$$

is a topological isomorphism.

Proof. Let M_1 and M_2 are equivalent and so satisfy (4). Suppose $x \in \ell_{M_2}(\nabla, \Lambda)$, then

$$\sum_{i=1}^{\infty} M_2 \left(\frac{|\nabla \lambda_i x_i|}{\rho} \right) < \infty$$

for some $\rho > 0$. Hence for some $l \ge 1$, $\frac{|\nabla \lambda_i x_i|}{l\rho} \le x_0$ for all $i \ge 1$. Therefore,

$$\sum_{i=1}^{\infty} M_1\left(\frac{\alpha \left|\nabla \lambda_i x_i\right|}{l\rho}\right) \leq \sum_{i=1}^{\infty} M_2\left(\frac{\left|\nabla \lambda_i x_i\right|}{\rho}\right) < \infty.$$

Thus $\ell_{M_2}(\nabla, \Lambda) \subset \ell_{M_1}(\nabla, \Lambda)$. Similarly $\ell_{M_1}(\nabla, \Lambda) \subset \ell_{M_2}(\nabla, \Lambda)$. Let us abbreviate here $\|\cdot\|_{M_1}^{\nabla}$ and $\|\cdot\|_{M_2}^{\nabla}$ by $\|\cdot\|_1$ and $\|\cdot\|_2$, respectively. For $x \in \ell_{M_2}(\nabla, \Lambda)$,

$$\sum_{i=1}^{\infty} M_2 \left(\frac{\left| \nabla \lambda_i x_i \right|}{\left\| x \right\|_2} \right) \le 1.$$

One can find $\mu > 1$ with $\left(\frac{x_0}{2}\right) \mu p_2\left(\frac{x_0}{2}\right) \ge 1$, where p_2 is the kernel associated with M_2 . Hence

$$M_2\left(\frac{\left|\nabla\lambda_i x_i\right|}{\left\|x\right\|_2}\right) \leq \left(\frac{x_0}{2}\right)\mu p_2\left(\frac{x_0}{2}\right)$$

for all $i \ge 1$. This implies that $\frac{|\nabla \lambda_i x_i|}{\mu \|x\|_2} \le x_0$ for all $i \ge 1$. Therefore $\sum_{i=1}^{\infty} M_1 \left(\frac{\alpha |\nabla \lambda_i x_i|}{\mu \|x\|_2} \right) < 1$

and so $||x||_1 \le \left(\frac{\mu}{\alpha}\right) ||x||_2$. Similarly we can show $||x||_2 \le \beta \gamma ||x||_1$ by choosing γ with $\gamma \beta > 1$ such that $\gamma \beta \left(\frac{x_0}{2}\right) p_1 \left(\frac{x_0}{2}\right) \ge 1$. Thus $\alpha \mu^{-1} ||x||_1 \le ||x||_2 \le \beta \gamma ||x||_1$ which establishes that *I* is a topological isomorphism.

Proposition 2.17. (i)
$$\ell_M(\Lambda) \subset \ell_M(\nabla, \Lambda)$$
,
(ii) $\ell_M(\Lambda) \subset \ell_M(\Delta, \Lambda)$.

Proof. (*i*) Proof follows from the following inequality:

$$\sum_{i=1}^{\infty} M\left(\frac{\left|\nabla\lambda_{i} x_{i}\right|}{2\rho}\right) \leq \frac{1}{2} \sum_{i=1}^{\infty} M\left(\frac{\left|\lambda_{i} x_{i}\right|}{\rho}\right) + \frac{1}{2} \sum_{i=1}^{\infty} M\left(\frac{\left|\lambda_{i-1} x_{i-1}\right|}{\rho}\right),$$

(*ii*) Proof is similar to that of part (*i*).

Proposition 2.18. Let *M* be an Orlicz function and *p* the corresponding kernel. If p(x) = 0 for all *x* in $[0, x_0]$ where x_0 is some positive number, then $\ell_M(\nabla, \Lambda)$ is topologically isomorphic to $\ell_{\infty}(\nabla, \Lambda)$ and $h_M(\nabla, \Lambda)$ is topologically isomorphic to $c_0(\nabla, \Lambda)$.

Proof. Let
$$p(x) = 0$$
 for all x in $[0, x_0]$. If $y \in \ell_{\infty}(\nabla, \Lambda)$, then we can find a $\rho > 0$ such that $\frac{|\nabla \lambda_i y_i|}{\rho} \le x_0$ for $i \ge 1$, and so $\sum_{i=1}^{\infty} M\left(\frac{|\nabla \lambda_i y_i|}{\rho}\right) < \infty$, giving thus $y \in \ell_M(\nabla, \Lambda)$. On the other hand let $y \in \ell_M(\nabla, \Lambda)$, then $\sum_{i=1}^{\infty} M\left(\frac{|\nabla \lambda_i y_i|}{\rho}\right) < \infty$, for some $\rho > 0$ and so $|\nabla \lambda_i y_i| < \infty$ for all $i \ge 1$, giving thus $y \in \ell_{\infty}(\nabla, \Lambda)$. Hence $y \in \ell_{\infty}(\nabla, \Lambda)$ if and only if $y \in \ell_M(\nabla, \Lambda)$. We can easily find an x_1 with $M(x_1) \ge 1$. Let $y \in \ell_{\infty}(\nabla, \Lambda)$ and $\alpha = ||y||_{\infty} = \sup_i (|\nabla \lambda_i y_i|) > 0$. (It is easy to show that $||y||_{\infty} = \sup_i (|\nabla \lambda_i y_i|)$ is a norm on $\ell_{\infty}(\nabla, \Lambda)$). For every ε , $0 < \varepsilon < \alpha$, we can determine y_i with $|\nabla \lambda_j y_j| > \alpha - \varepsilon$ and so

$$\sum_{i=1}^{\infty} M\left(\frac{|\nabla \lambda_i y_i| x_1}{\alpha}\right) \ge M\left(\frac{(\alpha - \varepsilon) x_1}{\alpha}\right).$$

H. Dutta

Since *M* is continuous, we find $\sum_{i=1}^{\infty} M\left(\frac{|\nabla\lambda_i y_i| x_1}{\alpha}\right) \ge 1$, and so $||y||_{\infty} \le x_1 ||y||$, for otherwise $\sum_{i=1}^{\infty} M\left(\frac{|\nabla\lambda_i y_i|}{||y||}\right) \ge 1$ is a contradiction by Proposition 2.7. Again, $\sum_{i=1}^{\infty} M\left(\frac{|\nabla\lambda_i y_i| x_0}{\alpha}\right) = 0$ and it follows that $||y|| \le \frac{1}{x_0} ||y||_{\infty}$. Thus the identity map $I: \left(\ell_M(\nabla, \Lambda), \|.\|\right) \to \left(\ell_{\infty}(\nabla, \Lambda), \|.\|\right)$

is a topological isomorphism.

For the last part, let $y \in h_M(\nabla, \Lambda)$, then for any $\varepsilon > 0, |\nabla \lambda_i y_i| \le \varepsilon x_1$, for all sufficiently large *i*, where x_1 is some positive number with $p(x_1) > 0$. Hence $y \in c_0(\nabla, \Lambda)$. Next let $y \in c_0(\nabla, \Lambda)$. Then for any $\rho > 0$, $\frac{|\nabla \lambda_i y_i|}{\rho} < \frac{1}{2}x_0$ for all sufficiently large *i*. Thus $M\left(\frac{|\nabla \lambda_i y_i|}{\rho}\right) < \infty$ for all $\rho > 0$ and so $y \in h_M(\nabla, \Lambda)$. Hence $h_M(\nabla, \Lambda) = c_0(\nabla, \Lambda)$ and we are done.

Corollary 2.19. Let *M* be an Orlicz function and *p* the corresponding kernel. If p(x) = 0 for all *x* in $[0, x_0]$ where x_0 is some positive number, then $\ell_M(\nabla, \Lambda)$ is topologically isomorphic to ℓ_∞ and $h_M(\nabla, \Lambda)$ is topologically isomorphic to c_0 .

Proof. Let us define the mapping for $Z = \ell_{\infty}$, c_0 $T: Z(\nabla, \Lambda) \rightarrow Z$

by $Tx = (\nabla \lambda_k x_k)$, for every $x \in Z(\nabla, \Lambda)$. Then clearly *T* is a linear homeomorphism.

Hence the proof follows from Proposition 2.18.

Lemma 2.20. Let *M* be an Orlicz function. Then $x \in \ell_M(\Delta, \Lambda)$ implies $(k^{-1}\lambda_k x_k) \in \ell_{\infty}$.

Proof. Let $x \in \ell_M(\Delta, \Lambda)$. Then, one can easily prove that $(\Delta \lambda_k x_k) \in \ell_{\infty}$ which gives the result $(k^{-1}\lambda_k x_k) \in \ell_{\infty}$.

Proposition 2.21. Let *M* be an Orlicz function and *p* be the corresponding kernel of *M*. If p(x) = 0 for all x in $[0, x_0]$, where x_0 is some positive number, then

(*i*) Köthe-Toeplitz dual of $\ell_M(\Delta, \Lambda)$ is D_1 , where

$$D_1 = \left\{ (a_k) : \sum_{k=1}^{\infty} k \left| \lambda_k^{-1} a_k \right| < \infty \right\},$$

(*ii*) Köthe-Toeplitz dual of D_1 is D_2 , where

$$D_2 = \left\{ (b_k) : \sup_k k^{-1} \left| \lambda_k b_k \right| < \infty \right\}.$$

Proof. (*i*) Let $a \in D_1$ and $x \in \ell_M(\Delta, \Lambda)$. Then

$$\sum_{k=1}^{\infty} |a_k x_k| = \sum_{k=1}^{\infty} k \left| \lambda_k^{-1} a_k \right| k^{-1} \left| \lambda_k x_k \right| \le \sup_k k^{-1} \left| \lambda_k x_k \right| \sum_{k=1}^{\infty} k \left| \lambda_k^{-1} a_k \right| < \infty.$$

Hence $a \in \left[\ell_M(\Delta, \Lambda)\right]^{\alpha}$. Thus, the inclusion $D_1 \subset \left[\ell_M(\Delta, \Lambda)\right]^{\alpha}$ holds.

Conversely suppose that $a \in \left[\ell_M(\Delta, \Lambda)\right]^{\alpha}$. Then $\sum_{k=1}^{\infty} |a_k x_k| < \infty$ for every $x \in \ell_M(\Delta, \Lambda)$. So we can take $x_k = \lambda_k^{-1}k$ for all $k \ge 1$, because then $(x_k) \in \ell_{\infty}(\Delta, \Lambda)$ and hence $(x_k) \in \ell_M(\Delta, \Lambda)$ as shown in Proposition 2.18.

Now $\sum_{k=1}^{\infty} k \left| \lambda_k^{-1} a_k \right| = \sum_{k=1}^{\infty} \left| a_k x_k \right| < \infty$ and thus $a \in D_1$. Hence, the inclusion $\left[\ell_M \left(\Delta, \Lambda \right) \right]^{\alpha} \subset D_1$ holds.

(ii) Proof follows by similar arguments used in the prove of case (i).

Proposition 2.22. Let *M* be an Orlicz function and *p* be the corresponding kernel of *M*. If p(x) = 0 for all *x* in [0, x_0], where x_0 is some positive number, then Köthe-Toeplitz dual of $h_M(\Delta, \Lambda)$ is D_1 , where D_1 is defined as in Proposition 2.21.

Proof. Let $a \in D_1$ and $x \in h_M(\Delta, \Lambda)$. Then

$$\sum_{k=1}^{\infty} \left| a_k x_k \right| = \sum_{k=1}^{\infty} k \left| \lambda_k^{-1} a_k \right| k^{-1} \left| \lambda_k x_k \right| \le \sup_k k^{-1} \left| \lambda_k x_k \right| \sum_{k=1}^{\infty} k \left| \lambda_k^{-1} a_k \right| < \infty.$$

Hence $a \in [h_M(\Delta, \Lambda)]^{\alpha}$, that is the inclusion $D_1 \subset [h_M(\Delta, \Lambda)]^{\alpha}$ holds.

Conversely suppose that $a \in [h_M(\Delta, \Lambda)]^{\alpha}$ and $a \notin D_1$. Then there exists a strictly increasing sequence (n_i) of positive integers such that $n_1 < n_2 < ...$, such that

$$\sum_{k=n_{i}+1}^{n_{i+1}} \left| \lambda_{k} \right|^{-1} k \left| a_{k} \right| > i$$

Define (x_k) by

$$x_k = \begin{cases} 0 & , \quad 1 \le k \le n_1 \\ k \lambda_k^{-1} \operatorname{sgn} a_k / i & , \quad n_i < k \le n_{i+1} \end{cases}$$

Then $(x_k) \in c_0(\Delta, \Lambda)$ and so by Proposition 2.18, $(x_k) \in h_M(\Delta, \Lambda)$. Then we have

$$\sum_{k=1}^{\infty} |a_k x_k| = \sum_{k=n_1+1}^{n_2} |a_k x_k| + \dots + \sum_{k=n_l+1}^{n_{l+1}} |a_k x_k| + \dots$$
$$= \sum_{k=n_1+1}^{n_2} k |\lambda_k^{-1} a_k| + \dots + \frac{1}{i} \sum_{k=n_l+1}^{n_{l+1}} k |\lambda_k^{-1} a_k| + \dots > 1 + 1 + \dots = \infty.$$

This contradicts to $a \ \hat{1} \left[h_M (\Delta, \Lambda) \right]^{\alpha}$. Hence $a \in D_1$, i.e. the inclusion $\left[h_M (\Delta, \Lambda) \right]^{\alpha} \subset D_1$ also holds. This completes the proof.

References

- [1] Kizmaz H., 1981. On certain sequence spaces, Canadian Mathematical Bulletin, 24 (2): 169-176.
- [2] Kamthan P.K., Gupta M., 1981. Sequence Spaces and Series, Marcel Dekker Inc., New York, USA, p. 368.
- [3] Lindenstrauss J., Tzafriri L., 1971. On Orlicz sequence spaces, *Israel Journal of Mathematics*, 10: 379-390.
- [4] Gribanov Y., 1957. On the theory of ℓ_M -spaces(Russian), Ucenyja Zapiski Kazansk un-ta, 117: 62-65.
- [5] Krasnoselskii M.A., Rutitsky Y.B., 1961. Convex functions and Orlicz spaces, *Groningen*, Netherlands, p. 249.
- [6] Goes G., Goes S., 1970. Sequences of bounded variation and sequences of Fourier coefficients, Mathematische_Zeitschrift, 118 (2): 93-102.
- [7] Köthe G., Toeplitz O., 1934. Linear Raume mit unendlichvielen koordinaten and Ringe unendlicher Matrizen, Journal Für Die Reine und Angewandte Mathematik, 1934 (171): 193-226.
- [8] Kamthan P.K., 1976. Bases in a certain class of Frechet spaces, Tamkang Journal of Mathematics, 7 (1): 41-49.
- [9] Başar F., Altay B., 2003. On the space of sequences of *p*-bounded variation and related matrix mappings, *Ukrainian Mathematical Journal*, 55 (1): 136-147.
- [10] Altay B., Başar F., 2007. The fine spectrum and the matrix domain of the difference operator Δ on the sequence space ℓ_p , (0 ,*Communications in Mathematical Analysis*, 2 (2): 1-11.