
Keep It Small, Keep It Real: Efficient Run-Time
Verification of Web Service Compositions

Luciano Baresi1, Domenico Bianculli2, Sam Guinea1, and Paola Spoletini3

1 Politecnico di Milano - DEEP-SE Group - DEI, Milano, Italy
{luciano.baresi, sam.guinea}@polimi.it

2 University of Lugano - Faculty of Informatics, Lugano, Switzerland
domenico.bianculli@lu.unisi.ch

3 Università dell’Insubria - DSCPI, Como, Italy
paola.spoletini@uninsubria.it

Abstract. Service compositions leverage remote services to deliver added-
value distributed applications. Since services are administered and run
by independent parties, the governance of service compositions is intrin-
sically decentralized and services may evolve independently over time. In
this context, pre-deployment verification can only provide limited guar-
antees, while continuous run-time verification is needed to probe and
guarantee the correctness of compositions at run time.
This paper addresses the issue of efficiency in the run-time verification
of service compositions described in BPEL. It considers an existing mon-
itoring approach based on ALBERT, which is a temporal logic language
suitable for asserting both functional and non-functional properties, and
shows how to obtain the efficient run-time verification of ALBERT for-
mulae. The paper introduces an operational semantics for ALBERT
through an extension of alternating automata, and explains how to opti-
mize it to produce smarter, and thus more efficient, encodings of defined
formulae. The optimized operational semantics can then be the basis for
an efficient implementation of the run-time verification framework.

1 Introduction

Services represent reusable software components that provide their functionality
to many clients through a standardized network and middleware infrastructure.
Clients may combine services in different ways, to create new composite applica-
tions that can be themselves published as a service. In the realm of Web services,
service compositions are usually described by means of the BPEL [1] language,
which supports the definition of workflow-like service compositions.

BPEL orchestrations usually involve multiple stakeholders, as service aggre-
gators rely on parts that are owned and managed by other organizations. The
overall quality of a BPEL process largely depends on the quality of the com-
posed services. Since these services are run and administered autonomously, in
a decentralized manner, providers are entitled to change them freely. For this
reason, the actual partner services invoked by a composite service can evolve (or

2 L. Baresi et al.

even change) at run time. Pre-deployment verification is of limited usefulness;
run-time verification becomes mandatory to probe and check the quality and
correctness of service compositions while they execute.

Run-time verification may check different properties, ranging from quality
of service parameters (e.g., response time, throughput) to behavioral assertions.
These properties are often expressed by means of special-purpose languages.
In [2], we introduced ALBERT, an assertion language for the specification of
functional and non-functional temporal properties of BPEL processes. ALBERT
plays a key-role in SAVVY-WS [3], our proposal for an integrated design- and
run-time verification methodology.

This paper focuses on the efficient verification of ALBERT formulae at run
time. It starts by proposing an operational semantics for ALBERT based on the
correlation between temporal logic and a class of alternating automata, called
ASA (ALBERT’s Semantics Automata). Since this “plain” operational model
would lead to quite inefficient verifications, the paper also proposes a smart en-
coding of ALBERT formulae by means of an optimized semantics defined in
terms of an extension of ASA, called LASA (Limited ASA). This new oper-
ational semantics is equivalent to the previous one, but fosters more efficient
verifications. Experimental results corroborate this hypothesis and show how
the proposed optimization limits the number of threads needed for a complete
evaluation of a given formula.

The rest of the paper is organized as follows. Section 2 provides a brief
introduction to ALBERT. Section 3 presents the “plain” semantics ascribed to
ALBERT in terms of our extension of alternating automata. Section 4 explains
how to optimize the mapping of ALBERT formulae onto the formal model, and
Sect. 5 fosters this hypothesis by means of some experimental results. Finally,
Sect. 6 surveys related work, and Sect. 7 concludes the paper.

2 ALBERT in a Nutshell

The aim of this section is to accustom the reader with ALBERT, focusing on the
main aspects that are needed to understand the theoretical framework presented
in the paper.

ALBERT [2] is a temporal assertion language for stating functional and non-
functional properties of BPEL workflows. ALBERT formulae predicate over in-
ternal and external variables. The former consist of data pertaining to the inter-
nal state of the BPEL process in execution. The latter are data that are useful
for the specification, but are not part of the process’ business logic and must be
obtained externally (e.g., the values returned by some external services).

Given a finite set of variables V and a finite set of natural constants C, an
ALBERT formula φ is defined by the following syntax:

φ ::= χ | ¬φ | φ ∧ φ | (op id in var ; φ) |
Becomes(χ) | Until(φ,φ) | Between(φ,φ,K) |
Within(φ,K) | InFuture(φ,K)

Efficient Run-Time Verification of Web Service Compositions 3

χ ::= ψ relop ψ | ¬χ | χ ∧ χ | onEvent(µ)
ψ ::= var | ψ arop ψ | const | past(ψ, onEvent(µ), n) |
count(χ, K) | fun(ψ, K) | elapsed(onEvent(µ))
op ::= forall | exists
relop ::= < | ≤ | = | ≥ | >
arop ::= + | − | × | ÷
fun ::= sum | avg | min | max

where var ∈ V , const ∈ C, n ∈ N, K ∈ R+ and onEvent is an event predicate.
Becomes, Until , Between, Within and InFuture are temporal operators. count ,
elapsed , past , and all the functions derivable from the non-terminal fun are tem-
poral functions of the language. Parameter µ denotes an event: it may identify
the start or the end of an invoke, reply or receive activity, the reception of a
message by a pick or an event handler, or the execution of any other BPEL ac-
tivity. The above syntax only defines the language’s core constructs. The usual
logical derivations are used to define other connectives and temporal operators
(e.g., ∨, Always, Eventually).

The informal meaning of ALBERT formulae can be explained by referring to
sequences of states of the BPEL process, each of which represents a snapshot of
the variables of the process, taken at a certain time instant, when the process is
executing a certain set of activities.

Sequences of process states are strictly monotonic with respect to time. Be-
tween successive states there is always at least one time-consuming interaction
with the outside world or the execution of an internal BPEL activity (e.g., an
assign activity) or the occurrence of an event.

All ALBERT formulae represent invariant assertions over a BPEL process,
therefore they are understood to be in the scope of an implicit universal temporal
quantification, i.e., each formula is prefixed by an Always temporal operator. The
predicate onEvent can be used to express a formula that must hold when the
execution reaches a given point of the workflow. In the case where the parameter
µ denotes assign, pick, event handler, or the end of invoke, reply or receive
activities, onEvent is true in a state whose label identifies the corresponding
activity. In the case of the start of an invoke, reply or receive activity, it is true
in a state if the label of the next state in the sequence identifies the corresponding
activity. In the case of a while or a switch activity, it is true in the state where
the condition is evaluated.

Function past(ψ, onEvent(µ), n) returns the value of ψ in the nth past state
in which onEvent(µ) is true. Function count(χ,K), evaluated in a state whose
time-stamp is tj , computes the number of states in which χ is true, and whose
time-stamp is greater than or equal to tj −K. The non-terminal fun stands for
any function (e.g., average, sum, minimum, maximum . . .) that can be applied
to sets of numerical values. The function, evaluated in a state whose time-stamp
is tj , is applied to all values of expression ψ in all states whose time-stamp is
greater than or equal to tj −K. Function elapsed(onEvent(µ)), evaluated in a
state whose time-stamp is tj , returns the difference between tj and the time-
stamp of the most recent past state in which onEvent(µ) is true. Since these

4 L. Baresi et al.

functions compute their value from a trace storing a past history of states, their
value becomes part of the process state. Moreover, a change in the value of
function count and of the functions derivable from non-terminal fun may lead to
the generation of a new state.

Temporal predicate Becomes is evaluated on two adjacent elements of the
sequence of states. The formula is true if its argument is true in the current
state, and false in the previous. The temporal predicate Until(φ1, φ2) is true in
a given state if φ2 is true in the current state, or eventually in a future state, and
φ1 holds in all the states from the current (included) until that state (excluded).
The temporal predicate Between(φ1, φ2,K) is true in a given state if both φ1

and φ2 will be eventually true, with φ2 occurring exactly after K time instants
from the first time in which φ1 was true.The temporal predicate Within(φ,K)
is true in a given state if φ is true at most after K time instants. Predicate
InFuture(φ,K) is true in a given state if φ is true in exactly K time instants.

Finally, boolean, relational, and arithmetic operators have the conventional
meaning; the same is true for quantifiers.

3 ALBERT’s Operational Semantics

The sequence of process states is linear and analogous to the sequence of states
on which the operators of Linear Time Logic (LTL) — either in its classical
definition or in the one with both modalities — are evaluated. The only main
difference is that ALBERT operators also contain an explicit reference to time-
stamps. Therefore, ALBERT temporal predicates can be described in terms of
LTL operators. Furthermore, we consider sequences of infinite length since a pri-
ori we suppose that Web service compositions can be involved in long-running,
never-ending business transactions. Notice that this does not represent a limi-
tation if the system is stopped: in that case, the formulae are evaluated on an
infinite sequence comprised of a prefix, represented by the states collected until
that moment, and of a suffix of the form falseω .

Let sc be the current state in a sequence of states and si be a sequent state
that is at most K time instants after sc and such that the successor state si+1

comes more than K time instants after sc, i.e., with the reference to time-stamps,
ti−tc ≤ K and ti+1−tc > K. An ALBERT temporal predicate can be evaluated
in state sc according to the following equivalences with formulae of LTL with
both modalities4:

– Becomes(χ) ≡ Y(¬χ) ∧ χ
– Until(φ1, φ2) ≡ φ1Uφ2

– InFuture(φ,K) ≡ Xi(φ)
– Within(φ,K) ≡ φ ∨ X(φ) ∨ . . . ∨ Xi−1 ∨ Xi(φ)

The temporal predicate Between(φ1, φ2,K) is derived and can be expressed as
(¬φ1)U(φ1 ∧ InFuture(φ2,K)).

4 Y stands for “Yesterday”, U for “Until”, X for “neXt” and Xi for X nested i times.

Efficient Run-Time Verification of Web Service Compositions 5

Since ALBERT can be described in terms of LTL operators, in which however
the number of nested Xs is not known a priori, we can exploit the well-known
correlation between temporal logic and Büchi alternating automata (BAA) [4],
as presented in [5], to give ALBERT an operational semantics that could be
implemented straightforwardly. BAA generalize the traditional concept of non-
determinism by supporting both existential and universal non-deterministic
branching.

Since ALBERT’s temporal model involves both a sequence of states and
operations on their time-stamps, in the rest of this section we first introduce
ALBERT’s Semantics Automata (ASA), an extension of BAA that uses variables
to deal with time-stamps, and then we show how the classical correlation between
BAA and LTL can be reformulated for ASA and ALBERT.

3.1 ALBERT’s Semantics Automata

Informally speaking, a BAA is a finite state automaton that recognizes words of
infinite length and supports two branching modalities, universal and existential.
These modalities are formally expressed in the model through positive Boolean
combinations of formulae; given a set M of propositions, B+(M) denotes the set
of positive Boolean formulae over M built from elements in M using ∧ and ∨ but
not ¬, plus the formulae true and false. Universal branching in a BAA potentially
allows for reducing the dimension of the automaton in which parallelism is not
made explicit at design time.

Dealing with ALBERT formulae in a concise way requires that the BAA
model be enriched with a set of bounded time counters, and with the corre-
sponding assignment and comparison operators, to take care of the explicit tem-
poral aspects. Formally, given a finite set CK = {v1, . . . , vn} of time counters
ranging over the non-negative rational numbers Q+ and bounded in value by a
positive integer K, let ΨCK

be the set of counter constraints of the form v � c
where v ∈ CK , � ∈ {<,≤,=, 6=, >,≥} and c ∈ Q+. For the same set CK , let
ΥCK

be the set of assignments over CK of the form v ← c, where v ∈ CK
and c ∈ Q+ and c ≤ K, including also the empty assignment εΥ . ALBERT’s
Semantics Automata are defined as follows.

Definition 1. An ASA is a tuple (Σ,Q,CK , q0, δ, F) where Σ is a finite alpha-
bet, Q is a set of states, CK is a finite set of time counters bounded in value by
a positive integer K, q0 ∈ Q is the initial state, δ : Q × ℘(Σ) × Q+ × ΨCK

→
B+(Q× ΥCK

) is the transition function and F ⊆ Q is a set of accepting states.

For the sake of readability, when indicating the elements in B+(Q×ΥCK
) we will

use the symbol / to separate the component in Q from the component in ΥCK
.

An ASA accepts (or rejects) timed ω-words that are defined as sequences
w = w1w2 . . . = (a1, t1)(a2, t2) . . . of pairs from ℘(Σ) × Q+. For each i > 1,
ti describes the amount of time passed between reading ai−1 and ai and t1
represents the amount of time passed from the initial time (0) to the instant
when a1 was read. We also define the functions D(wi) and t(wi) that project,
respectively, the data and the time component of the ith symbol of a word w. Due

6 L. Baresi et al.

to universal branching, BAA’s (and consequently ASA’s) runs are not sequences,
but trees. Indeed, every time a universal branch is taken, the automaton goes in
all the states expressed by the ∧ combination of formulae; hence, more than one
state can be reached at the same time, as in a tree structure. This can be seen
as the process of creating a duplicate of the automaton, at a certain level of the
tree, for each state reached when performing the universal branch. A run of an
ASA is accepting if every path starting from the root of the tree (corresponding
to the run) hits accepting states infinitely often.

3.2 From ALBERT to ASA

Our proposal is to use an ASA for the run-time verification of an ALBERT for-
mula, by defining the semantics of ALBERT formulae in terms of the operational
model represented by the class of ASA. The implementation of the run-time
checker becomes straightforward, as it follows the definition of the operational
model. Indeed, while the truth value of a formula depends on the word on which
it is evaluated, the equivalent corresponding automaton accepts the same word
if and only if the formula is true on the word. Moreover, as ALBERT formulae
represent invariant assertions over a BPEL process, the automaton equivalent to
the formula to be verified, is supposed to run until the BPEL process for which
ALBERT formulae are defined, is executed.

The basic idea is that an ASA equivalent to an ALBERT formula can be
built from the latter (in the same way as a BAA can be derived from an LTL
formula) by constructing a state for each temporal sub-formula in the formula,
and by defining the transition relation between pairs of states 〈qj , qk〉 only if the
truth value of the formula represented by state qj depends on the truth value of
the formula represented by state qk. Moreover, the boolean connectors ∧ and ∨
are implicitly represented by means of universal and existential branching.

In the following definition of the semantics, we do not consider ALBERT
functions, but we treat them as part of the process state, as described in Sect. 2.

Standard Semantics. Let φ be an ALBERT formula,X the finite set of atomic
propositions that occur in φ, and Sf (φ) the set of sub-formulae of φ. In order to
define the semantics, we introduce some further definitions. Given an ALBERT
formula φ, Dual(φ) is a formula obtained by interchanging in φ true and false,
∧ and ∨, and complementing all the sub-formulae of φ. Moreover, let HD : N→
℘(X) and Ht : N→ Q+ be, respectively the data5 and the time history functions,
which return, for a given n, respectively, the subset of atomic propositions that
held in, and the time-stamp of, the nth-last data collection performed by the run-
time checker. The ASA for φ is a tuple (Σ, Q, CK , q0, δ, F) where Σ = X, CK
is a finite set of time bounded counters such that |CK | ≤ |Sf (φ)|, Q = {γ | γ ∈
Sf (φ) or ¬γ ∈ Sf (φ)}, K is the greatest bounded temporal distance occurring
in the temporal predicates of φ, q0 = φ, and F = {γ | γ ∈ Q and γ has the form
¬Until(φ1, φ2)}. The transition function δ is defined as follows, where χ, φ1, φ2

5 Notice that ∀σ,D(σ) = HD(0).

Efficient Run-Time Verification of Web Service Compositions 7

are ALBERT (sub)formulae, σ is an input symbol, which is actually a pair from
℘(X)×Q+, vΨ ∈ ΨCK

is a generic constraint on a counter v ∈ CK and vΥ ∈ ΥCK

is a generic assignment to a counter v ∈ CK :

– δ(χ, σ, vΨ) = true/v ← 0 if χ 6= onEvent(µ) where µ is a start event and
χ ∈ D(σ);

– δ(χ, σ, vΨ) = false/v ← 0 if χ 6= onEvent(µ) where µ is a start event and
χ /∈ D(σ);

– δ(φ1 ∧ φ2, σ, vΨ) = δ(φ1, σ, vΨ) ∧ δ(φ2, σ, vΨ);
– δ(¬φ, σ, vΨ) = δ(Dual(φ), σ, vΨ);
– δ(Becomes(χ), σ, vΨ) = true/v ← 0 if χ 6= onEvent(µ) where µ is a start

event, χ ∈ D(σ), and χ /∈ HD(1);
– δ(Becomes(χ), σ, vΨ) = false/v ← 0 if χ 6= onEvent(µ) where µ is a start

event and χ /∈ D(σ) or χ ∈ HD(1);
– δ(InFuture(φ,K), σ, vInFuture(φ,K) = J) = InFuture(φ,K)/vInFuture(φ,K) ←

(J + t(σ)) if J < K;
– δ(InFuture(φ,K), σ, vInFuture(φ,K) = J) = φ/vInFuture(φ,K) ← 0 if J = K;
– δ(InFuture(φ,K), σ, vInFuture(φ,K) = J) = Previous(φ, vInFuture(φ,K) = J)/
vInFuture(φ,K) ← 0 if J > K, where Previous(φ, vΨ) is equal to the Q com-
ponent returned by δ(φ, (HD(1), Ht(1)), vΨ);

– δ(Until(φ1, φ2), σ, vΨ) = δ(φ2, σ, vΨ) ∨ (δ(φ1, σ, vΨ) ∧Until(φ1, φ2)/εΥ);
– δ(Within(φ,K), σ, vWithin(φ,K) = J) = false/vWithin(φ,K) ← 0 if J > K;
– δ(Within(φ,K), σ, vWithin(φ,K) = J) = δ(φ, vWithin(φ,K) = J)∨Within(φ,K)/
vWithin(φ,K) ← (J + t(σ)) if J ≤ K.

For the sake of conciseness, in the above definition we omitted the semantics
of: (a) the temporal operator Between(φ1, φ2,K), since it is equivalent to the
formula Until(¬φ1, φ1 ∧ InFuture(φ2,K)); (b) (sub)formulae of the form χ =
onEvent(µ), where µ is a start event, since its semantics is equivalent to the one
of the formula InFuture(χ, 1).

Figure 1 illustrates the ASA for the invariant f ≡ A =⇒ Between(B,C, 10),
which is equivalent, as a result of the logic equivalences mentioned above, to the
formula ¬A ∨ Until(¬B,B ∧ InFuture(C, 10)). This ASA can be systematically
derived from the definition of the operational semantics. The number of states in
the resulting ASA is equal to the number of temporal operators plus two states
for representing acceptance and rejection. In this case we have five states: one
for the formula itself (since it is an invariant, the formula is implicitly contained
within an Always), two for the Until and InFuture operators, one for acceptance,
and one for rejection. The transition relation of the state containing the complete
formula states that the automaton must stay in an acceptance state as long as
¬A is true, i.e., an A is not received. On the other hand, as soon as A is received,
the automaton must both stay in the same state to continue to check for A (due
to the implicit Always), and move to another state to check Between(B,C, 10)
— transformed to Until(¬B,B ∧ InFuture(C, 10)) — by creating a new copy of
the automaton (the conjunction of the two copies is represented by a �). This
copy remains in that state until a B is received. When this occurs, it moves to
yet another state that checks the value of C while keeping an eye on the time
counter vInFuture(C,10).

8 L. Baresi et al.

Always(f)

¬A ∈ D(σ)

Until(¬B,B ∧ InFuture(C, 10))

¬B ∈ D(σ)

InFuture(C, 10) vInFuture(C,10) < 10;

vInFuture(C,10) ← vInFuture(C,10) + t(σ)

trueε false

A ∈ D(σ)

B

vInFuture(C,10) > 10

∧C ∈ HD(1)

∨
vInFuture(C,10) = 10

∧C ∈ D(σ)

vInFuture(C,10) > 10

∧¬C ∈ HD(1)

∨
vInFuture(C,10) = 10

∧¬C ∈ D(σ)

Fig. 1. ASA equivalent to the ALBERT invariant f ≡ A =⇒ Between(B,C, 10)

4 Towards an Efficient Implementation

The advantage of using alternating automata is that through universal branch-
ing we do not need to explicitly represent parallelism. The representation is
exponentially more concise than standard Büchi automata. Universal branch-
ing, however, leads to the activation of multiple copies of the automaton. A
direct implementation would spawn a new thread for each duplicated copy —
an obvious efficiency bottleneck of the approach. For example, the evaluation
of the ALBERT formula in Fig. 1, shows that when the automaton is in the
initial state, it duplicates whenever an A is received. This is a problem because,
if the automaton continues to duplicate (i.e., A is true in each state) without
ever receiving B, the number of copies that are created can be unbounded.

This highlights the need to optimize the approach by fine-tuning the theo-
retical foundation with respect to implementation needs. An unbounded number
of automaton duplications is unacceptable, and even a bounded but continuous
duplication can be quite inefficient. This is why we propose to limit the number
of duplications, while preserving the correspondence between the automaton and
the ALBERT formula.

In the following, we informally describe how our optimization works, on a
per-operator case. Since our ASA run on infinite words, when we use the verb
“terminate”, we refer to the situation in which (a copy of) an automaton reaches
the true state, reports that the ALBERT property has not been violated, and
remains in that state. Moreover, we assume that our run-time verification frame-
work supports two modes of operation, which differ from each other in the way
the system behaves when a violation of a property is detected. In standard mode
the system logs the violation and continues the execution of the process; in crit-

Efficient Run-Time Verification of Web Service Compositions 9

(1) (2) (3)

ti tj

Fig. 2. Time line with overlapping regions of different activations of a Within operator

ical mode the framework stops the process execution, so that the cause of the
violation can be dealt with immediately.

The evaluation of formulae of the form Until(φ1, φ2) could lead to an un-
bounded number of duplications. Indeed, every time the corresponding automa-
ton is activated, it checks if φ2 holds. If it does, the automaton terminates in
the true state. If both φ1 and φ2 do not hold, it terminates in the false state.
Finally, if φ2 does not hold but φ1 does, it continuously checks φ1, waiting to
terminate when φ2 becomes true or φ1 becomes false. If the same formula has
to be checked again, a new copy of the automaton would be required. If a pre-
existing copy is still active, it will be checking φ1, which is the exact behavior
required of the new copy. Therefore, only one copy of the automaton is needed
to evaluate the formula. This avoids a potentially infinite number of duplicates,
which could occur when φ1 is always true and φ2 never becomes true. Since the
Between can be seen as an Until , it benefits from the above considerations too.

As for the evaluation of formulae of the form Within(φ,K), the duplication is
bounded by the number of states that occur, in the sequence of process states, in
an interval ofK time instances. This is true if the run-time verification framework
operates in standard mode. However, if the operation mode is critical, e.g., if the
discovery of a violation leads to a complete halt in the verification activities,
we can use just one duplicate. Consider, for example, the time-line sketched in
Fig. 2, where two copies of the automaton corresponding to the sub-formula
Within(φ,K) are activated, one at time instant ti and the other at instant tj ,
with ti < tj < ti + K. If φ evaluates to true in region (1), the first duplicate
terminates in the true state, meaning the second duplicate activated in tj is
actually the only copy running. If φ evaluates to true in region (2), it will make
both copies terminate in the true state, meaning the second duplicate is actually
not needed. Finally, if φ is true for the first time in region (3), it implicitly induces
a violation of the property, which is detected by the first copy of the automaton.
When the automaton notifies the violation, if the framework is operating in
critical mode, the verification activities are stopped, meaning, once again, that
the second copy of the automaton is not needed.

4.1 A Formal Model for an Efficient Implementation

We can now formalize the above intuitions by defining a variation of ASA for
which an efficient implementation can be derived, and showing its equivalence
to the original ASA, in terms of which the standard semantics was defined.

10 L. Baresi et al.

We first need to modify the ASA in a way that leads to a limited number
of duplications. The model is abbreviated as LASA, which stands for Limited
ASA.

Given a set B = {f1, . . . , fn} of boolean variables, ΨDup
B is the set of con-

straints over B, of the form fi = 0 or fi = 1 with fi ∈ B, including the no
constraint εΨDup , and ΥAs

B is the set of assignments over B of the form fi ← 0 or
fi ← 1 with fi ∈ B.

Definition 2. A LASA is a tuple (Σ,Q,CK , q0, δ′, B, F) where Σ, Q, CK , q0,
F are defined as in an ASA, B is a set of boolean variables and the transition
function δ′ is defined as δ′ : Q × ℘(Σ) × Q+ × ΨCK

× ΨDup
B × ΥAs

B → B+(Q ×
ΥCK

×ΥAs
B). The acceptance condition of a LASA is defined similarly to the one

of an ASA.

When a LASA is used to model an ALBERT formula φ, |B| ≤ |Sf (φ)|. The
variables in B allow us to keep track of duplications. Non-universal transitions
are not involved in duplications and therefore are not needed. If a flag fi is
set to 0, there are currently no active duplicates for the state reached by the
transition. We use assignments in ΥAs

B to change the values of flags when a
duplicate is created, to disable the transition. The value of a flag can be changed
back to 0 when the corresponding duplicate terminates. Notice that variables
in B are initially set to 0 and changed according to the ΥAs

B component in the
transition function.

Optimized Semantics 1 (standard mode). Let φ be an ALBERT formula,
and letB = {f1, . . . , fn} be the set containing a boolean variable for each element
in Sf (φ). The transition function δ′ of the LASA for φ is defined as follows, by
redefining6 the original δ of an ASA, where fΥ ∈ ΥAs

B is a generic assignment on
a variable fi ∈ B:

– δ′(Until(φ1, φ2), σ, vΨ , fUntil(φ1,φ2) = 0, fΥ) =
δ′(φ2, σ, vΨ , εΨDup , fUntil(φ1,φ2) ← 0)∨(δ′(φ1, σ, vΨ , εΨDup , fΥ)∧Until(φ1, φ2)/
εΥ /fUntil(φ1,φ2) ← 1).

Informally speaking, the new transition function inhibits duplicates of the LASA
every time a duplicate for that instance of the operator is already running. The
automaton defined according to this semantics allows for a bounded number of
duplicates, and can be proved (see below) to be equivalent to the one defined
according to the standard semantics, i.e., they recognize the same language.

The optimizations included in the definition of Optimized Semantics 1 are
valid under the assumption that the run-time verification framework is running
in standard mode. A further optimization can be performed on the encoding
of Within formulae, if the run-time verification framework operates in critical

6 Due to lack of space, in the following we will only describe the elements of the
definition that change in the proposed semantics. All the other cases remain as in the
definition of the standard semantics, with ΨDup

B and ΥAs
B empty, and the occurrences

of δ changed into δ′.

Efficient Run-Time Verification of Web Service Compositions 11

mode and thus the discovery of a violation of a specification leads to a complete
halt in the verification activities. The following definition details these changes.

Optimized Semantics 2 (critical mode). Let φ be an ALBERT formula,
and let B = {f1, . . . , fn} the set containing a boolean variable for each element
in Sf (φ). The transition function δ′′ of the LASA for φ is redefined7 as follows,
where fΨDup ∈ ΨDup

B is a generic constraint on a variable fi ∈ B:

– δ′′(Within(φ,K), σ, vWithin(φ,K) = J, fΨDup , fΥ) =
false/vWithin(φ,K) ← 0/fWithin(φ, K) ← 0 if J > K;

– δ′′(Within(φ,K), σ, vWithin(φ,K) = J, fWithin(φ,K) = 0, fΥ) =
δ′′(φ, σ, vWithin(φ,K) = J, εΨDup , fWithin(φ,K) ← 0)∨Within(φ,K)/vWithin(φ,K) ←
(J + t(σ))/fWithin(φ, K) ← 1 if J ≤ K.

Theorem 1. Given an ALBERT formula φ, the ASA for φ obtained according
to the definition of the standard semantics is always equivalent to the LASA
defined according to Operational Semantics 1, and is equivalent to the LASA
defined according to Optimized Semantics 2 only in critical mode.

Proof. The proof is made by induction on the length of the formula (i.e., the
number of temporal operators it contains) and therefore, by checking the equiv-
alence of the transition function of the two classes of automata.

We assume that a formula has been transformed into an equivalent one de-
fined by means of only basic operators, such as Until and Within. Moreover,
we consider only the case of Optimized Semantics 2, since it subsumes the case
of Optimized Semantics 18. Furthermore, let δ be the transition function of the
ASA defined in Sect. 3.2, and let δ′′ be the transition function of the LASA
defined in Optimized Semantics 2.

When a formula does not contain the operators Until and Within, the proof
is straightforward since the two transition functions are identical (the additional
components of δ′′ are not used in these cases). Hence, the induction is made on
the number of the operators Until and Within contained in a formula.

The base case comprises the formulae with only one Within operator and no
Until operators, and the formulae with only one Until operator and no Within
operators.

Let us consider first the case with formulae containing only one Within op-
erator and no Until operators. Let A be the automaton constructed according
to δ and A′′ the one constructed according to δ′′. Moreover, let w be an ω-word
considered as input of both A and A′′. When, using a finite prefix of w, we reach
a state preceding a Within state in A, we also reach it in A′′, since δ′′ and δ
are defined in the same way when a state does not contain either a Within or
an Until operator. We have now to show that the suffix of w is either accepted
7 Due to lack of space, in the following we will only describe the elements of the defi-

nition that change in the new semantics. All the other cases remain as in Optimized
Semantics 1.

8 Notice that the two semantics share the same transition function for the Until op-
erator. Only the one for the Within operator changes.

12 L. Baresi et al.

or rejected both by A and by A′′ and moreover that the two automata (not
considering the further duplications of A) will pass on the same states. Let us
suppose, by contradiction, that the suffix of w starting from a state preceding
the Within state leads to an accepting state in A, and to a non-accepting state
in A′′. If fWithin = 0, δ′′ is identical to δ, making such a behavior impossible.
If fWithin = 1, δ′′ disables the transition to (or in the case of ∧-nodes, a new
duplication of) a Within state, while δ enables it. However, the fact that the
flag is equal to 1 means that both automata have already one active Within.
To make A accept the suffix of the word, the first duplicate has to terminate in
an accepting state, meaning that the argument of the Within operator becomes
true for the first instance of the Within. However, this would also cause the
second instance of Within to terminate in an accepting state. This means that
the single Within in A′′ will also terminate in the same accepting state, since
it started when the first Within in A started. This contradicts our hypothesis.
Vice versa, let us suppose, by contradiction, that the suffix of a word starting
from a state preceding the Within state leads us to a non-accepting state in A
and to an accepting state in A′′. If fWithin = 0, δ′′ is identical to δ, making such
a behavior impossible. If fWithin = 1, δ′′ disables the transition to (or in the case
of ∧-nodes, a new duplication of) a Within state, while δ enables it. To make
A reject the suffix of the word, the first copy of Within has to terminate in a
non-accepting state. In fact, if the first copy of Within is still active when the
second copy is activated, an event that makes it true will also make the second
duplicate true, leading to our hypothesis. Therefore, the termination in a non-
accepting state of the first duplicate of automaton A leads to the termination in
a non-accepting state of the single duplicate of A′′, since they were created at
the same time. This again contradicts our hypothesis.

The case with formulae with only one Until operator and no Within operators
is analogous. Indeed, let A be once again the automaton constructed according
to δ and A′′ the one constructed according to δ′′. Moreover, let w be an ω-word
considered as input of both A and A′′. When, using a finite prefix of w, we
reach a state preceding the Until state in A, we also reach it in A′′, since δ′′ and
δ are defined in the same way when a state does not contain either a Within
or an Until operator. We have to show that the suffix of w is either accepted
or rejected both by A and by A′′ and moreover that the two automata (not
considering the further duplications of A) will pass on the same states. Let us
suppose, by contradiction, that the suffix of w starting from a state preceding
the Until state leads to an accepting state in A, and to a non-accepting state
in A′′. If fUntil = 0, δ′′ is identical to δ, making such a behavior impossible.
If fUntil = 1, δ′′ disables the transition to (or in the case of ∧-nodes, a new
duplication of) an Until state, while δ enables it. However, the fact that the flag
is equal to 1 means that both automata have already one active Until , i.e., the
first argument of the Until held until that moment and the second argument has
not become true yet. To make A accept the suffix of the word, the first duplicate
has to terminate in an accepting state, meaning that the second argument of
the Until will become eventually true and until that moment the first one will

Efficient Run-Time Verification of Web Service Compositions 13

be true for the first instance of the Until . However, this would also cause the
second instance of Until to terminate in an accepting state. This means that
the single Until in A′′ will also terminate in the same accepting state, since it
started when the first Until in A started. This contradicts our hypothesis. Vice
versa, let us suppose, by contradiction, that the suffix of a word starting from a
state preceding the Until state leads us to a non-accepting state in A and to an
accepting state in A′′. If fUntil = 0, δ′′ is identical to δ, making such a behavior
impossible. If fUntil = 1, δ′′ disables the transition to (or in the case of ∧-nodes, a
new duplication of) an Until state, while δ enables it. To make A reject the suffix
of the word, the first copy of Until has to terminate in a non-accepting state,
i.e., the first argument of the Until becomes false before the second argument
becomes true. In fact, if the first copy of Until is still active when the second
copy is activated, an event that makes it true will also make the second duplicate
true, leading to our hypothesis. Therefore, the termination in a non-accepting
state of the first duplicate of automaton A leads to the termination in a non-
accepting state of the single duplicate of A′′, since they were created at the same
time. This again contradicts our hypothesis.

Let now make the inductive hypothesis that, given a formula with at most
n Within and Until operators, the automata A, constructed according to δ, and
A′′, constructed according to δ′′, are equivalent, i.e., either they both accept a
generic ω-word w or they both reject it.

Under this hypothesis, we have to show that given a formula with n + 1
Within and Until operators, either they both accept a generic ω-word w or they
both reject it. Let us rewrite the formula in conjunctive normal form as φ1 ∧φ2,
where both φ1 and φ2 contain at least one operator of type Within or Until . We
can build for φ1 the automata A1 according to δ, and A′′1 , according to δ′′. The
same holds for φ2, for which we can build the automata A2, according to δ, and
A′′2 , according to δ′′. For the inductive hypothesis, since both φ1 and φ2 have a
number of Until and Within operators that is at most n, A1 is equivalent to A′′1
and A2 is equivalent to A′′2 .

To obtain the automaton A (respectively, A′′) for the original formula we add
a new unique initial state, which is an ∧-node, whose two conjuncts go to the
initial state of A1 (respectively, A′′1) and to the initial state of A2 (respectively,
A′′2). Since the ∧-nodes are equivalent both for δ and for δ′′, A is equivalent to
A′′.

Table 1 summarizes the gain, in terms of number of duplications, we can
achieve for the Until and the Within temporal operators (and the ones deriv-
able from them), by encoding ALBERT formulae in terms of LASA, as defined
according to the two proposed optimized semantics.

5 Experimental Evaluation

We implemented the proposed encoding of ALBERT formulae within Dynamo,
our run-time verification framework, by extending the existing component that

14 L. Baresi et al.

Table 1. Comparison of the number of duplications of an alternating automaton, for
the standard operational semantics and the proposed optimized semantics

Operator # of duplicationsa

Standard
Semantics

Optimized
Semantics 1

Optimized
Semantics 2

Until(φ1, φ2) potentially infinite 1 1
Within(φ,K) NK NK 1

a NK represents the number of states in the sequence of process states that may occur
in an interval of K time instances.

is in charge of evaluating ALBERT formulae; more details about the architecture
of the framework can be found in [2].

Our experiments were performed on a computer running Mac OS X 10.5.6
with a 2.16 GHz Intel Core 2 Duo processor and 2 GiB of memory. The current
version of Dynamo is based on ActiveBPEL Community Edition 4.1; it was
deployed on Apache Tomcat 5.5.27. Profiling data have been acquired by means
of the profiler integrated in the NetBeans IDE.

For sake of simplicity and repeatability we chose to test our system with the
While sample process, bundled with the ActiveBPEL distribution and shown in
Fig. 3. This process uses an index variable to iterate over a list of order items and
calculate the total cost of the order. The iteration is realized by means of while
activity, and thus the name of the example. We made two simple modifications
to the process: 1) Extending the number of iterations to 100, to increase the
amount of time taken by the execution of the while activity. This can be seen
as a simple way to simulate, using a simple toy example, the long asynchronous
interactions that typically occur between a process and its partner services in the
real-world. 2) Inserting copies of the index variable, to allow for writing several
formulae of the same type, as explained below.

We chose to consider only properties containing Until formulae, to represent
the worst-case execution scenario, where the number of duplications of the cor-
responding alternating automaton (and thus the number of threads required to

Receive
Order

Initialize
Variables

Increment
DetailIndex

Increment
Total

CalculateTotal

Create
Response ReturnTotal

Fig. 3. The While sample BPEL process

Efficient Run-Time Verification of Web Service Compositions 15

Table 2. Number of thread activations and time for the evaluation of the sample
formulae

size of the
property

non-optimized optimized

threads time (ms) # threads time (ms)

0 49 155 48 160
1 324 8208 132 458
2 648 19061 217 711
3 1064 31628 358 748
4 1640 48550 371 952
5 N/A N/A 579 1044
6 N/A N/A 670 1358
7 N/A N/A 794 1940
8 N/A N/A 876 1879
9 N/A N/A 1007 2254
10 N/A N/A 1070 2180

evaluate the properties) is potentially infinite. The properties have the form
n∧
i=1

Until($detailIndexi ≥ 1, onEvent(start ReturnTotal))

where n, ranging from 1 to 10, represents the number of Until formulae to be
evaluated at each run of the process, and the variables of the form $detailIndexi
are used by the process to implement the iteration. They are set to 1 when the
process starts and are incremented once per iteration, meaning that the first
sub-formula of the Until operator of the formula is always true. The second
sub-formula, on the other hand, becomes true when the process executes the
ReturnTotal reply activity.

The process has been executed on two different implementations: a non-
optimized one based on the standard semantics defined in Sect. 3.2, and an
optimized one, based on the definition of Optimized Semantics 2. On each im-
plementation, we executed 11 experiments, one for each different size of the
property (i.e., number of Until operators) plus one corresponding to the base
case, with no properties to verify. For each experiment, the application con-
tainer was restarted. Due to the complexity of the middleware infrastructure,
measurements are not exactly reproducible; this is a well-known phenomenon,
for example in Java-based environments, where measurement variances due to
application-inherent non-determinism are often amplified by differences in thread
scheduling, dynamic just-in-time compilation, or garbage collection [6]. In order
to compensate for the measurement variances, we repeated each experiment
10 times (under the same settings) and reported the geometric mean of the
10 trials.

Table 2 shows the number of thread activations and the time required for
the evaluation of the properties, each one with a different, increasing number of

16 L. Baresi et al.

Until operators. In the non-optimized implementation, the number of threads
continuously grows until the system runs out of memory and experiences failures
(reported as Java exceptions) in the attempt to create new threads, thus mak-
ing the number of threads and the evaluation time become irrelevant (and thus
marked as N/A in the table). On the other hand, the optimized version behaves
much better and terminates as expected. Notice that the optimized version still
has some spurious threads that make the total number of threads greater than
the value estimated by the theoretical model. These threads derive from imple-
mentation constraints that do not interfere with the proposed optimizations and
that we plan to address in future versions of our prototype.

These results prove that the optimized implementation, which is based on the
optimized semantics, is better than the non-optimized implementation, which is
based on the standard semantics, since it allowed us to check for properties that
we could not have checked using the other version.

6 Related Work

The approach most similar to ours is the one described in [7], which deals with
the on-line monitoring of Service Level Agreements. The main difference lies in
the kind of observable properties that are supported by the two frameworks,
which impacts both on the underlying theoretical model and on the correspond-
ing implementation. [7] supports only the specification of latency, reliability and
throughput requirements, which are a subset of the properties that can be ex-
pressed with ALBERT. A consequence of this limitation is that they can lay the
approach on the top of a simpler theoretical model (timed automata).

[8] proposes a complementary approach to the previous one, as it focuses
on the run-time monitoring of safety and liveness properties of Web service in-
teractions, and does not consider timeliness constraints. Properties are specified
by means of UML 2.0 Sequence Diagrams (SD) that are then translated into
non-deterministic finite automata, whose size is polynomial in the number of
events and the number of processes described by an SD. This is comparable to
the spatial complexity of our approach, as the size of an LASA is polynomial in
the number of temporal operators of the corresponding formula.

In [2] we provided a detailed comparison of various approaches for the run-
time verification of Web service compositions. None of them describes a formal
model to reason about the efficiency of the proposed approach.

To the best of our knowledge, alternating automata (and their variations)
have not been used before for the run-time verification of service interactions,
i.e., in the context of multi-parties, distributed applications. However, they have
been proposed for the run-time verification of stand-alone applications. For ex-
ample, [9] uses Metric Temporal Logic (MTL), which shares many constructs
with ALBERT, and represents a formula in terms of an evolving computation
tree equivalent to the original alternating automaton corresponding to the for-
mula. The proposed optimization, which identifies and eliminates redundant
sub-structures of a computation tree, is somehow equivalent to our proposal of

Efficient Run-Time Verification of Web Service Compositions 17

reducing the duplications of an automaton. [10] presents three algorithms, based
on alternating automata, to check both Past and Future Time Linear Tempo-
ral Logic (LTL). The only algorithm suitable to work on-line, however, has an
exponential space complexity in the size of the input formula.

All the approaches mentioned above work with infinite program traces. How-
ever, in some cases the execution traces may be finite and therefore special-
purpose algorithm can be used. [11] proposes an approach for automata-based
run-time verification, where the standard algorithm to convert (Future Time)
LTL formulae to Büchi automata is modified to generate finite-state automata
that check finite program traces. [12] uses non-deterministic Büchi automata to
verify formulae written in TLTL, the timed version of LTL: in this case, the size
of the automaton is exponential in the length of the corresponding formula as
well as its largest constant.

7 Conclusions

The work presented in this paper demonstrates that ALBERT formulae can be
represented by concise alternating automata with a bounded number of dupli-
cates. This is achieved by introducing an extension of alternating automata and
by providing the definition of an operational semantics of ALBERT formulae in
terms of this model.

Presented results not only have mere theoretical consequences, but also are
the basis for a concrete and efficient implementation of our run-time verification
framework. Our future work will focus on the refinement of the current proto-
type implementation and on a thorough quantitative analysis of the run-time
verification framework.

Acknowledgments. The authors wish to thank Carlo Ghezzi for his insightful
comments on earlier versions of the paper. Part of this work has been supported
by the Swiss NSF project “CLAVOS” and by the ERC grant 227977 “SMScom”.

References

1. Andrews, T., et al.: Business Process Execution Language for Web Services, Ver-
sion 1.1. BPEL4WS specification (2003)

2. Baresi, L., Bianculli, D., Ghezzi, C., Guinea, S., Spoletini, P.: Validation of web
service compositions. IET Softw. 1(6) (2007) 219–232

3. Bianculli, D., Ghezzi, C., Spoletini, P., Baresi, L., Guinea, S.: A guided tour
through SAVVY-WS: a methodology for specifying and validating web service com-
positions. In: Advances in Software Engineering. Volume 5316 of LNCS. Springer
(2008) 130–161

4. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1) (1981)
114–133

5. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Log-
ics for concurrency: structure versus automata. Volume 1043 of LNCS., Springer
(1996) 238–266

18 L. Baresi et al.

6. Georges, A., Buytaert, D., Eeckhout, L.: Statistically rigorous Java performance
evaluation. In: Proceedings of OOPSLA’07, ACM (2007) 57–76

7. Raimondi, F., Skene, J., , Emmerich, W.: Efficient online monitoring of web-service
SLAs. In: Proc. of SIGSOFT ’08/FSE-16, ACM (2008) 170–180

8. Simmonds, J., Chechik, M., Nejati, S.: Property patterns for runtime monitoring
of web service conversations. In: Proc. of RV’08. (2008)

9. Drusinsky, D.: On-line monitoring of metric temporal logic with time-series con-
straints using alternating finite automata. JUCS 12(5) (2006) 482–498

10. Finkbeiner, B., Sipma, H.B.: Checking finite traces using alternating automata.
Electr. Notes Theor. Comput. Sci. 55(2) (2001) 44–60

11. Giannakopoulou, D., Havelund, K.: Runtime analysis of linear temporal logic
specifications. In: Proc. of ASE 2001, IEEE Computer Society (2001) 412–416

12. Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In:
Proc. of FSTTCS’06. Volume 4337 of LNCS., Springer (2006) 260–272

