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Abstract

We obtain the necessary and sufficient conditions for linearizability of an eight-parameter family of two-dimensional
system of differential equations in the form of linear canonical saddle perturbed by polynomials with four quadratic
and four cubic terms.
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1. Introduction

We consider a polynomial system of differential equations of the form
dx

5= D @y =Plxy),
(p9)esS (1)
dy
— 5 =Y D b = —0xy),
(pg)eS
where x,y,a,,b,, are complex variables, S={(p,.¢,)Pn+¢q,=1,m=1,...,1} is a subset of

{—=1UN} x N, and N is the set of non-negative integers. The notation in (1) simply emphasizes that we take
into account only nonzero coefficients of the polynomials. By (a,b) we will denote the ordered vector of the
coefficients of system (1), (a,b) = (ap,qg,,- - -+ apq: b by,p,)- In the case when

7R VY|
X = j/, a; = Bji? idf =drz (2)
(the bar stands for the complex conjugate numbers), the system (1) is equivalent to the equation
.dx 7
la:x— Z A X, (3)
(pg)€S
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which has a center or a focus at the origin in the real plane {(u,v)|x = u + iv}, where the system can be also
written in the form

u=—-v+U(uv), v=u+V(uv). (4)

For systems of the form (4) (where the power series expansions of U and V at the origin start with quadratic
terms) the notions of center and isochronicity have a simple geometric meaning. Namely, the origin of system
(4) is a center if all trajectories in its neighborhood are closed and it is an isochronous center if the period of
oscillations is the same for all these trajectories. According to the Poincaré-Lyapunov Theorem system (4) has
a center at the origin if and only if it admits a first integral of the form

P(u,v) =u* +v* + Z Opmtd V™.

k+m=3
Since after the complexification x = u + iv, y = ¥ the above integral has the form
q/(x,y) :xy+ Z nkmxkymv (5)
k+m=3

following to Dulac we say that system (1) has a center at the origin if it admits a first integral of the form (5).

We recall (see, for instance, [1,6] for the details) that the real analytical system (4) has an isochronous center
if and only if it can be transformed to the linear system

u=v, v=-u,

that is, if the normal form of (4) is linear. Thus for system (4) the notion of isochronicity is equivalent to the
notion of linearizability. However the problem of linearizability arises also for more general system (1), which
in the special case when the conditions (2) hold is equivalent to (3) and, therefore, to (4). In this paper we will
study the problem of linearizability for system (1). Namely, we will consider the problem how to decide if a
polynomial system (1) can be transformed to the linear system

21 =2, 22 = —2Z (6)
by means of a formal change of the phase variables
zl—x—|—Zu abxy’7 = y—l—Zu a,b)x"y’. (7)
m+j=2 m+j=2

If for some values of the parameters a,,, b,, such transformation exists we say that the corresponding system
(1) is linearizable (or has a linearizable center at the origin). It follows from a result of Poincaré and Lyapunov
that if there is a formal transformation (7) linearizing (1) then it converges in a neighborhood of the origin.

Although the study of isochronicity goes back at least to Huygens who investigated the oscillations of
cycloidal pendulum, at present the problem is of renewed interest. In particular, in recent years many studies
has been devoted to the investigation of the linearizability (isochronicity) problem for different subfamilies of
the cubic system (that is, the system (1) where the right hand sides are the polynomials of degree three, see, ¢.g.
[2-4,6,8,7,10] and references therein). In this paper we study the problem of linearizability for the following
eight-parameter cubic system:

. > >
x =x(1 —ayox — ap1y — axx” — an)”),

' (8)
3= =y(1 = biox — bory — bpay” — byox?).

2. Preliminaries

Taking derivatives with respect to ¢ in both parts of each of the equalities in (7), we obtain

o0
ao=d Y )" YE ey ),

m+j=2

. e mel e o emools
5=+ Z ufn‘)/.fl(mx Wik 4y ).

m+j=2
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Equating coefficients of the terms x?1+!'y%2 x71y%+1 correspondingly, yields the recurrence formulae

q1+4>-1

(QI - ‘b)”,(]llzh = ZO {(Sl + I)ME}.Zzaqrsl,quz - SQMAgll.zzb‘h*Sl,‘h*Sz]? (9)
§1+s52=
q1+4>-1

(ql - q2)u£121112 = Z() {Sluglz‘zzaql—qu—fz - (SZ + l)uglzzzblh —Slqu—Szy (10)
S1+s52=

@ @) _ 1, and we set

where 51,8 = —1,q9,,9, = —1,9, +q, = 0,14(1})_1 = u(_lfl = 0,14(1?)_1 =u, = O,uélo) = uy,
Agn = by =0, if (g, m) & S. ' '

Thus we see, that the coefficients u') ,u?) of the transformation (7) can be computed step by step using the
formulae (9) and (10). In the case ¢, =g, = ¢ the coefficients u(}),u?) can be chosen arbitrary (we set
ull) = ul?) = 0). The system has a linearizable center only if the quantities in the right-hand side of (9) and
(10) are equal to zero for all ¢ € N. As a matter of definition, in the case ¢, = ¢, = ¢ we denote the polyno-
mials in the right-hand side of (9) by i,, and in the right-hand side of (10) by —j,, and call them gth linear-
izability quantities. We see that the system (1) with the given coefficients (a*,b") is linearizable if and only if
i (a*,b*) = j,(a*,b") = 0 for all k € N.

By definition a Darboux linearization [4,6] of system (1) is a change of variables

Z] :Hl(xvy)7 ZZZHZ(x7y) (11)
which transforms the system to the linear system (6), and such that at least one of the functions Hy, H, is of the
form H = f" ... f*, with s being complex numbers, where f;(x,y)s are either invariant algebraic curves of
system (1) defined by fi(x,y) = 0, that is, polynomials satisfying the equation

ofi ,  9fi

6xP+6yQ_Ki b (12)
or Darboux functions, that is, some functions satisfying (12) with K;s being some polynomials (thus, an alge-
braic invariant curve is a particular case of Darboux function). The polynomial K;(x, y) is called the cofactor
of the invariant curve f;(x, y) or the Darboux function f;(x,y). A simple computation shows that if there are
Darboux functions f1, /3, . .., fx with the cofactors K, K>, ..., K; satisfying

k
ZO@K,‘ :07 (13)
i=1

then H = f" ... f{*, is a first integral of (1), and if

k
i1
then the system admits the integrating factor u = f;" ... f*.
Similar idea leads to the so-called Darboux linearization. Namely, if there are o, ..., o such that
k
P(x,y)/x+ > oK =1, (15)
=1
then by means of the substitution z; = xf7' ... f7* the first equation of (1) is transformed to the linear equation
21 =2z, and if
k
Q(xJ)/y‘i‘Z%‘Ki:—L (16)
=1
then the second equation of the system is linearized by the change z, = yf{' ... fi*.

If system (1) is such that only one of the conditions (15), (16) is satisfied, let say (16), but it has a Lyapunov
first integral ¥(x,y) of the form (5) then (1) is linearizable by the change

1= 'P(x7y)/H2(x’y)> ZZ:H2<x’y)’ (17)
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and, correspondingly, if (15) holds, then the linearizing transformation is given by
n=Hilxy), z=Y¥xy)/Hixy) (18)

It is shown in [9,8] that the Lyapunov first integral (5) can play the role of a Darboux function, that is, can be
used in order to construct a linearization of the form

2= XYWL
This observation leads to the following theorem.

Theorem 1. Assume that system (1) has a first integral of the form

P(x,y) :xy<1 + i vkm,-xkyf> (19)

k+j=1

and the Darboux functions fi, fa, ..., fs of the form 1 4+ h.o.t. with the cofactors K., ...,K,. In such case, if

P s
(l—c);—c%—FZochj:l (20)

=1
then the first equation of (1) is linearized by the substitution

z = xl—cyfc q/ﬂflil 212 . .f;“s’ (21>
and if

P S
—C;JF(I—C)%JFZ%K/:—l (22)
=

then the second equation of the system is linearizable by the substitution
=X Y TP (23)

Proof. Since the first integral has the form (19) the substitutions (21) and (23) are of the form z; = x + h.o.t.
and z; = y + h.o.t., respectively. Direct calculations show that (21) and (23) are indeed the linearizations. [J

3. The linearizability conditions

In this section we will obtain the necessary and sufficient conditions for linearizability of system (8).

Theorem 2. System (8) has an isochronous center at the origin if and only if one of the following conditions
holds:

(1) agy + boy = az + byy = agi + b1 = aip + big = boabiy + bab;, =0,
(2) big = by = apy = ap; = 0,
(3) big = by = ax = ap1 =0,
(4) bio = by = axn = a;p =0,
(5) bip =by =aj = 26131 —apbor +app =0,
(6) bo1 = by = ag + 2byy = ax = agy = aip + 2byp =0,
(7) bo1 = bay = ags — 2bgy = ag1 = aig — 6b1g = 8b7, + az = 0,
(8) big = ag = 2az — by = 6ag — bor = aig = 2by, + by, = 0,
(9) bio = boxy = apy = 2ax + by = 2ao1 + bo1 = aip =0,

(10) b1g = agz + boy = az + by = apy =0,

(11) byo = boxy = agx = ap1 =0,

(12) bo1 = agy = ap = aibiy — 2b7, — by = 0,

(13) boy = boy = apy = ap1 = 0.



D. Doli¢anin et al. | Applied Mathematics and Computation 190 (2007) 937-945 941

Proof. To solve the linearizability problem for (8) we have computed eight first pairs of the linearizability
quantities iy, j,. The polynomials are too long, so we do not present them here, however one can easily com-
pute them using Mathematica (for instance, with a modification of the code from Appendix of [8]) or any
other computer algebra system and formulae (9) and (10). Then we find the primary decomposition of the
ideal (i11, /... ,Iss,jgs) Using the routine minAssChar of the computer algebra program Singular [5] and
obtain the necessary conditions of linearizability (the 13 conditions presented in the statement of the theorem).
To prove that each of the obtained conditions is also the sufficient condition for the linearizability we look for
Darboux linearizations.
Case 1. In this case system (8) has the form

. 1
¥ =5 x(b}y + bigx + biobax® + bo1bigy — by by?) = P(x, ),
10

. 1
y=- bTy(bfo — bjgx — biobax” — boibyyy + by by®) = O(x, ).
10

If b1y # 0 then among the trajectories of the system (24) there two invariant lines:

) 1 1 b()]
Si=1 ) (bIO —\/bry — 4b20>x+§ <b10 bl — 4bx — bO‘)y’
1 1 bOl
=1 +2<b10+ b$0—4b20>x—2<b10 bf0—4b20+b01)y,

with the corresponding cofactors

1 1 b b2 b y2

Ky = (bio—\/bly—4b boox® + = ( Boy — 221 /B2 — Ay |y — 201220
1 2( 10 10 2o)x+ 20X +2< 01 b 10 20 |V b%o ,
1 1 bOl b bzoy

= 2 <b1°+ \/blo _4520>X+bzox +3 <b1 \/ bty — 4bzo+bo1)y— Olb

10

Using these invariant lines we can construct a Darboux linearization of system (24). Indeed, in this case the
Eq. (15) is P(x,y)/x + 01K + a»K, = 1 and the Eq. (16) is O(x,y)/y + o1 K; + 0,K> = —1. Both equations are
satisfied by

_ bio _ 1 bio
al__§+7’ ==y e
24/biy — 4bxy 24/biy — 4by
Therefore system (24) is linearized by the substitutions:
2 =xf{'f% =315 (25)

If b1y = 0 then either by; = 0 or by = 0. The first case is considered in [4] and the second one is a particular
case of system (26).
Case 3. The conditions of this case yield the system

x=x(1—apx —any’) = P(x,y), 3=—-y(1—>buy—bpy’)=0(x,y) (26)

with the invariant lines

fi=x, fr=y, fi=1- (bm \/bﬁl +4boz)y, fa=1- (bm + \/bm +4boz>

and the corresponding cofactors
K, = Px.) _9y)

1
, Kh==——, K; Z—(bm —\/bﬁl +4b02)y+b02y27
X y 2
1 /
K4 = E <b01 + bgl + 4b02)y + bozyz.
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Using (16) we see that the second equation is linearizable by the substitution

o1

1 bo1 ‘
2
=2y (2 — bory — \/bél + 4b02> 20/58 402 (2 — by + \/bél N 4b02y> 2\/}7(J1+4h02 (27)

In order to find a linearizing transformation for the first equation we solve the Eq. (14) and find the solution
o = —2, Oy = —2.

(ao2 + bo2) <b01 + v/ bﬁl + 4b02) (ao2 + bo2) (bm -/ b(2)1 + 4b02)
s Oy = .
2b02\ / bél + 4b02 2b02 \/ bél + 4b02

o3

Therefore i = (xy) > 32 £+ is the Darboux integrating factor of (26). Then a first integral ¥(x, y) of (26) should
satisfy the equations

=pu0, ¥, =—up. (28)

o3 = —

Integration of the first equation of (28) gives ¥(x,y) = —xyuK, + (). Using the second equation we obtain
W'y = ajoux®. The integration yields the first integral

Y(x,y) = —xyuk, + / ajopx’ dy,

which can be expressed in terms of Appell’s functions. Since

1 b
—xypK, = y( +h.o.t) and /,ux dy = —;+Wy+h.o.t.,
the integral ¥, = 1/¥ is a first integral of the form (19). Thus, the first equation is linearizable by the

substitution

¥
Z] = —.
22
The above expressions are defined if by, + 4bg, # 0 and by, # 0. Consider now the case when by, = —1b7,. We
find immediately the algebraic invariant line f; = 1 — 2 2ty. It turns out in this case there is also a Darboux

function which is not algebraic function. Namely, we look for a Darboux function in the form
fr = e¥#h)/i Then K, should satisfy the equation D(f3)/f> — K, = 0. This yields
2001y

fr=er Ky = —byy.

Using (16) we see that the second equation of the system is linearizable by the substitution
o1y

2yertor
c 2=y
Again, from (14) we obtain that u = j L / 2 (where oy = 4/;012 2}2012 — %) is an integrating factor and
w2 g 02 |
P(x,y) = —|—a / /2! —ay (—i—h.o.t.)
Xy y
is the first integral of the form (5) yielding the linearization of the first equation
1
z] = oY

The integral is defined when by, # 0, however if by; = 0 then we can construct a first integral using the Dar-
boux function e®”/2,
Consider now the case when by, = 0. Obviously, the second equation is linearizable by the substitution
Yy
1 — b()ly

Z; =
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To find a linearizing transformation for the first equation of (26) we divide the first equation of the system by
the second one and obtain the Bernoulli equation,

dx  x(1- ap)?) aox?
dv  y(1=boy)  y(I—boy)
Solving this equation we have a first integral in the form

agyy lfal2 agyy —d02

@ e (=14 byy) 5 o (—1 + boy) 0
Y/:(_l)bél _e 01( ;; Oly) 01+a10/e 01( )—; Oly) ol dy

Therefore the linearization of the first equation of the system is given by z; = 1/(z,P).
Case 4. In this case the system has the form

x=x(1=apy —any’), y=—y(1—boy—bpy’). (29)

There are two invariant lines

1 1
Sfi=1- 3 <bm — /b +4boz>% fr=1- 3 <bm +/ by, +4boz>y,

with the corresponding cofactors

1 1
K, = 3 <b01 = by + 4boz)y + by’ Ky= 3 (bm +/ by, + 4b02>)’ + bpy”.

The first equation of (26) is linearizable by the substitution

— 0] £
2 =xf1'f

where
aobor — 2ao1boy + apry/ bﬁl + 4by, —anbor + 2ag1boy + ag/ b(zn + 4by
) 0y = )
2boay/ by, + 4bpy

2bg>\/ by, + 4bgo
and the linearizing transformation for the second equation is

) = yffl](Zﬁza
where

o =

1 bo] 1 b()l

fr=gt e =y
2 20 /B2, + by, 2 20 /B2, + by,

Case 5. When the conditions of this case are fulfilled the system takes the form
X =x(1 — apy — axx* + 2a3,y* — apibpy*) = P(x,),
¥ =—y(1 = by — booy*) = O(x, ).

The invariant lines of (30) are

f1:X, f2:y7

1 1
fi=1- 3 <b01 —\/bg, +4b02>y, fa=1- 3 (bm +1/b¢, +4b02>y,

with the corresponding cofactors

P
K - (x,y)’ Kk, = 209
x y

1 1
K; = 3 (bm =/ bél + 4b02)y +bpy?, Ky= 3 (501 +4/ bél + 4b02>y + boy*.
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Using (16) we find that the second equation of (30) is linearizable by the substitution (27). However, the
Eq. (15) has no solution, therefore there is no Darboux linearization of the first equation involving the lines
11, /2, /3, f4. However the system has the Darboux integrating factor

04,00 £33
p=x"y2 10
where

o = —3, 0y = —3,

2a§1b01 — amb(z,l + 2a01b02 — b()]boz + 261(2)1 A/ bél + 4b02 — a01b01 \/ bél + 4b()2

o3 =
boy\/ by, + 4bo;
Za(z)lb()] — amb(z)1 + 2a¢1bgy — bo1bgr — 2a(2)1 A/ b(z)l + 4by, + agbo bél + 4bp,
Oy = — .

bozy/ bél + 4Dy,

Using it we find the first integral
¥ = —xyuK, + 2as / px’ dy.

This integral is not of the form (5), however ¥, = 1/4/¥ is also the first integral of (30) and has the form (5).
Therefore the first equation is linearizable by the substitution z; = ¥, /z,, where z, is defined by (27).
Case 6. In this case the system has the form

5C = X(l + 2b10x + 2b02y2), y = —y(l — b]()x — b()zyz).
It is easy to find that a Darboux linearization of the system is given by
X Y
P I — Zy = .
1+ 2b1ox — booy? ? V' 1+ 2b1ox — br)?

Case 7. The corresponding system

% = x(1 — 6b1ox + 8bT x> — 2b2y?), ¥ = —y(1 — biox — bpry?) (31)

zZ] =

has invariant lines
fi =1 —dbiox + 8buabioxy*,  fr =1 — 12bygx + 48b7,x* — 64b]x* + 24bgyb1oxy*

with the cofactors K; = —4box + 8b10x , Ky = —12box + 24b%0x , respectively. In order to obtain a linearizing
transformation using the Eq. (13) we find the first integral @(x,y) = f;°f>. Then

12b10x + 48bTx2 — 64b7x3 4 24bgybyoxy?

P(x,y)
SM\/ + 4b10x + 8b02b10xy2)3

is a first integral of the form (19). Egs. (20) and (21) have the solutions ¢ =2,0; = 1,0, =0 and ¢ = —1,

-1

oy = —1,00 = 0, respectively. Therefore, according to Theorem 1 system (31) a is linearizable by the
substitutions
zZ] = fl Zy = xy
B it

Case 8. In this case the system has the form
x=x(1 —apy — azoxz), y==y(1 = 6apy — 2ayx> + Saglyz). (32)
Thus after the involution

Xy, a; e by (33)
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we obtain from (32) the system (31). It means that this case is dual to case 7 under the involution (33) in the
sense that all invariant curves, integrals and linearizations of (31) are mapped to invariant curves, integrals
and linearizations, respectively, of (32) by the involution (33).

Cases (2), (10) and (11) are considered in [8], where the corresponding linearized substitutions are obtained.
Cases (9), (12), (13) are dual (with respect to the involution (33)) to Cases (6), (5) and (4), respectively.

Note that some of obtained linearization are not defined for certain values of parameters. For example, the
linearization (295) is defined if 4b¢, # bfo. It is possible to find linearizations also for these “degenerated” cases
as we did in case 3. However we can also conclude that linearizations exist without computing them explicitly
observing that each system (1)—(13) in the statement of the theorem defines an irreducible variety. [
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