
Fuzzy Learning Variable Admittance Control for Human-Robot
Cooperation

Fotios Dimeas and Nikos Aspragathos

Abstract— This paper presents a method for variable admit-
tance control in human-robot cooperation tasks, that combines
a human-like decision making process and an adaptation
algorithm. A Fuzzy Inference System is designed that relies
on the measured velocity and the force applied by the operator
to modify on-line the damping of the robot admittance, based
on expert knowledge for intuitive cooperation. A Fuzzy Model
Reference Learning Controller is used to adapt the Fuzzy
Inference System according to the minimum jerk trajectory
model. To evaluate the performance of the proposed controller
a point-to-point cooperation task is conducted with multiple
subjects using a KUKA LWR robot.

I. INTRODUCTION

Advances in robot control have enabled the cooperation
between robots and humans through active compliant motion
control of manipulators. Assisting robots that interact physi-
cally with a human can enhance the physical capabilities of
the latter and can facilitate everyday tasks e.g. manipulation
of heavy or long bulky objects. Particularly in industry, where
assembly of heavy parts requires the high flexibility of the
human, a cooperative manipulation would facilitate the task
since it will reduce the burden from the human.

Impedance control [1] is widely used in physical human-
robot interaction (pHRI), since it has the ability to establish a
dynamic relationship between the robot and the environment.
Instead of controlling the position or the force independently,
the dynamic behaviour of the robot is regulated by modifying
the parameters of virtual stiffness, damping and inertia.
In human-robot collaboration, where the robot does not
usually interact with stiff environments, admittance control
is incorporated, which creates a mapping from forces into
motion enabling the robot to comply to any forces applied
by the human at a predefined manner.

Since it was shown that the most dominant parameter
of admittance control in human-robot collaboration is the
virtual damping [2], a lot of research has been conducted on
tuning this factor for more intuitive interaction. A variable
admittance control scheme was introduced in [3] to adapt the
damping factor with respect to the speed of the cooperation.
Duchaine et al. [4] adjusted the damping by estimating
the human intentions from the differentiation of the force
applied by the operator to the robot. A combination of the
operator’s velocity and acceleration was proposed in [5],
however numeric differentiations yield noisy signals that
require filtering and cause delays. Although the results with
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variable admittance on the mentioned papers demonstrate
superior performance compared with constant admittance pa-
rameters in terms of intuitiveness, precision and transparency
of motion, the functions that tune the parameters are obtained
according to the researcher’s intuition and in a heuristic
manner.

A more systematic approach for adapting the robot admit-
tance was proposed by Rahman et al. [6] who investigated
the human arm characteristics. The authors identified the
human arm impedance in a human-human cooperation task
and derived a function to tune the robot damping accordingly
for a similar human-robot task. A method to on-line estimate
the human arm stiffness and adjust the damping coefficient
accordingly was proposed by Tsumugiwa et al. [7]. Most of
these methods along with others [8], [9] use the minimum
jerk trajectory model [10], which suggests that the human
arm moves with minimal acceleration during a point-to-
point linear motion. However, this model requires a priori
knowledge of the movement, that restricts the usage of these
methods in unstructured tasks.

Summarizing, there are different approaches to implement
variable admittance control in order to achieve effective
interaction, which share the basic idea; the modification of
the damping coefficient based either on monitored variables
or optimisation criteria. On the one hand, by monitoring
variables such as the velocity or the applied force by the
human no optimal solution is guaranteed since the proposed
algorithms are derived in a heuristic way. On the other hand,
these optimisation techniques are task dependent and cannot
be easily extended to other motion profiles.

In this paper, a method to combine human knowledge
with a learning method is introduced for an optimal variable
admittance control scheme. To emulate the human decision
making process an on-line Fuzzy Inference System (FIS) is
proposed that determines the desired damping of the admit-
tance controller using only the joint position sensors of the
robot and an external force sensor. In order to tune the FIS
for optimal cooperation a Fuzzy Model Reference Learning
Controller (FMRLC) is used for adapting the FIS towards the
minimum jerk trajectory model. Although explicit knowledge
is required for the FMRLC training procedure, the trained
FIS presents better performance than the heuristically tuned
FIS even in unknown motion profiles. The proposed system
is evaluated on an experimental set-up of a linear point-to-
point motion using a KUKA LWR robot and the performance
is measured with a number of subjects in terms of the
required effort and the overall completion time.
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II. ADMITTANCE CONTROLLER

In pHRI admittance control is mainly used because it can
establish a dynamic relationship between the forces/torques
applied to the robot and the displacement/velocity. In a
human-robot cooperation task that is investigated here, the
human acts as the leader and defines the motion, while the
robot is the follower and must comply to the applied forces
by the human. The admittance controller of the robot is
described by a typical second-order relationship:

mdV̇e + cdVe = Fh (1)

where Ve = Vref − V is the deviation of the actual velocity
from the reference velocity Vref = 0, md is the virtual inertia
and cd the virtual damping. The virtual stiffness kd is set
equal to zero since no restoring force is desired. The operator
by applying a force Fh, which is the input to the admittance,
perceives a mass md in a viscous environment cd. The virtual
inertia has a negligible effect on the cooperation although
it is suggested that it should be adjusted proportionally to
the damping for stability issues [5]. Furthermore, the lower
limits of the admittance parameters have to be defined to
avoid unstable behaviour [11]. Before the parameter update
law is developed, the cooperative motion is studied.

A. Cooperative Motion

In order to select the optimum parameters of the vari-
able admittance controller the point-to-point movement of
the human alone and then in cooperation with a robot is
investigated. In both cases the motion follows the minimum
jerk trajectory in a straight line [10] and can be divided
into two phases; a rapid movement with low accuracy for
approaching the target and a high accuracy movement with
lower velocity for accurate positioning [12]. In a leader-
follower cooperation between two humans a blindfolded
follower that does not have knowledge about the target
constantly adapts the impedance characteristics of his/her
arm by following the same trajectory.

The minimum jerk trajectory minimizes the change in
acceleration of the movement of the human hand and it is
expressed by the following objective function:

M =

∫ tf

0

‖...x‖2 dt (2)

where tf is the duration of motion. Assuming that the
velocity at the beginning and end of the movement is zero
(ẋ0 = ẋtf = 0) and that the movement takes place along a
straight axis, the position as a function of time is:

x(t) = x0 + (xf − x0)(6τ5 − 15τ4 + 10τ3) (3)

where τ = t/tf , 0 ≤ τ ≤ 1 and x0, xf are the initial
and final positions respectively. From Eq. (3) the velocity of
the minimum jerk model can be calculated through numeric
differentiation.

By monitoring the measured velocity during the coop-
eration and by adapting the admittance controller to the
minimum jerk trajectory a human-like performance can be

achieved. With large damping large force is required by the
human but it is easier to perform high accuracy movements
since the robot motion is smoother. On the other hand,
low damping reduces the human effort in the expense of
less accurate movements. In a point-to-point motion, the
rapid movement phase would benefit from a low damping
while a higher damping would assist the human in more
accurate positioning. This observation raises the need for
on-line adjustment of the damping parameter to enable both
effortless motion and high precision.

B. Fuzzy Variable Admittance

For the development of low complexity and low cost
robot assistants, the robots should use information from a
minimum number of sensors with low computational cost,
so computer vision techniques with visual cues are excluded.
For the minimum jerk model explicit knowledge of the
motion is required which is not efficient for arbitrary tasks.
Therefore, we wish to combine expert knowledge with a
learning algorithm for efficient human-robot cooperation on
arbitrary point-to-point movements. Fuzzy logic is a very
effective tool to represent expert knowledge with linguis-
tic rules and create a human-like inference mechanism.
Examples of fuzzy logic and impedance control can be
seen in rehabilitation robotics [13] where a fuzzy inference
system was implemented to adjust the controller parameters
according to the patient’s arm impedance.

In this paper an on-line fuzzy variable admittance control
scheme is proposed that adapts on-line the damping coef-
ficient. A point-to-point movement is selected on a single
direction of the Cartesian workspace of the robot, as it is
shown in Fig. 1. To minimise the cost and complexity of
the proposed method only the joint position encoders of a
robot are used along with a force/torque sensor at the end-
effector. The proposed FIS is a standard fuzzy system [14]
consisting of two inputs, the measured Cartesian velocity
V along a single direction and the corresponding force Fh

along the same direction. The output of the FIS is the virtual
damping cd of the robot admittance controller. For each input
and output five triangular type membership functions are
selected that are uniformly spread around zero. The selected
rules form a complete and consistent rule base meaning that
for every possible inputs there are valid conclusions. The

x

y

x
0

x
f

++

Fig. 1: Experimental set-up.



initial rule base for the FIS, that is shown in Tab. I, can be
interpreted by the following sentences:

• IF Force is high (-2 or +2) AND Velocity is high (-2
or +2) THEN Damping is very low (1).

• IF Force is zero (0) AND Velocity is zero (0) THEN
Damping is very high (5).

• IF Force is positive small (+1) AND Velocity is negative
small (-1) THEN Damping is very high (5).

This initial rule base of the FIS is created in a heuristic
manner. The selected rules reduce the damping when the
velocity V and force Fh are high, to facilitate the rapid
movements and increase the damping at lower velocities for
smoother positioning. Alternatively, an arbitrary rule-base
is created by assuming that there is no knowledge about
the control of the plant. A comparison within these two
alternatives is conducted in section IV.

C. Stability Considerations

In pHRI the human uses haptic and visual feedback from
the plant to regulate his/her action. Therefore, the human
is part of the controller and is very difficult to model and
prove the overall stability of the system. Experimental studies
on impedance control [15] showed that the robot could
present unstable behaviour with very low virtual damping,
high virtual inertia or stiff environment. It is suggested
that the human arm has a maximum impedance [16], that
occurs when the human stiffens his arm. To guarantee the
stability of the proposed system, the lowest value of ccritd is
experimentally found equal to 10Ns/m, given a value for
md = 1kg and high stiffness of the operator’s arm.

III. FUZZY MODEL REFERENCE LEARNING
CONTROLLER

In this section a learning system is developed in order to
improve the performance of the heuristically created FIS in
section II. A Fuzzy Model Reference Learning Controller
(FMRLC) is proposed that combines feedback information
from the plant and a reference model in order to adapt
the FIS system [14]. The FMRLC loop consists of the
reference model, the fuzzy inverse model and the adaptation
mechanism which is the knowledge-base modifier of the
FIS, as it is illustrated in the block diagram of Fig. 2. The
minimum jerk model of Eq. (3) is used as reference for
adapting the FIS knowledge-base so as to perform similarly
to a blindfolded human assistant that relies only on haptic
information. During the cooperation, the error ye between

TABLE I: Manually tuned initial FIS rule-base.

Cd Fh

−2 −1 0 1 2

V

−2 1 2 3 5 5
−1 2 3 4 5 5
0 3 4 5 4 3
1 5 5 4 3 2
2 5 5 3 2 1

the actual measured velocity V and the minimum jerk model
velocity Vjerk is calculated as:

ye = Vjerk − V (4)

and is passed to the Fuzzy Inverse Model (FIM). The FIM
characterises the inverse function of the cooperation, has
only one input and determines a value p that is used by
the knowledge-base modifier to reduce the error ye. Each
input/output of the FIM consists of five triangular shaped
membership functions evenly distributed around zero. Since
the value ye is the error between the velocities, the rules
of the inverse model of the cooperation have the following
form:

• IF ye is zero THEN p is zero.
• IF ye is positive THEN p is negative.
• IF ye is negative THEN p is positive.

The knowledge-base modifier adapts the FIS by adjusting
the centres bm of the output membership functions that
are associated with the rules responsible for the previous
controller action Vref (kT − T ). T is the sampling period
in the discrete time domain. The centres of the FIS output
membership functions are then updated according to the
following equation:

bm(kT ) = bm(kT−T )+pµm(Fh(kT−T ), V (kT−T )) (5)

This update formula shifts the centres bm(kT − T ) by the
amount p and in proportion to the certainty of the premise
µm(Fh(kT −T ), V (kT −T )), 0 ≤ µm ≤ 1. In that way, the
output membership functions with higher premise certainty
are tuned at a larger amount because they have greater impact
in the output cd of the FIS. For example, if the actual velocity
V during the cooperation at time kT is lower than the optimal
minimum jerk velocity Vjerk, then ye > 0 and p < 0. The
knowledge-base modifier reduces the centres bm according
to Eq. (5) and the FIS produces a lower damping for the
admittance controller, enabling the operator to move at a
higher velocity with less effort. Such an adaptation algorithm
creates an input-output mapping to the FIS between the
velocity V , force Fh and damping cd that facilitates the
cooperation according to the minimum jerk trajectory model.
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Fig. 2: Block diagram of the proposed fuzzy model reference
learning variable admittance controller. The dashed line represents
the proprioceptive visual and haptic feedback of the human operator.



To avoid unstable behaviour, the centres of the FIS must
not drop below the critical damping value ccritd . To ensure
stability and the safety of the operator the following latching
criterion is added that restrains the minimum damping above
ccritd = 10Ns/m:

If bm(kT ) < ccritd Then bm(kT ) = ccritd (6)

The training (FMRLC) loop operates at the same fre-
quency as the admittance control loop and the overall point-
to-point motion is iterated a number of times until the method
converges. After the training is completed, the FMRLC loop
is no longer required, since the trained FIS has adapted
to infer the optimal damping coefficient for cooperation.
Although the selection of both the FIS and the FIM is
conducted in a heuristic way, the trained FIS contains the
association between the velocity, the force and the virtual
damping adapted to the minimum jerk model rather than
an association between the position and the damping. As a
result, the FIS is not related explicitly to the minimum jerk
model and it can be scaled to different movements as it is
shown in section IV-B.

IV. EXPERIMENTAL EVALUATION

The evaluation of the proposed variable admittance control
scheme is conducted in two stages. The first stage includes
the training process, where the FIS is adapted to the min-
imum jerk trajectory using the FMRLC and in the second
stage the trained FIS is tested into different movements.
The experimental set-up consists of a KUKA LWR IV robot
with a force/torque sensor mounted at the end effector, as
it is shown in Fig. 1. The human cooperates with the robot
in a single direction of the Cartesian workspace using the
handle. The force sensor measures the force Fh applied by
the human, which is the input to the variable admittance
controller. The output velocity of the admittance controller
Vref is translated into reference joint velocities q̇ref using
the inverse Jacobian matrix:

q̇ref = J−1(q)Vref (7)

Since the redundant joint of the robot is not used, J(q)
is the 6x6 Jacobian matrix, q̇ref a 6 element vector and
Vref = [Vref 0 0 0 0 0]T for motion into axis x of robot base
Cartesian coordinates. Each joint incorporates an internal
position controller and the reference velocity q̇ref is derived
through incremental position commands:

q(kT ) = q̇ref (kT )T + q(kT − T ) (8)

where T = 0.001s is the sampling period of the admittance
control loop.

A. FMRLC Training

To train the FIS into the minimum jerk model of Eq. (3),
the initial x0 and final xf position as long as the required
time of the motion tf have to be specified. In order to
measure the time tf , five subjects are recorded individually
(without cooperating with another human or robot) during a
linear constrained point-to-point motion with visible initial

x0 and final xf positions. During the movement each subject
holds a mass equal to md = 1kg which is equal to the virtual
mass used in the admittance controller later. After multiple
iterations it is found that for a distance of 0.3 metres the mean
time tf for an individual human to complete the minimum
jerk trajectory is 1.3 seconds with a standard deviation of
0.19 seconds.

The same movement is then conducted by a human in
cooperation with the robot for the adaptation process. The
human is asked to move the robot from the initial position
x0 = 0m to the target xf = 0.3m. A laser pointer attached
to the handle projects the position of the robot to the ground
where the initial and the target points are visually marked
in order to assist the human with visual feedback. During
the movement the FIS constantly calculates a corresponding
damping according to the current velocity and force. The
FMRLC measures the deviation ye from the minimum jerk
trajectory, which is known for the specific movement and
adapts the FIS according to the knowledge-base modifier.
The movement is repeated 10 times by a human and it is
observed that the error ye converges towards zero.

To evaluate the performance of the proposed adaptation
method three different scenarios are investigated involving
human-robot cooperation in a point-to-point motion. For each
scenario the actual velocity V of the human-robot system
over time τ is compared with the theoretical minimum jerk
model velocity Vjerk as it is illustrated in Fig. 3. Specifically,
in Fig. 3a the manually tuned FIS without the adaptation
mechanism is investigated and the corresponding surface of
the fuzzy system is illustrated. It is clear that the heuristic
tuning of the FIS is insufficient for optimal results, since the
mean velocity profile differs significantly from the minimum
jerk model and the root mean square error (RMSE) is quite
high (Tab. II). On the contrary, the FMRLC adaptation with
the initial rule-base of Tab. I (shown in Fig. 3b) demonstrates
very close approximation of the velocities to the optimal
model and has the smallest RMSE. Finally, in Fig. 3c an
arbitrary initial rule-base for the FIS is selected with the
initial centres of all output membership functions being
bm = 55, m = 1, 2, ..., 25. Although, the initial FIS does not
contain any knowledge about the plant, the mean velocity
approaches the minimum jerk model at a large percentage
with a small RMSE.

By comparing the surfaces of the resulted FIS it can

TABLE II: The root mean square error (RMSE) between the actual
velocity and theoretical minimum jerk velocity, the mean values
and standard deviation for the energy and completion time for the
three different scenarios.

Method RMSE Energy (J) Time (s)
mean std mean std

Untrained FIS 0.0428 1.73 0.12 1.73 0.19
FMRLC with
manual FIS

0.0264 1.57 0.09 1.55 0.11

FMRLC with
arbitrary FIS

0.0271 2.80 0.12 1.73 0.14
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Fig. 3: Experimental results using (a) the untrained, (b) the trained FIS (FMRLC) with initial expert knowledge of Tab. I and (c) the
trained FIS of the arbitrary initial knowledge-base. In the top row the mean measured velocities and the standard deviations (continuous
lines with vertical bars) are overlaid on the optimum minimum jerk trajectories (dashed lines). In the bottom row are illustrated the
input-output surfaces of the used FIS.

be concluded that the rules with the most impact on the
performance of the overall system, include the cases where
both the velocity V and the force F have the same direction
(symmetric on positive and negative direction) and large
values. For example, the surface of the arbitrary initial rule-
base (Fig. 3c) has similar appearance to the manually tuned
rule-base in the ranges around F = −5N and V = −0.2m/s
(Fig. 3a). In such large values the desired damping should
be as low as possible in order to assist the human. As it is
depicted in the surfaces of Fig. 3a and Fig. 3c the FMRLC
successfully adapts the variable admittance controller in
the optimal values. Between surfaces (a) and (b), although
differences are not very obvious, there is an improvement
of the FMRLC over the manually tuned FIS as it is shown
in Tab. II. The mean energy transferred by the human to
the robot and the mean time required for completing the
movement appear to be lower for the FMRLC with the initial
rule base of Tab. I. The FMRLC with the arbitrary initial rule
base requires the most effort for the human although the time
required is similar to the untrained FIS. Summarizing the
results, the combination of the human knowledge and the
FMRLC adaptation algorithm presents the best performance
in terms of human effort and completion time.

B. Testing

To validate the results of the trained FMRLC adaptation
algorithm, the trained FIS with the initial rule base of Tab.
I is tested against the untrained, manually tuned FIS into
different movements that are unknown to the robot. The
movements are performed by 12 subjects aged from 24 to 42
years old, ten of them male, two female and all right handed.
One of the subjects participated in the training procedure and
ten of them have never interacted with the robot before. Each
subject is asked to grab the robot handle from the starting
position, guide it to a target position, rest in that position
for a second and guide it back to the starting position for

a total of 10 point-to-point movements. A laser pointer in
the handle projects a red dot in a white surface with marked
targets in front of the subjects assisting them with visual
feedback. For each subject, three different movements are
conducted with distances xf = 0.2m, 0.3m, 0.4m and each
movement is repeated for the trained FIS of Fig. 3b and the
untrained FIS of Fig. 3a. To reduce the effects of the human
learning through the process, half of the subjects are initially
tested to the trained FIS, while the other half are tested to
the untrained FIS first. The subjects are asked to complete
every movement with the velocity and precision they prefer.

For a total number of 720 movements, the applied forces
and the corresponding velocities in the direction of motion
are recorded. In the first iterations of each movements it is
observed that subjects without previous interaction with the
robot move with a very small velocity until they become
familiar with the robot operation. As a results, the first two
iterations of each movement are not taken into consideration.

The mean energy and elapsed time of all subjects are
illustrated in Fig. 4 for the three distances and the two
different FIS. As expected, the energy provided by the human
increases proportionally with the distance of the point-to-
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point movement. The mean energy required with the FMRLC
trained FIS appears to be lower than the untrained FIS
particularly in large movements. For xf = 0.2m there is
a negligible improvement 1% in the effort with the FMRLC
trained FIS, which increases at 7% for xf = 0.3m and
finally at 13% for xf = 0.4m. These results suggest that
for large displacements subjects tend to apply larger forces
and velocities which benefit from the FIS adapted to the
minimum jerk model. Moreover, the standard deviation of
the effort in the trained FIS is 38% lower than the untrained.
Although the effort appears to increase proportionally to the
distance of the movement, the required time does not, mainly
because in the first movements the subjects are overcautious
on applying large forces. However, by comparing the two
FIS it appears that in the trained FIS the mean time is lower
than the untrained for a total average of 12%, since the
FMRLC trained FIS facilitates the accurate positioning to the
target through the optimal variable damping. It is observed
that with the untrained FIS most subjects tend to overshoot
the target and apply correcting movements that increase the
overall time.

With a questionnaire given to the subjects right after the
experiment, they were asked to rate the two controllers in
each of the three movements in terms of intuitiveness. The
subjects were not aware of the type of each controller. The
results listed in Tab. III show that in lowest displacement
of xf = 0.2m most subjects (58%) cannot distinguish the
difference between the controllers mainly because of the
low velocities and forces. For xf = 0.3m, 42% prefer
the FMRLC trained FIS while the rest 50% still are not
able to distinguish any difference. Finally, for the largest
displacement of xf = 0.4m all of the subjects could
distinguish between the two methods with 84% preferring the
FMRLC trained FIS. In the overall experiment the FMRLC
trained FIS is preferred over the untrained and the higher
the displacement the more evident the performance gain is
to the subjects.

TABLE III: Questionnaire results on the most intuitive controller.

User selection xf = 0.2m xf = 0.3m xf = 0.4m
Untrained FIS 8% 8% 16%
FMRLC trained 34% 42% 84%
No difference 58% 50% 0%

V. CONCLUSIONS

In this work a variable admittance control scheme is pro-
posed for human-robot cooperation that combines a human-
like inference mechanism with an adaptation algorithm for
optimal tuning of the damping coefficient. Based on the
velocity of the cooperation and the force applied by the
operator, a heuristically created FIS infers an appropriate
damping for the admittance controller, that assists both the
rapid movements of the human and the accurate positioning.
A model-reference training procedure based on FMRLC
adapts the manually tuned initial knowledge-base of the FIS
to the minimum jerk model.

It is observed that the initial knowledge-base of the FIS
has a significant performance improvement in the coopera-
tion in terms of the required effort of the human and the
duration of the motion. Experimental results with multiple
subjects suggest that the trained FIS enables a more intuitive
interaction than the untrained, by reducing the effort and by
assisting accurate positioning, even in different movements
that those used to adapt the controller. Future work on the
proposed control scheme involves the generalisation of the
methods in arbitrary motion profiles by decoupling the goal
position from the controller.
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