
Building Quests for Online Games with Virtual

Institutions

G. Aranda1, T. Trescak2, M. Esteva2, and C. Carrascosa1

1 Universidad Politécnica de Valencia
Departamento de Sistemas Informáticos y Computación

Camino de Vera, s/n – 46022 Valencia – Spain
{garanda, carrasco}@dsic.upv.es

2 Artificial Intelligence Research Institute (IIIA)
Spanish Scientific Research Council (CSIC)

Campus Universitat Autonoma de Barcelona
08193 Bellaterra, Catalonia, Spain

tomi.trescak@gmail.com, marc@iiia.csic.es

Abstract. This document describes how to re-purpose an existing agent
technology called Virtual Institutions as a mechanism to define new
“quest” elements in Massively Multiplayer Online Games based on Multi-
Agent Systems. Quests are a very important part of most Massive Online
Games as they wield to flow and narrative of the game in a linear or non-
linear manner.

1 Introduction

Massively Multiplayer Online Games (MMOGs) are an important focus of re-
search, not only because they are economically attractive, but also because a
MMOG involves many fields and a large amount of data that is generated by
the interactions of many individuals: configuring a MMOG is a relevant source of
research. In the field of AI, to model such systems and its dynamics is nowadays
a very relevant task[17, 11].

Massively Multiplayer Online Games, by nature, are played “in the cloud”,
i.e. in a virtual world away from the players’ computers and game devices that
are hosted in a large array of servers. The complex and distributed nature of
these kind of games makes them impossible to be played relying just in the
players’ hardware and resources, as some other types of online games do. This
distributed nature is also one of the many parallel factors between MMOGs and
Multi-Agent Systems, as it has been described in some previous works[1, 3].

Also, MMOGs usually spot a very open-ended nature and narrative, basically
allowing the players to roam the virtual game world free doing largely whatever
they want to do. However, these games also use quite often the concept of quest
or instance: A quest is a specific mission designed to be fulfilled by the players
of a game. It is played in a different flow than the open-ended virtual game
world, a more straightforward and linear flow, similar to the flow of classic offline
games. This mission may include the involvement of other characters in the game

125

(corresponding to players or not) and different sequences of actions to fulfill in
different places in the game.

For example, suppose a player is playing a science fiction game (similar to the
well-known “Star Wars Galaxies”TMor “Star Trek Online”TMgames) in which
players may travel freely with a spaceship through the cosmos. Players may
encounter another character in the game, a computer-controlled character called
the “quest-giver” which gives them the opportunity to embark on a singular
quest looking for a specific item on a planet. The moment the players accept
this endeavor, a new linear narrative opens just for them (and their potential
companions), and a new set of sequential goals and rewards becomes available
for the players.

This paper presents a new addition to the existing architecture of MMOG

based on Multi-Agent Systems[3]: the making of quests using Virtual Institu-
tions[8], detailing, not only the architecture (ontology and agent taxonomy),
but also a prototype applied to a concrete game example.

In section 2 Virtual Institutions are presented. Later, in section 3 MMOG
based on MAS architecture is also presented. Following, the concept of quest in
this kind of systems is introduced in section 4. Additionally, section 5 explains
how to develop these quests using VI technology. Finally, some conclusions and
future lines of work are presented in section 6.

2 Virtual Institutions

Virtual Institutions are a 3D Virtual Worlds with normative regulation of in-
teractions [8]. This concept appeared as a combination of electronic institutions
[12] and 3D virtual worlds. In this context, electronic institutions are used to
specify the rules that govern participants’ behaviors, while 3D virtual worlds are
used to facilitate human participation in the institution. The design of Virtual
Institutions is divided in two separate steps: i) specification of the institutional
rules, and ii) generation of the virtual world.

The institutional rules are defined using Electronic Institution model com-
posed by the following components:

– Dialogical Framework. It defines a common ontology and communication
language to allow humans with different cultural backgrounds, as well as,
agents to exchange knowledge. This ontology and language for humans will
be further transformed into actions that are allowed to be executed in the
Virtual World. Those actions are connected to 3D models in the environ-
ment, the affordances of which will help in eliminating the cultural barrier.
Due to the further provided translation of the communication language into
actions and vice-versa, the agents will be able to interact with humans and
understand their actions. The dialogical framework also fixes the organiza-
tional structure of the society, that is, which roles can participants play, and
relationships among them.

– Scene. Interactions between agents in order to jointly perform an activity
are articulated through agent group meetings, which we call scenes, with a

126

well-defined communication protocol. We consider the protocol of a scene
to be the specification of the possible dialogues agents may have. Hence,
a scene is specified as a deterministic finite automata, whose states repre-
sent interaction states, while arcs are labelled with messages (illocutions)
or timeouts. Notice however that the communication protocol defining the
possible interactions within a scene is role-based instead of agent-based. In
other words, a scene defines a role-based framework of interaction for agents.

– Performative Structure. Scenes can be connected, composing a network of
scenes, that we call performative structure, to capture the relationships
among scenes. The specification of a performative structure contains a de-
scription of how agents can legally move from scene to scene by defining
both the pre-conditions to join and leave scenes. Satisfying such conditions
will fundamentally depend on the roles allowed to be played by each agent
and its acquired commitments. The execution of a performative structure
equates to the execution of the multiple, possibly simultaneous, ongoing ac-
tivities, represented by scenes, along with the agents participating in each
activity. Agents within a performative structure may be possibly participat-
ing in different scenes, with different roles, and at the same time.

– Norms. They determine the consequences of user actions. These consequences
are modeled as commitments that participants acquire as a consequence of
their actions and have to fulfill later on. These commitments may restrict
future activities of the users.

Furthermore, for each role activity and performative structure the designer
can define an information model, which is composed of a set of attributes that
will be used to keep the state of the agent or an activity. For instance, the
information model of a player can contain its credit, points, or the objects it
have. The values of such attributes are modified depending to the evolution of
the institution. That is, when an action is executed some of the attributes are
modified. For instance, the points of a player can be increased after successfully
completing a quest.

Once the institutional rules have been specified it is time to generate the
virtual world. This can be automatically done taking into account the activities
can engage on defined in the specification. Specifically, a 3D room is represented
for each activity (scene). As a result a mapping is created between the activities
defined in the specification, and where these activities occur within the virtual
world. In addition, messages specified in scene protocols are mapped to actions
supported by the virtual world. For instance, in the context of an auction house
raising a hand can be mapped to the message for submitting a bid.

In contrast to Electronic Institutions, the normative part of a Virtual Insti-
tution does not represent all the actions that are allowed to be performed in a
Virtual World. Specifically, those actions that require institutional verification
are those mapped to scene messages. The rest of the actions provided by the
virtual world software can be freely executed. The specification of the institu-
tional rules can be regarded as valid sequences of actions among the ones that
require institutional verification. In addition, the attributes associated to the

127

Fig. 1. Runtime Architecture.

different roles, and activities help to keep participants or activities state. They
keep information of past actions which are relevant to determine the validity of
future actions.

Virtual Institutions are deployed by a 3-layered infrastructure presented in
Figure 1.

First layer is the Electronic Institution Layer. It uses the AMELI system [4]
for enforcing the institutional rules established on the specification step. AMELI
keeps the execution state of the institution and uses it along with the specifica-
tion to guarantee that participants’ actions do not violate any of the institutional
constraints.

Second layer is the Communication Layer. Its task is to causally connect [16]
the institutional infrastructure with the visualization system transforming the
actions of the visualization system into the messages, understandable by the in-
stitutional infrastructure and the other way around. This causal connection is
done via the Causal Connection Server using the mapping between institutional
messages and virtual world actions. The causal connection is happening in the
following way: an action executed in the 3D Virtual World (that requires insti-
tutional verification) results in a change of the institutional state in the AMELI
layer, as well as every change of the institutional state is reflected onto the 3D
Virtual World and changes its state. The Communication layer conceptually
and technologically connects two metaphors: Electronic Institutions and Virtual
Worlds and we see it as one of our major scientific contributions.

The third layer is called Visualization Layer. It is used to visualize the 3D
Virtual World for the users.

128

3 Massively Multiplayer Online Games based on MAS

Deploying a game like a MMOG is like deploying a major software project to act
as a service in the cloud. It presents all the issues and hazards one could expect
from deploying a large software system to solve a big and distributed problem:
need for good scalability, distribution of knowledge, user load balance, network
bottlenecks, long development cycle and asynchronous events, just to name a
few.

There have been other approaches to use agents in online gaming, albeit not
exactly in the MMOG space. Most of them are oriented towards achieving better
behaviors in Non-Player Characters. Dignum et al. [10] propose a more natural
(long-term) behavior of Non-Player Characters through the use of Multi-Agent
Systems, and clarify that game design should be adjusted to incorporate the
possibilities of agents early on in the process, a statement also fundamental to
this line of research. Also, Gemrot et al. [15] take a more practical approach by
developing a full framework, called Pogamut, to integrate distributed intelligent
agents as synthetic opponents and allies (bots) in games powered by the “Unreal
Engine”TMtechnology. The main objective of the Pogamut project is to provide
new AI-driven players that can bestow new challenges to the players and learn
from their actions, using a distributed AI network that runs outside of the game
clients and server. Both approaches take online gaming in general as a domain for
agents achieving good results, so it is a natural step forward for agent technology
to enter the MMOG space.

3.1 Architecture

A MMOG (like most complex systems) can be seen as a system split into several
layered subsystems, with each layer being relatively independent and taking care
of one aspect of the whole MMOG experience. From the perspective of this work,
a MMOG is split into three layers:

HCI Layer: It is the client-side of the system, the part of the game running
on the players hardware (PC, mobile phone, game console, . . .). It is the user
interface that the game provides to the player, i.e. the game client software, and
it provides the player with a gaming experience (i.e. 3D graphics, sound. . .). It
is the framework of the InterfaceAgent [2].

Intelligent Virtual Environment (IVE) Layer: It is the virtual rep-
resentation of the game environment itself. It is part of the server-side of the
system, the part of the game that runs mostly on the game provider’s hardware,
a controlled environment. The synthetic place and scenario where the game takes
place: the virtual world. This world is independent of the type of game or simu-
lation it must give support. Also, the IVE is designed following an agent-based
approach, so it can be seen as Multi-Agent System embedded into another,
larger, Multi-Agent System. The IVE layer is thoroughly described in [6].

MMOG Layer: It is a complex subsystem where all the game logics and
mechanics are implemented and must be solved at run-time. It operates in con-
junction with the IVE layer, but it is not dependent of that subsystem. It im-

129

Fig. 2. The architecture of a MMOG based on MAS

plements the game rules / norms controlling the game development. It is the
place where all the game clients connect to play and, along with the IVE layer,
it must facilitate game server scalability. In this line of research, this subsystem
is seen as the core of the MAS and requires, at least, one agent platform as its
foundation. The MMOG Layer is the place that groups all the elements from the
game which are independent both from the user space and the IVE, and thus is
the core piece of the whole system, as it is where the actual game takes place.
Section 3.2 describes this layer in more detail.

3.2 The MMOG Layer

As stated before, the MMOG Layer is essentially a dedicated, open MAS which
runs the game. This MAS uses agent technologies like agent services, Electronic
Institutions[13, 7] and Agent Organizations[14, 9, 5] to model some game me-
chanics, and translates the common issues and situations found in MMOGs into

130

problems that can be solved using classic software agent features, such as agent
interactions, agent communication protocols (like auctions or call-for-proposals),
service-oriented computing, event-driven behaviors or role models.

Like any other agentification process, one of the key ideas is to identify the
agents and types of agents that will conform the system. In this case, the agents
are based on the concepts and entities that form the whole game experience of
a MMOG, and are explained in more detail in [2]:

ProfileAgent: a personal agent which manages the player status and profile
within the game community. It manages the player’s preferences in the game
world, which avatars the player uses and the role that the player plays in the
system (Spectator, Player or GameMaster).

AvatarAgent: an agent which represents an avatar of a human player within
the game (a PC or Player Character). It is a persistent kind of agent: is not
deleted and re-spawned often, it bears a long life cycle. It is the agent that holds
the PC stats (server-side), and so, a malicious player cannot modify them locally
(cheat). The AvatarAgent is the kind of agent that actually performs the actions
for the player in the virtual world.

NPCAvatarAgent: an agent which represents an avatar of an AI-controlled
character. It is similar to the AvatarAgent, as both populate the game world,
but it does not obey nor represent a player in the game.

GameZoneAgent: a kind of agent which implements the logics of the game
environment and works as a nexus between the MMOG Layer and the IVE
Layer’s Simulation Controller (see figure 2).

4 Defining Quests for MMOG

Quests are a very important part of most Massive Online Games as they wield to
flow the narrative of the game in a linear or non-linear manner. Quests present
the players with the opportunity to improve their virtual characters and their
playing experience by grouping together players with the same objectives and
guiding them through a segment of the overall game experience, rewarding play-
ers for their performance in the game. Quests also offer the designers of these
open-ended games, an opportunity to develop more narrow-focused “levels”,
similar to those found in traditional offline games, without sacrificing the social
aspects of online play and the overall goals of the game. Alas, the whole “ca-
reer” of a virtual character can be seen as a series of linked quests towards an
open-ended conclusion.

From the grand perspective of the game as a big Multi-Agent application,
quests are a part of the system. They are seen as smaller Electronic Institutions
with a semi-linear flow of the agents where custom and more strict norms exist
than those from outside (those in the “open” areas of play). However, quests
present some particular aspects that are not seen in other types of institutions.

Let’s present the concept of “sub-quest” in the context of quests, which has a
lot in common with the concept of scene in Electronic Institutions. A sub-quest

131

is one of the steps that compose a quest. A sub-quest can be defined as a set
S = (G, O, L, P, E), where:

– G: is the set of objectives (goals) player agents (P) must complete in the
sub-quest. These objectives are expressed in the semantic ontology of the
game itself using the OWL-DL language, which in turn is based on “MMOG
Ontology” [3]3. This set of goals cannot be empty, there must be at least one
goal to play in the sub-quest.
Goals are defined using the properties and data types present in the ontology,
and usually make reference to modifying the state or the properties of an
object of the game. For instance, let’s presume a game uses an ontology
in which the game characters (i.e. Avatars) have a numeric “health” stat.
When a designer wants to create a goal that means “kill this enemy”, it can
be defined by declaring the “health” stat of the instance of NPCAvatar that
represents that enemy to zero:

Goal0: Avatar MyEnemy.health == 0.0

Another example: let’s say a designer wishes to express a goal that means
“take this chest to the vault”, it can be expressed by the placedAtZone prop-
erty of the chest item:

Goal1: GameItem MyChest.placedAtZone == "Vault"

Initially, goals should not need to be decomposed into subgoals, but this is
a feature that may be added in future iterations of this work.

– O: is the set of system agents (opponents) that oppose player agents (P)
and keep them from completing the sub-quest by a process of conflict. Their
view is the opposite of the player agents’ view and its actions counter those
of the players. However, contrary to classic game theory, these agents do
not seek the Nash equilibrium [18] in the system of the quest. They seek to
maintain the goals (G) in the initial state of the sub-quest, that is, without
being fulfilled. This may be an empty set (i.e. no opponents).

– L: is the set of virtual locations (also called Dungeons and Game Zones in
the literature) that serve as the environment around players (P) and the
opponents (O). They are comparable to the rooms and transitions present
in Electronic Institutions as they each have a maximum (and a possible
minimum) concurrent agents of a particular type and in each one of the
locations changes according to an interaction protocol, although the same
protocol can be shared by more than one location. This may be an empty
set, meaning that the sub-quest is not tied to a specific location.
Locations can be specified using lists of derivatives of the GameZone and
GameBeacon classes of the “MMOG Ontology”. The designers of the game
are expected to define and tag the virtual places where the game takes place
using instances of those classes (or some sub-classes). Therefore, in practice,
each L set will be a sequence of some of those instances, and the same
instance may appear in different sub-quests (or quests) for different purposes.

3 http://gti-ia.dsic.upv.es/ontologies/mmog.owl

132

– P: is the set of agents who play the role of players. These agents are usually
controlled by human players that are playing the game. Sometimes an agent
of the group P can be controlled by the platform, but it is rare. The aims
of these agents are twofold: make sure the goals of the scene (G) are fully
accomplished and maximize the profits (E) during the process. Ideally, an
organization of player agents (P) wishes to complete all of the objectives of
a quest and to get the maximum number of potential profits. Player Agents
(P) are the antagonists of the Opponent Agents (O). This set cannot be
empty, there must be at least one agent that plays the sub-quest.

– E: the function of earnings player agents (P) can obtain during the quest.
In each sub-quest, this function changes to reflect the ratio of risk / profit
present. Based on this ratio, the quests can be dimensioned. For example, a
quest with a very large O component and a very low E component is seen
as a “High Risk and Low Gain” quest and is less desirable for the players
than a quest with a higher E component and lower O component, which
would be “Middle Risk and High Gain”. For a quest that has no earnings,
this function can be equal to zero.

So then, a quest can be defined as a non-linear (or non-deterministic) se-
quence of connected sub-quests linked through outcomes. These outcomes are
determined by the completion (or failing) of the goals in each sub-quest. Specif-
ically, a quest can be seen as a directed acyclic graph where the nodes are
sub-quests (as can be seen in figure 3). The designers of the quest must also
specify which sub-quest (or sub-quests) serve as an entry point to the quest and
which sub-quest (or sub-quests) serve as an exit point (i.e. end the quest). So, in
the end, a quest can be defined in a very similar fashion to a non-deterministic
finite automata:

Q = (SS, OC, I, F)

– SS: The set of sub-quests that compose the quest. The nodes of the graph.
– OC: The outcomes that connect the sub-quests. The strings of the graph.
– I: The subset of SS that are starting sub-quests for the quest.
– F: The subset of SS that are ending sub-quests for the quest.

Quests are semi-linear structures in nature. That means that a quest can
follow a straight path from beginning to end, or that it can branch its path one
or more times through its course. Nevertheless, every path that the players take
will eventually lead them to ending the quest in one of the ending sub-quests of
the quest. This gives the designers of the quest some sort of “elasticity” towards
the development and narrative of the quest, as well as the ability to add some
interesting gameplay elements.

For instance, suppose that a quest involves the players getting inside a locked
room to retrieve an object (i.e. a treasure). The designer can create a sub-quest
located in a contiguous room where an opponent (which has the door key) is
guarding the entrance to the room. The designer may also create another sub-
quest with no opponents that takes place in a backyard where a window leads

133

to the important room. Both sub-quests have similar objectives (i.e. get inside
the important room), but they are presented as a choice to the players: Will the
players take the indoor or outdoor path? If they take the indoor path, will they
fight the opponent to get the key by force or will they try to bribe or sweet-talk
the guard into give them the key? If they take the outdoor path, do they have
the ability to open and jump off the window from the outside into the room?
These are all gameplay choices that the developer may present to the players
and implement them as branching paths in the quest design, but in the end, all
of these choices lead to the same conclusion: the achievement of the ultimate
quest goal and the completion of the quest.

Fig. 3. Components of a quest

5 Building Quests with VIs

In this section the use of the VI framework and tools to develop quests for
MMOG based on MAS is explained (specially using the Islander[12] editor).
The initial approach followed in this work takes a formal specification of a quest
and expresses it in practice using a VI. The transformation is implemented using
the Islander tool from the Electronic Institutions Development Environment [4].
The Islander tool was developed as a user-friendly graphic interface for specify-
ing Electronic and Virtual Institutions. In this work, it has been used in the first
steps of developing quests for MMOG based on MAS (what is usually called the
development pipeline in the videogame industry). In order to successfully imple-
ment a quest, the following points need to be taken care of: be able to express
the knowledge using an ontology (this basically includes goals and earnings); be

134

able to control the flow of the agents participating in the quest and the roles
they play (this basically includes players and opponents); be able to specify the
flow and connections of the sub-quests; be able to express the different outcomes
of a sub-quest; and be able to specify the sub-quests themselves.

Regarding the use of an ontology, the Islander tool allows the definition of
custom ontologies with classes and properties, like the MMOG Ontology, that are
used in the definition of the Performatives Structures and Dialogic Frameworks.
So this need is fulfilled.

Regarding the agents, VI provide a unique type of internal agents called
the Governors. These Governors are paired with the agents participating in the
institutions and act as their real interface towards the system, preventing them
from executing illegal actions based of their roles and characteristics (or stats,
in MMOG terms). Besides, Governors “move” the agents through the scenes
and transitions of the institutions as they interface with them. So this need is
fulfilled.

Regarding the flow and connections of the quest, it’s worth noting that the
main element of a VI is its Performative Structure which, as seen in section 2, is
essentially a directed graph that connects scenes through transitions. Although
they are different concepts, a Performative Structure and a quest share the same
kind of graphic representation. In fact, a quest may be seen as a subset of a whole
Performative Structure, which contains all the possible sub-quests and all the
possible paths that any agent can follow through the quest at any given time (or
attempt).

Regarding the possible outcomes of a sub-quest, VIs use diagrams called
“Protocols” to define the inner workings of a scene. Protocols are essentially sim-
plified nondeterministic finite automata, with an arbitrary number of starting
and final states, and where the state changes are triggered by common interac-
tions between the agents of the scene or timed events. So, the different outcomes
of a scene can be directly mapped to the final states of the automaton. A scene
will have at least as many outcomes as final states has its inner Protocol (since
more that one final state can lead to the same outcome). So this need is fulfilled.

Regarding the sub-quests, the goals (G), opponents (O), players (P) and
earnings (E) have already been explained, as well as the outcomes. The location
is the missing item. Locations are normally defined logically through the use
of the MMOG Ontology (or one of its derivatives) by using the GameZone

and GameBeacon classes and their possible subclasses. In VI there is not a
explicit “location” field associated with a scene of the Performative Structure.
Fortunately, these scenes may have as many additional properties as needed.
A property is a semantic “key-value” pair (which may be mandatory to define
in each scene) where the “value” part is a semantic expression (or a list of
semantic expressions). By creating a “location” property in each scene that needs
locations, this need is partially fulfilled. The other half of the question is the
connection between the VI location and the actual representation of the virtual
place in the IVE layer. This is done through the Causal Connection Server (as

135

seen in figure 1), but this problem falls outside the scope of this work and will
be explained in detail in future articles.

In order to better explain this process, an example quest has been developed.
This example quest introduced for this work is depicted in figure 4 and takes
place in a fictional science-fiction MMOG game similar to the already men-
tioned examples in section 1. This quest follows the flow of a deed in which the
players must track down a treasure stolen by space pirates. Players first receive
the information of the deed by a non-player character (an agent of the class
NPCAvatarAgent), which plays the role of “quest-giver” prior to accepting the
quest (and entering the VI). This information presents the problem to the play-
ers (“The evil space pirates have stolen a treasure. Their last known location are

the ruins of an ancient base, but they are rumored to be in the orbit of a nearby

planet.”) and the players must decide whether or not to embark on the quest. If
so, the players are faced with an immediate choice: they can go to the ruins to
look for clues or they can go to the nearby planet to confront the pirates. These
two different paths correspond with a gameplay choice that the game designers
wish to present the players with: will they use subtlety and insight or will they
use brute force and a direct approach? Either way, players will eventually learn
the true location of the treasure (the drifting remains of an old ship) and proceed
there to try to find it. If they succeed, all ends well and the players “win” the
quest and retrieve the treasure. If they are not able to find it, the quest has a
bitter end as the players “fail” the quest and obtain no treasure whatsoever.

This quest has three types of scene: FightScene, with a protocol designed for
the fighting; FindScene, for searches and tracking treasure; and QuestEndScene

to resolve the end of the quest. The protocols of the scenes are quite simple. For
example, FightScene is described in figure 5.

Internally, when the players accept the quest their AvatarAgents enter the
VI. And the different gameplay branching choices are represented by different
sub-quests and paths in the quest definition, very similar to what can be seen
in figure 3. When the agents enter the VI, the first choice is represented by a
XOR transition (t0) which either leads them the “FindTrace” scene or to the
“FightPirates” scene.

If the players choose the first path, their agents transition to the “FindTrace”
scene. In this scene, the goal is to find the clue (or clues) to the real location of
the treasure. When the clue is found, the scene ends and its outcome brings the
players to the next transition (t1).

However, if the players chose to confront the pirates, their agents are lead to
a scene called “FightPirates”. This scene may end in two ways: the players beat
the pirates and obtain the location of the treasure by force, or the pirates kill
the players and escape with the treasure. This dichotomy is represented by two
possible outcomes, both passing through the t1 transition: the first one is the
normal flow of the quest and leads to the “FindCargo” scene. The second one,
terminates the quest and leads to the “QuestEndBad” scene (and later to the
“Exit” scene) of the institution.

136

Fig. 4. Performative Structure of a quest as seen in Islander

When the agents arrive at the “FindCargo” scene, they have the chance to
look for the hidden treasure, but they have to find it in a short amount of time.
That limitation is represented using a timer in the protocol of the “FindCargo”
scene. When the timer expires, the protocol ends with an outcome. However,
if the players find the treasure, the protocol ends with a different outcome. If
the players are unable to find the treasure, the quest ends in a negative way
through the “QuestEndBad” scene. Nevertheless, if the players are able to find
the treasure, the quest ends and the players receive a positive reward in their
“QuestEndGood” scene. After that, the players’ agents leave the institution and
so the quest ends.

6 Conclusions and Future Work

In this work, a new addition to the existing architecture of MMOG based on

Multi-Agent Systems[3] has been presented and successfully implemented: the
making of quests using Virtual Institutions[8], detailing, not only the architecture
(ontology and agent taxonomy), but also a prototype applied to a concrete game
example.

137

Fig. 5. FightScene Protocol

In the future of this line of work lie at least two new developments. The first
one is to define all the possible interactions that can happen between agents
populating a MMOG based on MAS and to integrate that knowledge into the
definition of quests, in order to have better control and configuration of sub-
quests based on agent interactions. The second one is to develop a methodology,
addressed to game developers, to guide them in the use of this architecture for
building their games.

7 Acknowledgements

This work has been partially funded by TIN2009-13839-C03-01, TIN2008-04446,
PROMETEO/2008/051, GVPRE/2008/070 projects, CONSOLIDER-INGENIO
2010 under grant CSD2007-00022, project EVE (TIN2009-14702-C02-01), EU-
FEDER funds, the Catalan Goverment (Grant 2005-SGR-00093) and Marc Es-
teva’s Ramon y Cajal contract..

References

1. G. Aranda, V. Botti, and C. Carrascosa. Mmog based on mas: The mmog layer,
(extended abstract). In Proc. of 8th Int. Conf. on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2009), pages 1149–1150. Decker, Sichman, Sierra and
Castelfranchi (eds.), 2009.

2. G. Aranda, C. Carrascosa, and V. Botti. Characterizing Massively Multiplayer
Online Games as Multi-Agent Systems. E. Corchado, A. Abraham, and W. Pedrycz

138

(Eds.): Hybrid Artificial Intelligence Systems (HAIS 2008), LNAI 5271, pages 507–
514, 2008.

3. G. Aranda, C. Carrascosa, and V. Botti. The MMOG Layer: MMOG based on
MAS, volume 5920, pages 63–78. Dignum, Bradshaw, Silverman, van Doesburg
(eds.), 2009.

4. J. L. Arcos, M. Esteva, P. Noriega, J. A. Rodŕıguez-Aguilar, and C. Sierra. En-
gineering open environments with electronic institutions. Journal on Engineering
Applications of Artificial Intelligence, 18(2):191–204, 2005.

5. E. Argente, J. Palanca, G. Aranda, V. Julian, V. Botti, A. Garcia-Fornes, and
A. Espinosa. Supporting agent organizations. In CEEMAS’07, 2007.

6. A. Barella, C. Carrascosa, and V. Botti. Agent architectures for intelligent virtual
environments. In 2007 IEEE/WIC/ACM International Conference on Intelligent
Agent Technology, pages 532–535. IEEE, 2007.

7. A. Bogdanovych, H. Berger, S. Simoff, and C. Sierra. Narrowing the Gap between
Humans and Agents in E-commerce: 3D Electronic Institutions. K. Bauknecht, BP
oll, and H. Werthner, editors, E-Commerce and Web Technologies, Proceedings of
the 6th International Conference, EC-Web, pages 128–137, 2005.

8. A. Bogdanovych, S. J. Simoff, and M. Esteva. Virtual institutions prototype. In
8th International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2009), Budapest, Hungary, May 10-15, 2009, Volume 2, pages 1373–
1374, 2009.

9. N. Criado, E. Argente, V. Julian, and V. Botti. Organizational services for spade
agent platform. In IWPAAMS07, volume 1, pages 31–40. Universidad de Sala-
manca, 2007.

10. Dignum, F. and Westra, J. and van Doesburg, W.A. and Harbers M. Games
and Agents: Designing Intelligent Gameplay. International Journal of Computer
Games Technology, 2009, 2008.

11. N. Ducheneaut, N. Yee, E. Nickell, and R. Moore. Alone together?: exploring the
social dynamics of massively multiplayer online games. Proceedings of the SIGCHI
conference on Human Factors in computing systems, pages 407–416, 2006.

12. M. Esteva. Electronic Institutions: From Specification to Development. PhD thesis,
Artificial Intelligence Research Institute (IIIA-CSIC), Spain, 2003.

13. M. Esteva, B. Rosell, J. Rodriguez-Aguilar, and J. Arcos. AMELI: An Agent-Based
Middleware for Electronic Institutions. Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent Systems-Volume 1, pages 236–
243, 2004.

14. E. Garcia, E. Argente, and A. Giret. Issues for organizational multiagent sys-
tems development. In Sixth International Workshop From Agent Theory to Agent
Implementation (AT2AI-6), 2008.

15. Jakub Gemrot, Rudolf Kadlec, Michal Bida, Ondrej Burkert, Radek Pibil, Jan
Havlicek, Lukas Zemcak, Juraj Simlovic, Radim Vansa, Michal Stolba, Cyril Brom.
Pogamut 3 Can Assist Developers in Building AI for Their Videogame Agents.
Proceedings of the First International Workshop on Agents for Games and Simu-
lations, 2009.

16. P. Maes and D. Nardi. Meta-Level Architectures and Reflection. Elsevier Science
Inc., NY, USA, 1988.

17. M. Matskin. Scalable Agent-Based Simulation of Players in Massively Multi-
player Online Games. Eighth Scandinavian Conference on Artificial Intelligence:
SCAI’03, 2003.

18. J. Nash. Non-cooperative games. The Annals of Mathematics, 54(2):286–295, 1951.

139

	prefaceAGS
	ContentsAGS10.pdf
	paper_7
	paper_3
	paper_4
	paper_11
	paper_6
	paper_1.pdf
	paper_2
	5.2 Filtering to Improve Prediction

	paper_9
	paper_5

