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Abstract. Within past ten years, the importance of cellular automata (CA) models of
both recrystallization and grain boundary migration has been recognized. It can be shown
that CA provides a computationally efficient mathematical framework for simulations of
physically relevant models of the above processes. Generally, CA works in such models
with a vast number of identical copies of several generic processes — as recrystallization,
nucleation, grain boundary migration, etc. — which interact locally and results in a complex
global response. The attention is focused to some important aspects of recrystallization,
grain growth and CA modelling. Finally, possible future development of more physically
relevant models are briefly outlined.

1 Introduction

Mathematical and computational models have a long and successful history in modelling and
description of mechanical behaviour of metallic materials. It is well known that they answered
a lot of deep questions in the field of materials science. Despite such success, there are still
problems that are not tractable by classical approaches. The aim of this work is to explain why
some processes and material responses are not solvable by classical approaches as, for example,
finite element method or the Monte Carlo simulations.

Situation in modelling of mechanical behaviour of metallic materials becomes rather complex
when we enter deeper levels of description. Once we leave the macroscopic level of mean values
of variables and approach the microscopic level then we enter the world of complexity. On one
hand, it is impressive how nature easily ”compute” or solve mechanical responses of a metallic
material having any size. On the other hand, we are unable to correctly explain behaviour of
it does not matter how tinny piece of the same metal with the most powerful supercomputers.
It is irritating any time when we start to think about it.

A very natural question arises after all those questions: ”Where we do an error?” or ”What
is wrong in our way of solving those problems?” This paper will try to show one of possible
and as we believe the best way how to formulate and understand modelling and simulation of
mechanical behaviour of metallic materials. It is far beyond the scope of this paper to discuss
all aspects of this problem. Therefore we propose a general concept that will be explained
on simple cases related to modelling of dynamic recrystallization (DRX) and grain boundary
migration (GBM). A thorough review of all contributions of CA in material science and solid
state physics is beyond the scope of this work.



2 Cellular Automata Theory

The discovery of CA-theory is related to names J. von Neumann, S. Ulam, and A. Turing.
The concept had been developed in the forties of 20th century. Briefly, von Neumann had been
thinking about two computer paradigms; namely, sequential one that we use in our computers
so far, and parallel one as it is used in CA. The state of art of physics those days enabled to build
sequential computers only. The use of sequential computers distorted our way of understanding
and solving the problems.

CA-model discretize space in our case into two-dimensional (2D) lattice of squares — in
general, it could be an arbitrary number of dimensions. The squares, i.e. elements of this
lattice, are called cells. A neighbourhood is defined to every cell, usually a list of the nearest
neighbouring cells and the cell itself, that is uniform through the whole lattice. Every cell
contains a list of variables, e.g. dislocation density, orientation, etc. The evolution of the system
is driven by a transition rule (a function) that computes new values of variables of an updated
cell using the values of the cells laying in the neighbourhood of the cell from the previous
CA-step. General information about the CA simulation technique can be found in [1, 2].
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Fig. 1. (a) Flow stress curves for two different velocities, representing deformation at constant strain
rate for two different initial grain sizes Dy = 2.9 (solid lines) and 7.0 (dashed lines). Sensitivity of the
curves on initial grain sizes is apparent. (b) Corresponding dependences of grain size on CA-steps [7].

CA transition rules can be understood from a certain point of view as finite difference
scheme but it has to be stressed out that CAs are much richer than this. The number of all
possible rules for a two state CA with nine neighbours is s*" where s is the number of states and
n the number of neighbours, i.e. 22° 2 1.34 x 105, It is a large number of rules for one of the
simplest possible CA. Therefore, there is plenty of space to build physically relevant models.

The theory of complex systems is a relatively new field that enable us to formulate and to
solve problems ranging from biology through physics to pure mathematics resembling complex
behaviour. A complex system is usually defined as an ensemble of vast number of identical copies
of several generic processes. The processes are interacting locally and they produce a global
response which is richer than any of generic processes. In our case, the elementary processes
could be, for example, grain boundary (GB) movement, nucleation event or recrystallization
event. The most important mathematical paradigm used to solve complex systems are CAs.
Both DRX and GBM will be treated in this paper as complex systems. This approach gives us
a great flexibility in definition of models and possibility to approach the way how the nature



thinks, i.e. the parts of materials response just locally to surrounding information and change
their behaviour according to such information.

3 Dynamic Recrystallization

Recrystallization is split into two distinct cases, i.e. static, and dynamic one with recrystal-
lization after and during the deformation, respectively. CA-models of static recrystallization
started in [3] and were reviewed in [4]. We focuss our attention into DRX [5] in this paper.

A CA-model [6, 7] of DRX is carried out by the sequential realization of three steps represent-
ing microstructural evolution of each cell during each CA-step: (a) evolution of the dislocation
density, (b) recrystallization realized by the growth of grains when driving force exceeds a crit-
ical value at GB, and (c) the nucleation of embryos of new grains. Three variables, defined for
every cell separately, are used in the CA—model: dislocation density p, grain orientation 6, and
waiting time t,,, defining GB velocity v = d/(t,, + 2) where d is cell width and ¢, is given by a
number of CA-steps.
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Fig. 2. (a) Flow stress curves in the case of the strain rate jump test for two different initial grain
sizes Dy = 2.9 and 7.0 (curve C) carried out under identical initial deformation conditions as in Fig. 1.
(b) Dependences of corresponding mean grain size (MGS) curves on CA-steps.

For example, recall definition of recrystallization event from the local rule [6, 7]. A recrys-
tallization event will occur at a cell C' under consideration with 50% probability when the
following conditions are fulfilled simultaneously: (i) the cell C' is situated at GB, (ii) the dif-
ference in dislocation density between the cell C' and neighbouring cell belonging to different
grain is greater than a critical value Ap,,, (iii) the potential new configuration of GB is not an
excluded one (e.g. one cell wide re-entrant bulges are not allowed), (iv) the waiting time ¢,, is
zero, (v) a grain with lower dislocation density grows into a grain with a higher one.

Detailed description of the CA-model of DRX with definition of dislocation density evolution
and nucleation was published elsewhere [6, 7]. It was found that the simulated dependences of
stress and mean grain size on CA-steps correlate with the experimental observations [5] and
with CA-simulations of other authors [8].

Fifty percent probability of recrystallization event acceptation and point (iii) in the above
list are simplifications of the used model. Can we remove those rather artificial simplifications
from DRX-model? Nature is more sophisticated than this simple model. It has a simple and
effective tool that protects appearance of re-entrant bulges and ”"wrong” shapes; it simply



checks the local GB energy within used neighbourhood. It has to be stressed out here that CA
simulations have no access to global variables from definition. All variables are changed only
locally! The trend is to decrease GB energy but with help of fluctuations a small local increase
of GB energy can occur as well. It naturally leads to a CA-model of GBM that is just a part of
DRX-model. Such GBM is a modified pure GBM because of simultaneous presence of different
driving forces — as, for example, difference of stored energy — beside the curvature driven force.

It was found in this model [6, 7] that single peak or multiple peak stress curve occurs for
low or high GB velocity, respectively, see Fig. 1a. It is accompanied by single or multiple peak
on evolution curves of mean grain size (MGS), see Fig. 1b. Simulated evolution of stress [6, 7]
correlates with simulations [8] and with the experiment [5] but the predicted presence of oscil-
lations in evolution of MGS [6, 7] is still experimentally unclear to the best knowledge of the
authors. A strong sensitivity of the flow stress curves to the initial grain size (in accordance
with experiment, see Fig. 1) and to nucleation rate is observed [6, 7]. Sensitivity of the flow
stress curves to nucleation rate should be experimentally confirmed. Different thermomechan-
ical histories of a given sample can lead to different numbers of nuclei and hence to different
nucleation rates.

Strain rate jump test for two different initial grain sizes Dy = 2.9 and 7.0 — carried out
under the same deformation conditions as in Fig. 1 — is depicted in Fig. 2a. It is confirmed in
accordance with the experiment [5] that an abrupt increase of strain rate, i.e. energy deposition
into the sample, can switch multiple peak behaviour into single peak one. The dependence of
corresponding MGS curves on CA-steps is shown in Fig. 2b.

Fig. 3. Development of microstructure is shown here for time 0, 2k, 32k, and 40k. Triple junctions
and grains in the initial configuration are marked by numbers, and by letters, respectively. The origin
is in the left-lower corner with x and y coordinate in horizontal and vertical directions, respectively.

4 Grain Boundary Migration

Simulation of GBM was done by a CA-model using minimization of the local GB surface line
within given neighbourhood as the only driving force. Minimization of the total surface line
results from a large number of such local minimization events. A local minimization event works
with a CA-rule that is equivalent to minimization of local surface, see the following definition



of CA-rule used to model GBM. Despite simplicity of this model where other driving forces
are omitted — such as triple junction drag, grain orientation and inclination of GB — migration
of the points of intersections of the grain boundaries with the free surfaces obeys a parabolic
kinetics, x = t'/2, that correlates with experimental observations [9].

Essential characteristics of the used cellular automaton [10, 11] are the following: (i) the
sample is divided into cells where orientation variable of each cell is assigned to one of 4
differently oriented grains, (ii) the Moore neighbourhood of a cell is composed of 8 first and
second nearest neighbouring cells, (iii) the transition rule of a cell - its reorientation into the
neighbouring crystal - requires: (iii,) the cell is situated at grain boundary, and (iii},) the number
of contiguous cells (going one after the other without interrupts in the Moore neighbourhood)
belonging to the same grain is equal to four or higher, or in the Moore neighbourhood restricted
by the free surface, this number is equal to two or higher (the latter applies only to the cells
lying on the outer surfaces). The reorientation is occurring with the probability of 50% in order
to prevent non-physical anisotropic growth reflecting the symmetry of the square grid.

300 1 | | L 1
B 250 - B
- 200 -

> 150 | Ponppmamna™

B 100

- 50_

150 . . . . . 0 . . . . r
0 1e+4 2e+4 3e+4 4e+4 5Se+4 6Ge+4 0 1e+4 2e+4 3e+4 4de+4 b5e+d 6Ge+4

time time

Fig. 4. Migration of two triple junctions for the topology defined in Fig. 3: (a) = coordinates, (b) y
coordinates. See Fig. 3 where one triple junction disappears between CA-steps of 32k and 40k.

Development of microstructure is shown in Fig. 3 for times 0, 2k, 32k, and 40k where gradual
shrinkage and finally disappearance of grain A, and subsequently of grain B occurs. The grain
boundary segment between the lower A and upper B grains vanishes and a new boundary
between the left- and right-hand grains is formed. Two new triple junctions at the ends of
vertical segment start to move from this point in the opposite directions. When the y-coordinate
reaches upper free surface the upper grain disappears at time slightly greater than 32k; when the
other branch reaches the lower free surface the lower grain disappears and the transformation
of the quadricrystal into bicrystal is accomplished.

The motion of x and y coordinates of both triple junctions that are present in this mi-
crostructure are recorded in Fig. 4 where the left and/or upper triple junction is marked by
number 1 and the right and/or lower one by number 2.

It is surprising that in spite of very simple CA-model which is defined locally, the following
experimentally observed features of GBM are observed during simulations. All GBs start to be
perpendicular to the side surfaces from the very beginning of the simulation. If this is not true
then GB can shorten its surface near the free surface until it becomes perpendicular. Velocity
of GB decreases with increasing distance from the surface. GB migrates towards the center of
curvature that leads to shrinkage of the total grain line. The equilibrium values of dihedral
angles between the grain boundaries of 120° are changed by the influence of triple junctions



that is caused by lower mobility of triple junctions [11]. Triple junction drag is not explicitly
defined in the model. Further information about this model could be found in [10, 11].

5 Conclusions

Usefulness of the theory of complex systems has been demonstrated on two processes mod-
elled by CA, namely, DRX and GBM. Despite the fact that physically simplified definitions
of those models were used, global responses correlate with experiments. Detailed evolution of
microstructure can be involved in simulation as well. There is a plenty of space to make models
more complicated and physically relevant because we know what we omitted but it is necessary
to keep in mind that refinement of those models is not straightforward. It has been demon-
strated mainly in the part dealing with DRX that CA-models can answer questions given by
experimental measurements on one hand and rise new questions to be answered by experiments
on the other hand.
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