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Abstract— Human safety and effective human-robot commu-
nication are main concerns in HRI applications. In order to
achieve such goals, a system should be very robust, allowing
little chance for misunderstanding the user’s commands. More-
over, the system should permit natural interaction reducing the
time and the effort needed to achieve tasks. The main purpose
of this work is to develop a general framework for flexible
and multimodal human-robot communication. The proposed
architecture should be easy to modify and expand, adding or
modifying input channels and changing the multimodal fusion
strategies. In this paper, we introduce our general approach and
provide a case study with two modalities (gesture and speech).

I. INTRODUCTION

In order to work with humans, a robotic system should
be able to understand the users’ commands and intentions,
and to safely interact within a shared workspace. New
classes of lightweight robots create future scenarios for
automation in industrial settings, where they could share
space and activities with their human counterparts. These
highlights some difficulties with today’s robots, as they do
not adapt well to dynamic environments and do not offer rich
human-robot interaction (HRI) possibilities [1]. The design
of natural interfaces for the interaction is a crucial issue in
effective co-working between humans and robots [2]. This
is a key issue also in commercial and home applications.
Moreover, a richer way to interact allows the users to be
less involved in giving instructions to the robot, instead of
focusing on their own activities. In a multimodal interaction
context, the users can communicate with the robots using
several input channels, called modes, that are analyzed and
integrated by the system. Indeed, different modes, more than
complementing each other, can offer the same information,
introducing redundancy in the system. This redundancy can
be useful for different purposes. In noisy environments, the
information provided on a channel could be not reliable and
redundancy can help reducing errors in the interpretation of
the input signals (e.g., in a low light environment speech
commands may be more reliable than gestures), hence, the
robustness is generally enhanced [3]. Finally, multimodal
interaction should be more intuitive. When we talk to each
other, we frequently use body gestures to complement speech
information, indicating objects or supporting our arguments.
This kind of interaction seems more flexible and natural,
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since users can interact with the system using their favorite
modalities.

In this paper, we propose a general architecture support-
ing multimodal human-robot communication and interaction.
The architecture is specifically designed to be easily modified
and expanded, adding or modifying input channels, and
changing the multimodal fusion strategies, without impacting
the rest of the system. Most of the multimodal HRI systems
proposed in literature are based on a dominant modality; in
contrast, we propose a novel approach based on late fusion
classification based which permits flexible combination of
modalities. We introduce our methodology and provide a
case study considering as input channels gestures and speech.
We show that our approach allows to obtain a system which
is robust (few misunderstandings of users commands), flex-
ible and intuitive (users can freely combine the modalities).

The rest of this paper is organized as follows: in Section
II we present related works on multimodal systems and
introduce the main problems and approaches; in Section III
we introduce our general architecture, while in Section IV
we illustrate a case study and our tests results; finally, in
Section V we discuss conclusions and future developments.

II. BACKGROUND AND RELATED WORKS

In the field of HCI, multimodal interfaces were intro-
duced for the first time in [4], where objects were created
and moved on a screen using voice recognition and finger
pointing. In recent years, with the widespread adoption
of touch screens and fast speech recognition systems, the
possibilities of implementing multimodal information access
has received a strong acceleration and interfaces supporting
truly multimodal commands are available to everyday users.

In the field of the HRI, many approaches exploit mul-
timodal interaction to improve the human-robot communi-
cation. However, many of these systems are characterized
by a dominant modality. For example, in [5], Holzapfel et
al. developed an architecture for multimodal fusion in a
kitchen scenario, where speech is the main input modality
and pointing gestures are mainly used for object disambigua-
tion. In [6], Burger et al. propose a system that is able
to handle natural artefacts performing 3D gestures using a
stereo camera and a bank of collaborative particle filters.
Also in this approach the main input modality is speech.
When the interpreter needs a complementary gesture for dis-
ambiguation, the system performs a fusion with the gesture
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interpretation results provided on the same time window. Dif-
ferently from these approaches, we do not assume dominant
input modalities and a user should be able to interact by
using both multimodal and monomodal commands.

There are several issues to consider for the design of a
multimodal system. First of all, a multimodal system receives
inputs from various devices that are associated with a single
or multiple modalities. From these data, useful features
can be extracted. This information should be integrated
to produce a single interpretation. Multimodal fusion can
be produced at the feature level or at the decision level.
In feature level approaches, like in [7] (early fusion), the
extracted features are combined into a single vector and
then sent to an unit that produces an interpretation. The
main advantage of this approach is the possibility to use
the correlation of different modalities from the first analysis
steps. Moreover, the system needs only a single training
phase. Feature level fusion is useful when the modalities
are strongly coupled (e.g., voice and lips movements). On
the other hand, combining features from less coupled modes
can produce a lot of noise, caused by joining uncorrelated in-
formation. Finally, since features can be extracted at different
moments, it is necessary to synchronize their integration.

In this work we adopt a decision level approach (late
fusion) [8] that integrates the information from single modal-
ities after they have been interpreted from a recognizer.
This strategy is typical in HCI, because it is easily scalable
(modalities can be added or canceled), and more adaptable
(each mode can be analyzed in the optimal way, using its
own recognition model). However, in this approach training
is more complex: the system needs to be trained in different
phases (e.g., mode recognizers and the integration unit).
Synchronization between different modes is also required
because of latencies introduced by the modalities recogniz-
ers. There are several ways to obtain the modalities fusion.
The approaches can be divided in three broad categories:
rule based, estimator based, and classification based. Rule
Based Methods use sets of rules to integrate multimodal
information, as in [5], [6]. Some of these rules are hand-tuned
for the application domain, while others are based on sta-
tistical methods (e.g., weighted linear fusion). This method
is computationally efficient but has the problem of the
optimal weight determination. Usually, rule based systems
work fairly well but are very dependent on the application
domain. Estimators have been sometimes used in multimodal
fusion, as in [9], but they are typically used in feature level
fusion systems. Finally, many classifiers have been tested
for integrating multimodal information, like Support Vector
Machines (SVMs) [10], neural networks [11] and Bayesian
models [12]. These methods can obtain excellent results, but
need longer training phases than rule based methods. Our
approach adopts a late fusion classification-based approach.
Specifically, multimodal fusion is obtained by exploiting
SVMs in a HRI context. Classification-based late fusion
engines are not explored in multimodal HRI system, which
are usually designed as rule-based systems. Classification
systems, and in particular SVMs, have been proven to be

very efficient and to produce better results than rule-based
systems or other machine learning algorithms [13]. A similar
approach was presented in [14] for emotion recognition in
HRI, where all the classifiers for modalities and late fusion
are implemented using Bayesian models. [14] provides an
homogeneous framework using Bayesian networks, while
here, the focus is on the adaptability/ extensibility of the
framework and the use of a SVM for fusion.

III. SYSTEM ARCHITECTURE

The great interest risen by multimodal interaction, high-
lighted the need of formalizing the requirements an auto-
mated interactive system needs to fulfill to be considered
multimodal. This problem was also addressed by the W3C,
which established a set of requirements, concerning both
interaction design [15] and system architecture [16], for-
malized as proprieties and theoretical standard multimodal
architectures. The system, we propose, is structured in dif-
ferent layers and exploits a multimodal late fusion strategy
(see Fig.1). The Modalities Recognizers classify the features
extracted from the raw data, provided by the sensors, and cre-
ate a first list of possible interpretations (see Section III-A).
These interpretations are then synchronized and integrated
in the Fusion Engine (see Section III-B). The Fusion Engine
exploits an integration strategy based on classification.

Fig. 1. Architecture for multimodal human-robot communication.

A. Modalities Recognizers

Differently from what happens with mobile devices, in
HRI humans can express their intentions using many differ-
ent channels. Speech and gestures are obviously the most in-
tuitive, however other modalities can semantically contribute
to the construction of the intended meaning. For example,
robots can use humans’ positions, the emotional states (ac-
quired from speech, face expression, body posture, biosen-
sors etc.), further gestures on a touchable device connected
to the robot, and so on. According to our architecture, each
channel is separately processed to provide elaborated data.
The Modalities Recognizers classify the features extracted
from the raw data provided by the input sensors and create
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a first list of possible interpretations (N-Hypothesis) for the
fusion engine.

B. Late Fusion Engine

The local decisions are combined in a fused decision
vector that is analyzed by another unit to provide a final
multimodal interpretation of a command. In the following,
we describe the units involved in this process (see Fig.2).

Fig. 2. Fusion Engine.

The Time Manager communicates directly with the single-
channel recognizers. Its task is to synchronize the inputs of
the multiple channels (each message is timestamped, i.e.,
it contains the starting time and ending time of the data
analyzed by the recognizer). This synchronization process
is implemented by a set of rules. For example, we consider
two signals from different channels to be a part of the same
command if they overlap, or one follows another by a fixed
delay. The Action, Object, and Modifier classifiers receive as
input a fused decision vector, composed of the scores of the
single modalities recognizers. The Action classifier chooses
which action the user wants to perform, using additional
information about each modality:

• Contextual information, e.g. the amount of noise in the
environment, which can help the classifier to differently
weight each modality. For example, in a noisy envi-
ronment, visual information can be considered as more
reliable than the audio information.

• Location information, which can help to disambiguate
an action, e.g. if the user is pointing to an item while
speaking, the classifier can exclude those actions that
are not directed toward objects.

The Object Classifier chooses where the action should be
performed. This can be seen as a regression problem, for
modalities whose responses are points with 3D coordinates,

like pointing with an arm, or as a classification problem,
for modalities whose responses are item labels, like speech
commands. The Modifier classifier chooses how to perform
an action. For example, if the environment is very dark or
crowded it could choose to perform the action slowly and
carefully. The Frame Builder is to build up robot executable
actions and to integrate incomplete commands. In our sys-
tem, commands can be specified sequentially using the same
channel. For example, we could ask the robot to take an
object by first executing a “take” gesture and then pointing
to an object. Notice that the Action Classifier may be not able
to integrate these commands, because it takes decisions by
combining single interpretations from each modality. After
the Frame Builder has received responses from the classifiers,
the Frame Builder starts grouping this information. If two
commands are incomplete, this module tries to integrate their
information thus creating a single complete command, when
they are compatible. A command is considered incomplete if
it lacks information about one area, like its object or action.
Two commands are compatible if each one has information
that the other command lacks.

IV. CASE STUDY

In the following we illustrate the previous architecture
instantiated in a concrete HRI scenario.

a) Scenario: Many home and industrial settings for
HRI requires the possibility for the robot to autonomously
navigate (e.g., mobile delivery robots), to be of support for
the user during its activities (e.g., tool exchange robots), to
physically interact with humans (e.g., cooperative assembly
and transportation tasks), otherwise the robots can carry
out their tasks (repetitive and requiring an high precision)
in the presence of humans. Except for the case of pHRI,
some of the common characteristics of these activities can be
represented as combinations of pick, place, and carry actions.

As a case study we introduce a scenario where the user
and the robot are to cooperate in a lab environment in
order to put several colored objects in numbered places. The
user can interact with the robot using gestures and speech.
Despite the simplicity of this pick-place-carry scenario, we
can find enough elements to elaborate several interaction
patterns. Indeed, gestures are often ambiguous and may be
interpreted in different ways depending on the context and
the robot should be able to disambiguate the user commands
by integrating the interpretations from different modalities.
We designed the interaction introducing a set of primitives,
each associated with different combinations of gestures and
speech inputs. In particular, we considered the interaction
mediated by the following instructions: Take that object;
Drop the object; Give me the object; Stop; Re-evaluate the
command; Go there; Search that area; Come here.

b) Input Sensors: The system uses Microsoft Kinect
and a microphone as input sensors. Microsoft Kinect is a
device features an RGB Camera and a depth sensor. This
device allows us to recognize and track different users in
a scene representing them with a 20 joints skeleton. These
joints do not include the fingers, which are crucial for our
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gesture recognition problem. To find and track the fingers
we use blob analysis on a coloured glove (see Fig.3).

Fig. 3. Multimodal interaction with a mobile platform: a picture of an
interaction and a screen-shot from the developed multimodal tool.

c) Gesture recognition: Our gesture classification ap-
proach is based on Hidden Markov Models (HMM) which is
one of the most common choices in literature. We introduced
the following set of labels for gestures: Point at; Take;
Drop; No; Give; Come here; Search; Stop. We introduced the
following features: (a) The 3D coordinates of the shoulder,
elbow, and hand joints; (b) The 3D angles between the
shoulder and the elbow, and the 3D angles between the
elbow and hand; (c) An integer value representing the hand
pose (e.g., open, close, pointing); (d) A boolean value, that
indicates if the hand is directed toward the camera with the
palm or with the back. Information extracted from Kinect is
subject to noise that can complicate the gesture classification
problem. To cope with this problem we deployed a Kalman
Filter that estimates the 9 parameters corresponding to the
3D points of the user’s hand, elbow and shoulder. Our
points are specified as angles in the polar coordinate space,
normalized in the interval [0, 8] to reduce noise, as in [17],
this allow us to satisfy robustness requirements. We collected
16 samples of each of the 8 gestures from a population
of 10 subjects (5 males and 5 females). Given the gesture
corpus, we defined the HMMs prototypes associated with
the gestures. We introduced the following setting: vector
size 17 for the features; 3 hidden states associated with
the gesture initial, middle end ending phases; 3 Gaussian
mixtures on each state and transition matrix representing
the probability of transition between two states. Then, we
introduced and trained 8 HMMs, one for each gesture using
the corpus. To implement the HMMs we used the HTK
(Hidden Markov Model ToolKit) [18]. HTK is primarily used
for speech recognition tasks, but it has also been adapted to
other applications, like gesture recognition. The tools provide
support for speech analysis, HMM training, testing, and
results analysis. The decoder of the HMM provides the N-
Best list composed of the three best scores from the HMMs.

d) Speech Recognition: Data from microphone is con-
verted into text strings by an Automatic Speech Recognition
(ASR) unit and then analyzed by a Spoken Language Un-
derstanding (SLU) unit to extract meaningful information. To
collect audio we analyze small windows of data, each one
of size SR/6, where SR is the sampling rate, set to 44.1
Hz. We calculate the max amplitude A for each window and

compare it to a threshold δs (we detect a spoken segment if
A > δs). Google speech tools are used for the speech-to-text
conversion. As for SLU, we exploit a frame-based method.
A frame is a memory structure composed of a set of slots.
Some slots could be filled with other frames, creating tree-
like structures. After the ASR has produced a text string
corresponding to the spoken message, the SLU can parse
this sentence to build a list of hypothesized frames. In our
context, we define three frames: SimpleAction (commands
like “No” that do not need additional data), DirectedAction
(commands like “Take” that may need additional data), and
Object (represents the target of a DirectedAction).

e) Fusion Engine: The Action Classifier is imple-
mented by a SVM. Our SVM uses a feature vector of 7
parameters. The first 6 parameters represent the 3 best ges-
tures obtained from the HMMs, with their associated scores,
while the 7-th parameter is the value of the slot “name”
of the frame produced by the SLU unit, representing the
spoken command of the user. The SVM is implemented using
LibSVM [19]. We created our model as a C-SVC with a
radial basis function kernel. To choose the appropriate values
for the γ and C parameters we used the python grid tool,
provided by LibSVM. This tool uses a grid-search approach,
where various pairs of (C, γ) values are tried and the one
with the best cross validation accuracy is picked. We trained
our model with γ = 0.03125 and C = 128. The Object
Classifier is not implemented in this first prototype, because
3D coordinates are only specified by gesture commands and
labels are only specified by speech commands. We created
this unit for future development, where there could be more
modalities that provide spatial information. This holds also
for the Modifier classifier that is left as a future work.

f) Frame Builder: The Frame Builder groups informa-
tion provided by the action, object and modifier classifiers.
Information is represented as frames, extending the approach
used in the frame-based SLU. We defined four different
frames: Action (user commands), Object (target of the ac-
tion), Point (where the action should be performed), and
Modifier (attributes of the action). Frames are represented
as Extensible Markup Language (XML) files.

g) Sample run: A user wants to command the robot
to take the object on his right. He makes a pointing gesture
while saying “take the object”. Visual features are extracted
from Kinect and analyzed by HTK, which produces the
N-Best List N1 = [P (Point at) = 0.75, P (Drop) =
0.15, P (Take) = 0.1]. Meanwhile the ASR analyses the spo-
ken segment to produce the text string “take the object” with
confidence P (W ) = 0.99. The SLU unit analyses this string
and produces the frame F1 = {name = take; object =
{name = object; info = “”, location = “”}}. The spoken
and gesture components of the command are performed
simultaneously by the user, so the Time Manager joins
the responses from the recognizers in feature vector v2 =
[Point at, 0.75, Drop, 0.15, Take, 0.1, Take]. This vector is
analyzed by the SVM, that produces the N-Best List N2 =
[P (Take) = 0.97, P (ComeHere) = 0.02, P (Give) =
0.01]. The Frame Builder builds three different frames start-
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ing from N2, F1, and the analysis of the pointing gesture.
The frame with the higher likelihood produced by the Frame
Builder is F2 = {name = “Take”, object = {name =
“object”, probability = “0.99”}, point = {x = 500, y =
300, z = 50}, modifier = “”}.

A. System Testing

In order to evaluate the system performance, we performed
an off-line testing for the classifiers and the multimodal
architecture, using the recorded data. First, we tested our
gesture classifiers and then our multimodal classifier. To
evaluate the HMM used for gesture classification we per-
formed the 10-fold cross validation on our data set. The
model achieves an accuracy of 0.65. The test results are
depicted in Tab.I. Looking at the confusion matrix we can see
that some of the gestures, like Search and No, or Take and
Drop are often misclassified. This was expected because we
specifically defined the gestures to be ambiguous to test the
fusion engine disambiguation ability. To evaluate the SVM
model used for the multimodal fusion, we performed the 10-
fold cross validation. Training data were obtained by testing
HMMs with our gesture data set and collecting the responses.
These responses were chained with different speech labels to
obtain our desired data samples. We added a “No Command”
label for monomodal commands. Samples containing only
speech labels have been added to account for interactions
with only speech. Our final dataset contains 1000 samples.
The model generalizes well to independent data, achieving
an accuracy of 0.97. The test results are shown in Tab.II.

For the on-line testing we selected 20 users (10 males and
10 females) and asked them to interact with a mobile robot
(Pioneer 3DX) endowed with an on-board Kinect camera, a
microphone, and a Laptop (see Fig.3). In this scenario, the
users had to interact with the system trying to accomplish
the following task: two colored objects had to be placed in
specific locations while a hidden object had to be found by
the robot. The robot movements were shown on a screen in
order to provide a feedback to the user. Each user performed
three different tests: in the first test they had to interact using
only gestures, in the second only speech, and for the last test
multimodal commands were allowed.

The quality of the interaction was assessed by asking the
subjects to fill a specific HRI questionnaire, after each of
the tests. The aim of this questionnaire, inspired by the HRI
questionnaire adopted in [20], is to evaluate the naturalness
of the interaction from the operator’s point of view.

The questionnaire is composed of a personal information
section, containing the personal data and the experience
with robotics, and a general feelings section, containing
questions used to assess the perceived intuitiveness of our
approach. In order to measure the level of confidence of
the human with respect to the interaction, we asked about
its naturalness (how did you feel about the naturalness of
the interaction?), and about the legibility with respect to the
robot point of view - e.g., if the robot understands the human
intention expressed through the interaction - (Did the robot
react accordingly with your behavior?). Scores were in the

interval [1 − bad, . . . , 5 − excellent]. Results are shown in
Tab.III. Looking at the collected results we can see that, as
expected, multimodal interaction perform better than both
speech and gesture-based interactions. Most of the users
found multimodal commands more natural and efficient to
use. Our gestures were considered to be fairly natural and
users needed only a short training phase to learn how to
use them to interact with the system. Speech commands
were considered very efficient and, on average, more natural
than gestures. Our gesture set is composed of a sequence
of codified movements that, while designed to be natural
and easy to use, are not as rich as natural language, which
allows users to interact with the system without having to
remember our gesture set and how to execute them. The
exception to this rule were pointing gestures, which were
considered by some users to be more natural than speech to
give the robot the location of the item to take. The results
table contains the time that users took to complete the test.
As expected gestures test durations were longer than speech
or multimodal tests. Multimodal tests were shorter because
users gave both location and action commands to the robot
using gesture and speech simultaneously.

TABLE III
PERFORMANCE EVALUATION AND QUALITATIVE ANALYSIS.

Modality Average Score Accuracy Average Time (min)
Gesture naturalness = 3.8 56% 3.1±1.3

legibility = 3.4
Speech naturalness = 4.0 83% 2.3±0.5

legibility = 4.2
Multimodal naturalness = 4.8 91% 2.1±0.5

legibility = 4.4

V. CONCLUSIONS

We presented a multimodal framework for natural, robust,
and flexible human-robot communication and interaction.
The proposed system is intended to be extensible and easy
to modify. Most of the multimodal HRI systems rely on
a dominant modality, in contrast, in our system users are
free to express their instructions as combinations of different
modalities. For this purpose, we introduced a multi-layered
late fusion approach, based on classification. In this work, we
presented the system at work in a simple case study where
a human operator is to accomplish pick-place-carry tasks
interacting with a robot through gestures and speech. Using
a fusion strategy based on SVM, an original approach in
HRI multimodal systems, we achieved classification accuracy
comparable with the state of art. The system was explicitly
designed to allow for incremental developments, adding new
input modalities or changing the classification strategies.
New input channels, like user emotions, gaze detection, and
full body movements can be added. Emotions, in particular,
could be exploited to modulate the user commands providing
a broader range of actions. Different commands, even with
the accuracy resulting from multimodal fusion, can still be
ambiguous and be interpreted in different ways in different
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TABLE I
CONFUSION MATRIX FOR GESTURE RECOGNITION WITH PRECISION, RECALL AND F-MEASURE

Point at Come Here Give Search Take Drop No Stop P R F
Point at 15.2 0.1 0 0 0.2 0.4 0 0.1 0.96 0.95 0.95

Come Here 0.3 7.3 0.4 1.4 3.1 2.5 0.4 0.6 0.48 0.45 0.47
Give 0 0.1 13.8 0 0.6 0.8 0 0.7 0.78 0.86 0.82

Search 0 2.3 0 9.2 0.1 0.1 4.1 0.2 0.70 0.57 0.63
Take 0.2 2.4 0.4 0 8.7 4.1 0 0.2 0.44 0.54 0.49
Drop 0 2 0.6 0 5.3 7.7 0 0.4 0.45 0.48 0.46
No 0.1 0.6 0.2 2.5 0.5 0.1 10.6 1.4 0.67 0.66 0.66

Stop 0 0.2 2.2 0 1 1.1 0.6 10.9 0.75 0.68 0.71
Average 0.65 0.65 0.65

TABLE II
CONFUSION MATRIX FOR MULTIMODAL RECOGNITION WITH PRECISION, RECALL AND F-MEASURE

Point at Come Here Give Search Take Drop No Stop Go P R F
Point at 7.8 0.1 0.1 0 0 0 0 0 0 1 0.97 0.98

Come Here 0 10.5 0.3 0 0.2 0 0 0 0 0.98 0.95 0.96
Give 0 0 12.8 0 0.2 0 0 0 0 0.87 0.98 0.92

Search 0 0 0.1 8.8 0.1 0 0 0 0 1 0.97 0.98
Take 0 0.1 0.8 0 22.1 0 0 0 0 0.96 0.96 0.96
Drop 0 0 0.5 0 0 10.5 0 0 0 1 0.95 0.96
No 0 0 0 0 0.2 0 7.6 0.2 0 0.98 0.95 0.96

Stop 0 0 0 0 0 0 0.1 12.9 0 0.98 0.99 0.98
Go there 0 0 0 0 0 0 0 0 4 1 1 1
Average 0.97 0.97 0.97

situations. Moreover, failures and ambiguities may arise
in very noisy environment or simply due to the use of
network dependent sensors. To solve this problem, in future
work, we propose to introduce another layer, called Dialogue
Manager, which interacts with the fusion engine to integrate
the information about the human-robot dialogue context in
interpretation of the user commands.
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