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Abstract. In the present paper, asymmetric vibration of polar orthotropic annular circular plates of quadratically varying thickness
resting on Winkler elastic foundation is studied by using boundary characteristic orthonormal polynomials in Rayleigh-Ritz
method. Convergence of the results is tested and comparison is made with results already available in the existing literature.
Numerical results for the first ten frequencies for various values of parameters describing width of annular plate, thickness profile,
material orthotropy and foundation constant for all three possible combinations of clamped, simply supported and free edge
conditions are shown and discussed. It is found that (a) higher elastic property in circumferential direction leads to higher stiffness
against lateral vibration; (b) Lateral vibration characteristics ofF -F plates is more sensitive towards parametric changes in
material orthotropy and foundation stiffness thanC-C andS-S plates; (c) Effect of quadratical thickness variation on fundamental
frequency is more significant in cases ofC-C andS-S plates than that ofF -F plates. Thickness profile which is convex relative
to plate center-line tends to result in higher stiffness of annular plates against lateral vibration than the one which is concave and
(d) Fundamental mode of vibration ofC-C andS-S plates is axisymmetrical while that ofF -F plates is asymmetrical.
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1. Introduction

Annular circular plate is the simplest and widely used structural element in various engineering fields. The
vibration of such plates has been the subject of various studies. Leissa [1–8] summarized the information in his
well-known monograph and six comprehensive review articles. For the orthotropic plates, except for a few cases,
no closed form solution exits. Researchers have used different approximation methods. Among them Vijaya Kumar
and Ramaiah [9], Narita [10,11] and Gutierrez et al. [12] used Rayleigh-Ritz method, Greenberg and Stavsky [13]
used finite difference method and Ginesu et al. [14] and Gorman [16] used finite element method.

A lot of information on annular circular plates having varying thickness is also available in the existing literature.
The Chebyshev collocation method was used by Soni and Amba-Rao [17] to study the axisymmetric vibration of an
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Fig. 1. Annular circular plate resting on elastic foundation.

annular plate with linearly varying thickness. Gupta and Lal [18] have extended the above paper to include the effect
of in-plane forces. Lal and Gupta [19] solved the same problem for polar orthotropy. The axisymmetric vibration
of such plates was further considered by Gupta et al. [20] using spline technique. Gorman [16] employed finite
element method to compute natural frequencies of axisymmetric and asymmetric modes of polar orthotropic annular
plates of linearly varying thickness, Raju et al. [21] used the same technique to analyze axisymmetric vibration of
linearly tapered isotropic annular plates. Exact closed form solutions have been presented by Conway et al. [22]
for linearly tapered isotropic annular plates and Lenox and Conway [23] for polar orthotropic plates of parabolic
thickness variation. Kim and Dickinson [24] have analyzed composite circular plates as a particular case of annular
plates by taking inner radius very small but only few results are given on circular plates and that too are for uniform
thickness only. Wang et al. [25] studied free vibration analysis of annular plates by differential quadrature method.
Laura et al. [26] have analysed annular circular plates having cylindrical anisotropy and non-uniform thickness using
polynomial coordinates functions. Chen and Ren [27] studied lateral vibration of isotropic and orthotropic thin
annular and circular plates of arbitrarily varying thickness along radius using finite element method and obtained
natural frequencies and mode shapes of the axisymmetric and asymmetric modes. Gutierrez et al. [12] have analyzed
annular plates of polar orthotropy using Rayleigh -Ritz method. Recently, Neeraj et al. [32] have studied effect of
elastic foundation on the vibration of orthotropic elliptic plates with varying thickness.

In all of the above papers, variation of thickness depends only on one taper parameter and there is no mention of
nodal lines and mode shapes.

In the present paper, asymmetric vibration of annular plates of polar orthotropic material having quadratically
varying thickness along radial direction and resting on Winkler elastic foundation is analyzed by using boundary
characteristic orthonormal polynomials in Rayleigh-Ritz method. Two taper parameters are used for the quadratic
thickness variation, which give more flexibility to study thickness variation. Many thickness variations can be
approximated by it by suitably choosing the values of taper constants. Frequencies for the first ten normal modes
of vibrations are computed for various values of inner radius, taper, orthotropy and foundation parameters for all
three possible combinations of clamped-clamped, simply supported-simply supported and free-free conditions for
inner and outer edges respectively. Convergence of frequencies at least upto five significant figures is observed.
Comparison of frequencies in particular cases are made with the results already available in the literature. Apart
from close agreement, it is also found that the present results are better in almost all the cases. Figures are shown
for nodal lines and their corresponding three dimensional mode shapes.

2. Equation of motion

A thin annular plate of outer radiusa, inner radiusb, variable thicknessh(r), is made up of orthotropic material
and resting on Winkler elastic foundation is considered. Figure 1 shows a sketch of the plate problem treated in this
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paper. The plate is referred to cylindrical coordinate by taking the axis of the plate along thez-axis and the middle
plane of the plate in ther − θ plane. The displacement componentsu, v andw in the directions ofr, θ andz axes
respectively, are taken as

u(r, θ, z, t) = −z w,r ,
v(r, θ, z, t) = −z

r
w,θ (1)

andw(r, θ, z, t) = w(r, θ, t).

2.1. Energy considerations

The strain energy due bending of the plate is given by
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The kinetic energy of the plate is given by

Ke =
ρ
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whereρ is the density of the plate.
The potential energy due to Winkler elastic foundation [31] can be taken as

Pe =
1
2

a∫
b

2π∫
0

kf w
2 r dθ dr, (4)

wherekf is vertical stiffness of the foundation per unit area.
Introducing the following non-dimensional variables:

H = h/a,R0 = (b/a), R = r/a, er = Eθ/Er = νθ/νr, gr = G/Er sr =
(
1 − erν

2
r

)
,

Kf = 12 sr a kf/
(
Er, H

3
a

)
, andT = (t/a)

√
(Er/ρ) and for harmonic vibration taking

w(r, z, t) = a W (R, θ) cos ωT (5)

and

W (R , θ) = Wm (R) cos mθ (6)

wherem is the number of nodal diameters, Eqs (2), (3) and (4) could be reduced to
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Fig. 2. Thickness variation under different combination of taper parametersα andβ.

In the above expressions,Er, Eθ andνr, νθ are the Young’s modulii and Poission’s ratio’s inr andθ directions
respectively,G is the shear modulus,Kf is the foundation constant andω is the natural frequency of harmonic
vibration.

The above formulation is well known and can be found for instance in [32].

2.2. Thickness variation

The non-dimensional thickness of the plate is taken as

H = Ha F (R, θ) ,

whereHa = ha/a, ha is the thickness of the plate at the outer periphery and

F (R, θ) = 1 − α(1 − R) − β (1 −R)2 > 0 , α(1 − R0) + β (1 −R0)2 < 1, (10)

whereα andβ are the taper constants. Figure 2 shows a sketch of the plate variation considered in this paper.
The quadratically varying thickness has two taper parameters, which give more flexibility in thickness variation.

By suitably adjusting the taper parameters, many thickness variations can be approximated. As can be seen from
Fig. 2, value ofβ will produce thickness variation which is convex (β < 0) and concave (β > 0) with respect to plate
centerline. The special case of linear thickness variation whenβ = 0 is also shown.

The functionalJ (W )obtained by subtracting the maximum kinetic energy from the sum of the maximum strain
energy and the maximum potential energy due to foundation is
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where

Ω =
√
sr Ω∗. and Ω∗ =

√
12 ω/ha

For applying the Rayleigh-Ritz method the functionalJ (W ) is to be minimized.

2.3. Generation of boundary characteristic orthonormal polynomials

TheN -term approximation of the deflection function is taken as

Wm (R) =
N∑

j=1

cm j Φj (R), (12)

whereΦj are the boundary characteristic orthonormal polynomials satisfying at least the geometric edge conditions
of the plate. Using three terms recurrence relation given by Chihara [30],Φ j are generated as
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The value ofp is equal to 0,1 or 2 for free (F ), simply supported (S) or clamped (C), condition of the inner and outer
edges of the plate, respectively. Substitution ofWm (R) from Eq. (12) into energy Eq. (11) and then minimization
of J (W )as a function of the coefficientscm j leads to the following standard eigenvalue problem:
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The integrals involved in Eqs (15) and (17) are evaluated by using the formula
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Table 1
Convergence ofΩm,n whenα = β = 0.4, er = gr = 5.0, R0 = 0.5, Kf = 500

Edge
conditions N Ω0,0 Ω1,0 Ω2,0 Ω3,0 Ω4,0 Ω5,0 Ω0,1 Ω1,1 Ω6,0 Ω2,1

(inner-outer)

C-C 4 81.084 86.850 102.74 126.36 156.32 192.16 214.48 222.76 234.09 246.18
5 81.083 86.846 102.72 126.30 156.20 191.94 214.19 222.55 233.82 246.11
6 81.083 86.846 102.72 126.30 156.17 191.89 214.19 222.54 233.43 246.08
7 81.083 86.846 102.72 126.30 156.17 191.89 214.19 222.54 233.43 246.08

Ω0,0 Ω1,0 Ω2,0 Ω3,0 Ω4,0 Ω0,1 Ω1,1 Ω5,0 Ω2,1 Ω6,0

S-S 4 43.316 51.602 71.706 98.589 130.81 140.23 151.22 168.24 180.50 211.04
5 43.316 51.602 71.706 98.589 130.81 140.21 151.17 168.24 180.37 211.04
6 43.316 51.602 71.706 98.589 130.81 140.18 151.14 168.24 180.35 211.04
7 43.316 51.602 71.706 98.589 130.81 140.18 151.14 168.24 180.35 211.04

F -F 4 24.579 28.792 31.928 43.647 47.750 70.448 70.933 86.854 107.66 152.76
5 24.578 28.791 31.914 43.628 47.695 70.406 70.797 86.600 106.88 150.34
6 24.578 28.791 31.912 43.625 47.689 70.394 70.788 86.544 106.78 150.18
7 24.578 28.791 31.912 43.625 47.689 70.394 70.788 86.544 106.88 150.18

Table 2
Comparison ofΩm,n for polar isotropic annular plates of uniform thickness whener = 1.0 , gr = 0.384 , νr = 0.3 , Kf = 0

Edge → Ωm,n Ω0,0 Ω0,1 Ω1,0 Ω1,1 Ω2,0 Ω2,1 Ω3,0 Ω3,1

condition ↓
(inner-outer) Ref. R0

C-C
Present 0.1 27.28056 75.36626 28.91363 78.63135 36.11467 90.43646 51.21047 112.08970

[27] 27.28056 75.36631 28.91583 78.63537 36.61744 90.44888 51.21888 112.10877
[28] 27.3 75.3 28.4 78.2 36.7 90.5 51.2 −
[24] 27.281 75.369 28.918 78.642 36.622 90.463 51.221

Present 0.5 89.25075 246.34284 90.229157 247.73809 93.33169 251.96656 98.91900 259.14956
[27] 89.25066 246.34249 90.23018 247.73932 93.32111 251.97236 98.92790 259.16263
[28] 89.2 − 90.2 − 93.4 − 99.0 −
[24] 89.251 − 90.230 − 93.321 − 98.928 −
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The eigenvalues(Ω) and the eigenvectors (cm j) are computed using Jacobi method. The mode shapes are computed
from Eq. (12) and the nodal lines are computed from the same equation by puttingW m (R) = 0 .

As can be seen from the description above, Rayleigh-Ritz method with orthonormally generated boundary
characteristic polynomials requires a set of deflection shapes that satisfy at least the geometrical boundary conditions
of the vibrating structures. It reduces the problem into eigenvalue problem. Also, the method in combination with the
expression for thickness variation used, can be applied to practically any thickness variation provided the integrals
can be evaluated accurately. For a polynomial variation, it is possible to evaluate them in closed form, so there is no
loss of accuracy on that account but for other type of thickness variation some numerical methods have to be used.

3. Results and discussion

The following sets of computations have been carried out:

i) Convergent characteristics of the formulation used in this current study
ii) Comparison with available results by other researchers
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Table 3
Comparison ofΩm,n for isotropic annular plates of linearly varying thickness whenα = 1.0, β = 0.0 , er = 1.0, gr = 0.384, Kf = 0

Edge Source ν
condition of results R0 Ω0,0 Ω0,1 Ω1,0 Ω1,1 Ω2,0 Ω2,1 Ω3,0 Ω3,1

(inner-outer)

C-C Present 1/3 0.1 13.345452 35.05977 15.481653 37.471833 21.956461 44.993661 32.219335 57.838787
[27] 13.29217 34.87202 15.40388 37.25180 21.85060 44.72102 32.10169 57.55299
[24] 13.406 35.274 15.501 37.633 21.904 45.023 32.119 −
[22] 13.28 34.84 − − − − − −

Present 0.5 65.916233 180.70514 66.740116 181.778206 69.314345 185.02204 73.909881 190.50664
[27] 65.91615 180.70326 66.72713 181.75935 69.26474 184.95349 73.80586 190.35920
[24] 65.916 180.70 66.727 − 69.265 − 73.806 −
[22] 66.0 180.8 − − − − − −

Present 0.3 0.1 13.410906 35.15651 15.544613 37.546778 22.010689 45.02049 32.255201 57.817126
[27] 13.35744 34.96846 15.49996 37.36599 21.98872 44.87363 32.25351 57.73541
[24] 13.472 35.370 15.597 37.746 22.042 45.173 32.270 −
[29] 13.42 35.21 − − − − − −

Present 0.5 65.954113 180.75700 66.766592 181.812818 69.308426 185.00604 73.855777 190.41088
[27] 65.954 180.75511 66.76739 181.81198 69.31175 185.00839 73.86281 190.41769
[24] 65.954 180.76 66.767 − 69.312 − 73.863 −
[29] − 180.7 − − − − − −

Table 4
Comparison ofΩm,n for polar orthotropic annular plates of uniform thickness whener = 5.0 , gr = 0.356 , νr = 0.06, R0 = 0.5, Kf = 0

Edge Source Ω0,0 Ω1,0 Ω2,0 Ω3,0 Ω4,0 Ω5,0 Ω6,0 Ω0,1 Ω1,1 Ω2,1

conditions of results
(inner-outer)

S-S [15] 43.720 45.165 51.320 65.546 − − − 162.56 164.38 170.48
[10] 43.720 45.160 − − − − − − − −
[24] 43.720 45.164 51.320 65.547 89.068 120.79 159.10 162.55 164.37 170.47

(Present)
6 terms 43.720 45.164 51.320 65.547 89.068 120.78 159.10 162.55 164.37 170.47

iii) Vibration characteristics of annular circular plate resting on elastic foundation considering different combina-
tions of the following parameters: material polar orthotropye r, foundation stiffnessKf , geometry of annular
circular plateR0 and taper parameters for thickness variation (α, β).

Table 1 shows the convergence of the first ten frequenciesΩm,n of at least upto five significant figures for all
possible three combinationsC-C, S-S andF -F of edge conditions at inner and outer edges whenα = β =0.4,
er = gr = 5.0, R0 = 0.5 andKf = 500. The suffixesm andn in Ωm,n denote number of nodal diameters and
nodal circles, respectively.m = 0 corresponds to axisymmetric modes whereasm = 1, 2, 3, . . . corresponds to
asymmetric modes of vibration. It can be seen that 7 terms are required to get the accuracy of upto five significant
figures in all the cases.

The values ofνr andgr are taken as 0.3 and 5.0, respectively, for all computations except for the results presented
in Tables 2, 3, 4 and 5, where other values are used for the purpose of comparison to known results. The variations
in parameters for all possible three combinations of edge conditions for inner and outer edges are taken as follows:

1. er from 0.25 to 8.0 by doubling the value at each steps;
2. Kf from 0 to 1000 in steps of 200;
3. R0 from 0.1 to 0.6 in steps of 0.1;
4. α andβ from−0.4 to 0.4 in steps of 0.1.

Figure 3 shows the physical meaning of variations in R0 ander.
Comparison ofΩm,n for C-C edge condition for isotropic annular plates of uniform thickness with Chen and

Ren [27], Vogels [28] and Kim and Dickinson [24] is given in Table 2 whenν r = 0.3 and for isotropic annular plates
of linearly varying thickness with Chen and Ren [27], Kim and Dickinson [24], Conway’s exact solution [22] and
Sankarnarayanan et al. [29] for clamped periphery is given in Table 3 whenα = 1.0, β = 0.0 , e r = 1.0, gr =
0.384 ,Kf = 0andνr = 1/3 and 0.3.
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Table 5
Comparison ofΩm,n for polar orthotropic annular plates of linearly varying thickness with clamped Peripheries whenβ = 0, er = 50,
gr = 0.6652, νr = 0.0052, Kf = 0

R0, α No. of terms Ω0,0 Ω1,0 Ω0,1 Ω2,0 Ω1,1 Ω0,2 Ω2,1

0.1, 1.0 (Present) 6 terms 30.667 38.942 65.577 70.108 72.893 107.40 108.21
[24] 8 terms 30.667 38.942 65.577 70.108 72.893 107.40 108.21
[27] 30.42588 38.85691 64.98246 70.10823 72.52273 − 108.20416

Ω0,0 Ω1,0 Ω2,0 Ω3,0 Ω4,0 Ω0,1 Ω1,1

0.5, 1.0 (Present) 6 terms 82.268 84.400 96.623 129.55 186.36 204.52 206.45
[24] 8 terms 82.268 84.400 96.623 129.55 186.36 204.51 206.45
[27] 82.26839 84.39951 96.62299 − − 204.51273 206.45072

Ω1,0 Ω0,0 Ω2,0 Ω2,0 Ω3,0 Ω4,0 Ω1,1

0.5,−2.0 (Present) 6 terms 160.84 163.42 166.09 208.91 295.71 405.66 406.38
[24] 8 terms 160.84 163.42 166.09 208.91 295.71 405.66 406.38

(a) Annular geometry parameter R0  

 (b) Material polar orthotropy parameter re   

Eθ    νθ    

Er , νr   er=Eθ /Er ( or νθ /νr)  

er < 1 : Eθ < Er ( or νθ < νr)  
er > 1 : Eθ > Er ( or νθ > νr)  

R0=a1   R0=a2     ; a 2  > a 1  

Fig. 3. Meaning of annular geometry parameterR0 and material polar orthotropyer.

Table 4 shows the comparison ofΩm,n with results of Gorman [15], Narita [10] and Kim and Dickinson [24]
for polar orthotropic annular plates of uniform thickness with simply-supported peripheries whene r = 5.0 , gr =
0.356 , νr = 0.06 , R0 = 0.5,Kf = 0. Comparison ofΩm,n with Kim and Dickinson [24] and Chen and Ren [27]
for polar orthotropic annular plates of linearly varying thickness with clamped peripheries is given in Table 5 when
β = 0.0, er = 50, gr = 0.6652, vr = 0.0052 andKf = 0.

From the computational results of convergence checking (Table 1), the main advantage of Rayleigh-Ritz method
in monitoring rate of convergence through comparison of consecutive approximations is clearly seen. Increasing the
order of approximation can increase accuracy of the result and the process can be terminated when the required number
of frequencies has converged to the desired accuracy. Comparisons with available results (Tables 2 to 5) confirm
that Rayleigh-Ritz method possesses faster rate of convergence than other methods such as Frobenious method,
Chebyshev Collocation method, Spline method, differential quadrature method etc. Besides close agreement with
the results compared, results obtained using the Rayleigh-Ritz formulation with the use of boundary characteristic
orthonormal polynomials are found to be better even with lesser number of terms in almost all the cases. From
the analysis, it is found that in the generation of boundary characteristic orthonormal polynomials, there is a loss
of accuracy unless the precision is increased when proceeding to higher order polynomials. If precision is not
increased, the results tend to show convergence up to a certain degree and subsequent divergence thereafter due to
accumulation of rounding off errors.
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Table 6
Variation inΩ∗

m,n with er for C-C, S-S andF -F plates whenα = β = 0.4, gr = 5.0, R0 = 0.5, Kf = 500

Edge
conditions er Ω∗

0,0 Ω∗
1,0 Ω∗

2,0 Ω∗0
3,0 Ω∗

4,0 Ω∗
5,0 Ω∗

0,1 Ω∗
1,1 Ω∗

6,0 Ω∗
2,1

(inner, outer)

C-C 0.25 80.927 89.063 109.49 136.19 165.82 197.01 215.08 226.94 229.19 258.97
0.5 81.932 90.012 110.48 137.35 167.36 199.17 217.68 229.50 232.27 261.48
1.0 84.053 92.108 112.59 139.81 170.61 203.74 223.17 234.91 238.74 266.79
2.0 88.796 96.751 117.34 145.38 177.96 213.98 235.46 247.04 253.15 278.76
4.0 101.07 108.88 129.89 160.14 197.33 240.68 267.33 278.66 290.11 310.27
8.0 154.50 162.66 187.14 227.97 285.18 358.64 406.60 418.36 448.01 452.72

Ω∗
0,0 Ω∗

1,0 Ω∗
2,0 Ω∗

3,0 Ω∗
4,0 Ω∗

0,1 Ω∗
1,1 Ω∗

5,0 Ω∗
2,1 Ω∗

6,0

S-S 0.25 41.879 53.337 78.120 107.38 138.42 140.47 155.75 170.45 194.21 203.17
0.5 42.517 53.935 78.767 108.25 139.73 142.21 157.45 172.44 195.90 206.13
1.0 43.842 55.186 80.133 110.10 142.50 145.87 161.03 176.64 199.47 212.36
2.0 46.734 57.948 83.200 114.28 148.73 154.03 169.03 186.03 207.52 226.16
4.0 53.820 64.945 91.223 125.33 165.15 174.99 189.79 210.41 228.69 261.29
8.0 82.458 94.693 127.46 176.20 239.52 265.44 317.22 281.13 324.99 409.16

Ω∗
2,0 Ω∗

3,0 Ω∗
0,1 Ω∗

4,0 Ω∗
5,0 Ω∗

6,0 Ω∗
7,0 Ω∗

1,1 Ω∗
2,1 Ω∗

3,1

F -F 0.25 23.768 24.363 25.737 26.022 29.313 34.578 41.880 47.057 80.639 115.67
0.5 24.138 25.307 26.280 28.458 34.338 43.130 54.667 47.511 81.138 116.47
1.0 24.904 27.179 27.422 32.976 42.975 56.959 74.505 48.459 82.195 118.15
2.0 26.561 30.915 29.875 41.191 57.519 79.129 105.39 50.526 84.571 121.92
4.0 30.585 38.727 35.478 56.523 82.956 116.62 156.69 56.601 90.761 131.70
8.0 46.127 60.249 54.416 91.498 137.44 195.78 265.47 74.434 116.53 173.42

Table 7
Variation inΩm,n with Kf for C-C, S-S andF -F plates whenα = β = 0.4, er = gr = 5.0, R0 = 0.5

Edge
conditions Kf Ω0,0 Ω1,0 Ω2,0 Ω3,0 Ω4,0 Ω5,0 Ω0,1 Ω1,1 Ω6,0 Ω2,1

(inner, outer)

C-C 0 77.434 83.452 99.869 124.00 154.32 190.40 212.82 221.23 232.20 244.90
200 78.914 84.826 101.02 124.92 155.06 191.00 213.37 221.76 232.69 245.38
400 80.367 86.178 102.15 125.84 155.80 191.59 213.92 222.28 233.18 245.85
600 81.793 87.509 103.28 126.75 156.54 192.19 214.46 222.80 233.67 246.32
800 83.195 88.820 104.39 127.66 157.27 192.79 215.00 223.33 234.16 246.79
1000 84.574 90.112 105.49 128.56 158.00 193.38 215.54 223.85 234.65 247.26

Ω0,0 Ω1,0 Ω2,0 Ω3,0 Ω4,0 Ω0,1 Ω1,1 Ω5,0 Ω2,1 Ω6,0

S-S 0 36.031 45.672 67.582 95.643 128.61 138.08 149.20 166.54 178.72 209.70
200 39.108 48.132 69.261 96.832 129.49 138.92 149.98 167.22 179.38 210.24
400 41.960 50.472 70.901 98.007 130.37 139.76 150.76 167.90 180.03 210.77
600 44.630 52.708 72.503 99.168 131.24 140.60 151.53 168.58 180.67 211.31
800 47.149 54.853 74.071 100.32 132.11 141.43 152.30 169.25 181.32 211.84
1000 49.539 56.917 75.606 101.45 132.97 142.25 153.07 169.92 181.96 212.38

Ω2,0 Ω0,1 Ω3,0 Ω1,1 Ω4,0 Ω2,1 Ω5,0 Ω0,2 Ω3,1 Ω1,2

F -F 0 7.8404 14.545 21.887 35.897 41.690 65.932 66.916 83.038 99.550 103.94
200 16.692 21.352 26.359 39.168 44.188 67.752 68.491 84.458 100.76 105.08
400 22.262 26.532 30.175 42.191 46.552 69.524 70.031 85.854 101.96 106.22
600 26.692 30.893 33.559 45.015 48.801 71.253 71.537 87.229 103.14 107.34
800 30.483 34.734 36.631 47.676 50.950 72.941 73.012 88.584 104.31 108.46
1000 33.849 38.206 39.464 50.200 53.012 74.592 74.452 89.918 105.46 109.56

Variation inΩ∗
m,n with increasinger for C-C, S-S andF -F plates on elastic foundation is given in Table 6

whenα = β = 0.4 , gr = 5.0, R0 = 0.5 andKf = 5 00. To show the full effect ofer on frequencies, variation of
Ω∗

m,n instead ofΩm,n are taken in Table 6 because the parameterΩm,n containser whereasΩ∗
m,n is free fromer as

can be seen from Eq. (3). It can be seen in Table 6 that all frequencies increase monotonically with increasinge r.
This is due to the fact that, stiffness of the plate increases with the increase iner. The rate of increase is however
higher whener > 1. Sinceer = Eθ/Er, the results show that for the particular combination of parameters used,
higher elastic property in circumferential direction tends to produce higher stiffness with respect to lateral vibration
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Table 8
Variation inΩm,n with R0 for C-C, S-S andF -F plates whenα = β = 0.5, er = gr = 5.0 andKf = 500

Edge
conditions R0 Ω0,0 Ω1,0 Ω0,1 Ω2,0 Ω1,1 Ω3,0 Ω2,1 Ω4,0 Ω3,1 Ω5,0

(inner, outer)

C-C 0.1 33.692 39.908 53.800 56.623 67.672 81.931 98.877 114.53 140.02 153.55
0.2 35.991 42.205 68.718 58.608 80.362 83.196 108.76 115.16 147.18 153.81
0.3 42.123 48.248 93.935 64.363 104.06 88.078 130.26 118.75 166.70 156.14
0.4 54.425 60.349 138.85 76.187 143.83 99.348 168.20 128.86 203.40 164.60
0.5 77.739 83.354 204.60 98.798 212.66 121.70 235.37 150.69 269.56 185.33
0.6 123.72 128.97 335.38 143.84 342.68 166.55 363.80 195.59 396.78 230.12

Ω0,0 Ω1,0 Ω0,1 Ω2,0 Ω1,1 Ω3,0 Ω2,1 Ω4,0 Ω3,1 Ω5,0

S-S 0.1 29.751 35.095 45.126 50.562 58.900 74.761 89.219 106.29 129.33 144.24
0.2 29.875 35.644 51.885 51.381 65.001 75.359 94.632 106.59 133.42 144.37
0.3 30.994 37.434 66.038 53.922 78.278 77.849 107.43 108.51 145.69 145.62
0.4 34.357 41.558 90.840 59.283 102.18 83.796 130.82 114.23 169.48 150.54
0.5 42.316 50.195 134.50 69.488 144.94 95.450 172.85 126.65 212.25 162.94
0.6 60.348 68.620 217.50 89.518 227.12 117.83 254.00 151.26 293.96 189.20

Ω2,0 Ω3,0 Ω0,1 Ω1,1 Ω0,2 Ω4,0 Ω2,1 Ω1,2 Ω5,0 Ω3,1

F -F 0.1 25.039 32.359 32.471 40.771 47.470 47.780 62.489 65.370 78.220 93.751
0.2 25.030 32.345 32.138 40.697 46.002 47.771 62.395 66.153 70.213 93.522
0.3 24.995 32.269 31.098 40.672 49.771 47.694 62.574 70.335 70.162 93.124
0.4 24.903 32.040 29.912 41.115 61.022 47.388 64.065 74.127 69.878 94.121
0.5 24.724 31.558 29.244 42.669 83.740 46.602 68.174 80.843 68.952 99.052
0.6 24.446 30.756 29.561 46.342 129.276 45.104 76.683 146.82 66.868 110.99

of annular plate on elastic foundation.
Variation inΩm,n withKf for C-C, S-S andF -F plates is given in Table 7 whenα = β = 0.4 , er = gr = 5.0

andR0 = 0.5. It is observed that all frequencies increase monotonically with increasingK f and the rate of increase
falls in higher modes. This is due to the fact that, lateral stiffness of the annular plate-foundation combined increases
with the increase inKf . Comparison in terms of mode shapes shown in Tables 6 and 7 show that, there is no
change in the first 10 mode shapes for cases ofC-C andS-S plates. However for the case ofF -F plates, other
than the fundamental mode shape, all higher mode shapes are not coincident. This indicates that lateral vibration
characteristics ofF -F plates is more sensitive to parametric changes in material orthotropy and foundation stiffness.

Variation in frequencies with inner radiusR0 for C-C, S-S andF -F plates is given in Table 8 whenα = β =
0.5 , er = gr = 5.0 andKf = 500. It is observed that asR0 increases, all frequencies increase forC-C andS-S
plates. ForF -F plate, frequenciesΩ1,1, Ω0,2, Ω2,1, Ω0,1 andΩ3,1 first decrease and then increase;Ω1,2 increases
andΩ2,0, Ω3,0, Ω4,0 andΩ5,0 decrease. Closer examination of the results shown in Table 8 shows that change in
width of annular plates has no significant influence on the fundamental frequencies ofF -F plates. The effect of
increasing R0 on fundamental frequencies ofC-C andS-S plates is more pronounce. This later fact is especially
true for R0 greater than 0.3. As R0 increases, width of annular plate becomes narrower physically (refer Fig. 3(a)).
Under such circumstance, boundary condition of plates tends to exert higher influence on lateral stiffness resulting
in stiffer response to lateral vibration.

Variation inΩm,n with taper parametersα andβ for C-C, S-S andF -F plates are given in Tables 9 to 11 when
er = gr = 5.0 , R0 = 0.5 andKf = 500. It is observed that allΩm,n decrease continuously forC-C, S-S and
F -F plates. However, close examination reveals that effect of thickness variation on fundamental frequencies of
F -F plates is practically zero. Although the effect seems to be more pronounce for higher modes, nevertheless it
is deemed to be not significant. Comparing to the case ofF -F plates, effect of thickness variation on fundamental
frequencies is more significant in the case ofC-C plates thanS-S plates. For both cases ofC-C andS-S plates,
thickness profile which is convex relative to plate center-line (bothα < 0 andβ < 0, see Fig. 2(b)) tends to result in
higher stiffness of annular plates against lateral vibration than the profile which is concave (bothα > 0 andβ > 0,
see Fig. 2(a)). The same observation applies to the case ofF -F plates although the effect is very small relative to
C-C andS-S plates.

Nodal lines and their corresponding three dimensional mode shapes for the first ten normal modes of vibration
for all three combinations are shown in Fig. 4 to 9 whenα = β = 0.4, e r = gr = 5.0, R0 = 0.5 andKf = 500.
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Ω0,0 Ω1,0 Ω2,0

Ω3,0 Ω4,0 Ω5,0

Ω0,1 Ω1,1

Ω2,1

Ω6,0

Fig. 4. First ten nodal lines ofC-C plates whenα = β = 0.4,er = gr = 5.0,R = 0.5,Kf = 500.

It can be seen from Figs 4, 5, 6 and 7 that the fundamental mode of vibration for bothC-C andS-S plates are
axisymmetrical mode,Ω0,0. Vibration modes for both cases are similar up until the 5th mode. The case ofF -F
plates however exhibits fundamental mode of vibration which is asymmetry,Ω 2,0.

4. Conclusion

Rayleigh- Ritz method with orthonormally generated boundary characteristic polynomials has been used to
determine natural frequencies and mode shapes of annular circular plates resting on elastic foundation withC-C,
S-S andF -F edge conditions. Comparisons with available results have shown that the above formulation possesses
faster rate of convergence. With regards vibration characteristics, it is found that:
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                       Ω0,0                                          Ω1,0                                           Ω2,0

                                                                                                                                          
                                     
              
                       Ω3,0                                           Ω4,0                                           Ω5,0

                                                                                                                                            

                                                                                                                               
                      Ω0,1                                                     Ω1,1                                                    Ω6,0

 Ω2,1  

      

Fig. 5. Three dimensional plots for first ten normal modes of vibration forC-C plate whenα = β = 0.4, er = gr = 5.0, R0 = 0.5,Kf =
500.
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Ω0,0 Ω1,0 Ω2,0

Ω4,0

Ω1,1

Ω0,1

Ω5,0
Ω2,1

Ω3,0

Ω6,0

Fig. 6. For first ten nodal lines ofS-S plates whenα = β = 0.4,er = gr = 5.0,R = 0.5,Kf = 500.
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                   Ω0,0                                               Ω1,0                                             Ω2,0

                                                                                                                                          
                                     
                 
                    Ω3,0                                              Ω4,0                                            Ω0,1

                                                                                                                                            

                                                                                                                                                 
                    Ω1,1                                                      Ω5,0                                                        Ω2,1

 
 Ω6,0 

   

  

  

Fig. 7. Three dimensional plots for first ten normal modes of vibration forS-S plate whenα = β = 0.4,er = gr = 5.0,R0 = 0.5,Kf = 500.
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Ω2,0 Ω0,1 Ω3,0

Ω3,1

Ω1,2

Ω1,1 Ω4,0

Ω5,0

Ω2,1

Ω0,2

Fig. 8. First ten nodal lines ofF -F plates whenα = β = 0.4,er = gr = 5.0,R = 0.5,Kf = 500.
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                   Ω2,0                                              Ω0,1                                           Ω3,0

                                                                                                                                          
                                     
                   
                   Ω1,1                                              Ω4,0                                             Ω2,1    
                                                                                                                                            

                                                                                                                                                 
                   Ω5,0                                                       Ω0,2                                                     Ω3,1

 
 Ω1,2       

Fig. 9. Three dimensional plots for first ten normal modes of vibration forF -F plate whenα = β = 0.4,er = gr = 5.0,R0 = 0.5,Kf = 500.
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Table 9
Variation inΩm,n with α andβ for C-C plate whener = gr = 5.0 , R0 = 0.5 andKf = 500

α β Ω0,0 Ω1,0 Ω2,0 Ω3,0 Ω4,0 Ω5,0 Ω0,1 Ω1,1 Ω2,1 Ω3,1

−0.4 −0.4 106.36 113.18 132.12 160.49 196.61 239.84 283.52 294.00 323.55 368.14
−0.2 104.56 111.34 130.15 158.30 194.14 237.03 279.14 289.52 318.79 362.95

0.0 102.74 109.48 128.16 156.10 191.64 234.19 274.69 285.10 313.97 357.69
0.2 100.92 107.61 126.16 153.88 189.13 231.33 270.19 280.38 309.09 352.36
0.4 99.070 105.73 124.14 151.63 186.59 228.43 265.63 275.71 304.13 346.96

−0.2 −0.4 102.07 108.69 127.03 154.50 189.45 231.28 271.60 281.68 310.10 352.49
−0.2 100.25 106.82 125.03 152.27 186.93 228.42 267.11 277.09 305.22 347.67

0.0 98.404 104.93 123.01 150.03 184.39 225.52 262.56 272.43 300.28 342.27
0.2 96.544 103.03 120.97 147.76 181.82 222.58 257.93 267.71 295.26 336.78
0.4 94.666 101.11 118.92 145.47 179.22 219.61 253.24 262.91 290.56 331.22

0.0 −0.4 97.401 104.14 121.88 148.42 182.18 222.59 259.47 269.14 296.40 337.56
−0.2 95.884 102.24 119.84 146.15 179.61 219.65 254.86 264.42 291.39 332.08

0.0 94.010 100.32 117.79 143.86 177.01 216.67 250.86 259.63 286.30 326.52
0.2 92.117 98.385 115.71 141.55 174.38 213.66 245.42 254.77 281.13 320.87
0.4 90.203 96.428 113.61 139.21 171.71 210.60 240.57 249.81 275.86 315.11

0.2 −0.4 93.358 99.538 116.66 142.25 174.79 213.72 247.10 256.34 282.43 321.81
−0.2 91.469 97.604 114.58 139.93 172.15 210.70 242.35 251.48 277.26 316.17

0.0 89.560 95.650 112.48 137.59 169.48 207.64 237.52 246.54 272.01 310.42
0.2 87.630 93.674 110.36 135.22 166.78 204.53 232.59 241.51 266.65 304.56
0.4 85.677 91.675 108.21 132.82 164.07 201.38 227.57 236.38 261.19 298.58

0.4 −0.4 88.922 94.876 111.36 135.97 167.25 204.67 234.44 243.26 268.14 305.71
−0.2 86.997 92.904 109.24 133.60 164.54 201.55 229.53 238.24 262.79 299.86

0.0 85.050 90.909 107.09 131.20 161.80 198.39 224.53 233.12 257.34 293.89
0.2 83.079 88.891 104.92 128.76 159.01 195.17 219.42 227.89 251.77 287.79
0.4 81.083 86.846 102.72 126.30 156.17 191.89 214.19 222.54 246.08 281.55

Table 10
Variation inΩm,n with α andβ for S-S plate whener = gr = 5.0 , R0 = 0.5 andKf = 500

α β Ω0,0 Ω1,0 Ω2,0 Ω3,0 Ω4,0 Ω0,1 Ω1,1 Ω5,0 Ω2,1 Ω6,0

−0.4 −0.4 51.711 63.558 89.969 123.35 162.51 182.40 197.27 207.60 236.18 258.81
−0.2 51.218 62.769 88.736 121.74 160.56 179.99 194.60 205.29 232.88 256.14

0.0 50.722 61.982 87.506 120.13 158.59 177.55 191.89 202.96 229.56 253.44
0.2 50.222 61.197 86.279 118.52 156.61 175.08 189.16 200.61 226.20 250.70
0.4 49.720 60.415 85.055 116.90 154.62 172.58 186.39 198.24 222.80 247.94

−0.2 −0.4 50.073 61.277 86.582 118.83 156.77 174.73 174.73 200.49 188.91 250.18
−0.2 49.578 60.493 85.352 117.22 154.79 172.27 172.27 198.14 186.19 247.44

0.0 49.081 59.712 84.126 115.60 152.80 169.78 169.78 195.76 183.43 244.68
0.2 48.580 58.933 82.903 113.98 150.79 167.25 167.25 193.37 180.63 241.88
0.4 48.076 58.157 81.685 112.35 148.77 164.69 164.69 190.94 177.80 239.04

0.0 −0.4 48.415 59.017 83.204 114.30 150.98 166.96 180.45 193.29 215.92 241.40
−0.2 47.957 58.240 81.980 112.67 148.97 164.45 177.67 190.89 212.49 238.60

0.0 47.460 57.467 80.759 111.04 146.95 161.89 174.84 188.46 209.02 235.75
0.2 46.959 56.696 79.543 109.42 144.91 159.30 171.98 186.01 205.51 232.87
0.4 46.455 55.929 78.331 107.78 142.86 156.67 169.08 183.53 201.95 229.94

0.2 −0.4 46.853 56.786 79.843 109.74 145.13 159.09 171.87 185.97 205.59 232.46
−0.2 46.360 56.019 78.625 108.11 143.08 156.51 169.02 183.52 202.08 229.57

0.0 45.865 55.255 77.412 106.48 141.04 153.89 166.13 181.03 198.52 226.64
0.2 45.366 54.495 76.204 104.84 138.97 151.22 163.19 178.52 194.92 223.66
0.4 44.864 53.739 75.002 103.19 136.89 148.51 160.20 175.97 191.26 220.63

0.4 −0.4 45.287 54.594 76.503 105.18 139.21 151.09 163.16 178.53 195.09 223.32
−0.2 44.798 53.839 75.295 103.54 137.13 148.44 160.24 176.01 191.45 220.33

0.0 44.307 53.089 74.093 101.89 135.04 145.74 157.26 173.46 187.84 217.29
0.2 43.813 52.343 72.092 100.24 132.94 142.99 154.23 170.87 184.12 214.20
0.4 43.316 51.602 71.706 98.589 130.81 140.18 151.14 168.24 180.35 211.04
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Table 11
Variation inΩm,n with α andβ for F -F plate whener = gr = 5.0 , R0 = 0.5 andKf = 500

α β Ω2,0 Ω0,1 Ω3,0 Ω1,1 Ω4,0 Ω5,0 Ω2,1 Ω6,0 Ω3,1 Ω7,0

−0.4 −0.4 24.059 30.190 36.178 54.988 57.946 86.761 89.081 121.20 129.56 160.66
−0.2 24.035 29.912 35.828 54.164 57.256 85.797 88.044 120.03 128.17 159.33

0.0 24.016 29.657 35.488 53.347 56.574 84.838 87.001 118.86 126.76 158.00
0.2 24.002 29.426 35.157 52.539 55.901 83.885 85.952 117.69 125.34 156.67
0.4 23.994 29.221 34.836 51.742 55.238 82.938 84.896 116.52 123.90 155.34

−0.2 −0.4 24.093 29.510 35.228 52.572 55.837 83.547 85.386 116.95 124.37 155.36
−0.2 24.082 29.284 34.902 51.776 55.169 82.599 84.347 115.79 122.95 154.11

0.0 24.077 29.085 34.586 50.992 54.510 81.657 83.303 114.63 121.52 152.78
0.2 24.076 28.915 34.280 50.220 53.863 80.722 82.252 113.47 120.08 151.45
0.4 24.080 28.779 33.985 49.464 53.225 79.794 81.196 112.31 118.62 150.12

0.0 −0.4 24.165 28.954 34.345 50.246 53.792 80.386 81.717 112.74 119.15 150.24
−0.2 24.168 28.792 34.044 49.488 53.149 79.457 80.679 111.59 117.71 148.91

0.0 24.175 28.662 33.755 48.746 52.518 78.535 79.635 110.44 116.26 147.59
0.2 24.188 28.570 33.476 48.022 51.898 77.621 78.586 109.29 114.78 146.26
0.4 24.205 28.520 33.210 47.320 51.290 76.715 77.533 108.15 113.30 144.92

0.2 −0.4 24.277 28.553 33.534 48.036 51.820 77.285 78.083 108.58 113.91 145.07
−0.2 24.293 28.470 33.262 47.327 51.206 76.378 77.048 107.44 112.44 143.74

0.0 24.314 28.430 33.001 46.641 50.605 75.478 76.009 106.30 110.96 142.42
0.2 24.967 28.439 32.753 45.982 50.158 74.588 74.967 105.17 109.46 141.09
0.4 24.370 28.501 32.516 45.354 49.440 73.709 73.924 104.04 107.94 139.76

0.4 −0.4 24.429 28.348 32.804 45.971 49.931 74.253 74.495 104.47 108.63 139.92
−0.2 24.458 28.370 32.562 45.330 49.349 73.370 73.468 103.34 107.14 138.60

0.0 24.493 28.448 32.332 44.720 48.781 72.498 72.441 102.22 105.63 137.28
0.2 24.533 28.586 32.116 44.150 48.228 71.637 71.415 101.10 104.10 135.95
0.4 24.578 28.545 31.912 43.625 47.689 70.788 70.394 99.987 102.55 134.62

(a) higher elastic property in circumferential direction tends to produce higher stiffness with respect to lateral
vibration of annular plate on elastic foundation for all three cases ofC-C, S-S andF -F plates;

(b) Lateral vibration characteristics ofF -F plates is more sensitive towards parametric changes in material
orthotropy and foundation stiffness thanC-C andS-S plates;

(c) Effect of quadratical thickness variation on fundamental frequencies is more significant in cases ofC-C and
S-S plates than that ofF -F plates. Thickness profile which is convex relative to plate center-line tends to
result in higher stiffness of annular plates against lateral vibration than the one which is concave.

(d) Fundamental mode of vibration ofC-C andS-S plates is axisymmetrical while that ofF -F plates is
asymmetrical.
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