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Abstract: The b-family equation 𝑢𝑡 − 𝑢𝑥𝑥𝑡 + (𝑏 + 1)𝑢𝑢𝑥 = 𝑏𝑢𝑥𝑢𝑥𝑥 + 𝑢𝑢𝑥𝑥𝑥 is introduced by D.D Holm
and M.F Struley, which describes the balance between the convection and the stretching for small viscosity
in the dynamics of 1𝐷 nonlinear waves in fluids. In this paper, we performed Lie classical method and Direct
method for symmetries of the b-family equation. Using symmetries of the equation, similarity reductions and
exact solutions are obtained.
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1 Introduction
Degasperis and Procesi [1] found, using the method of asymptotic integrability, that only three equations from the follow-
ing six-parameter family

𝑢𝑡 + 𝑐0𝑢𝑥 + 𝛾𝑢𝑥𝑥𝑥 − 𝛼2𝑢𝑡𝑥𝑥 = ∂𝑥(𝑐1𝑢
2 + 𝑐2𝑢

2
𝑥 + 𝑐3𝑢𝑢𝑥𝑥), (1)

where 𝑐0, 𝑐1, ...𝛼, 𝛾 are real, were integrable up to third order: the KdV equation (𝛼 = 𝑐2 = 𝑐3 = 0), the Camassa-Holm
equation (𝑐1 = −3𝑐3

2𝛼2 , 𝑐2 = 𝑐3
2 ), and one new equation (𝑐1 = −2𝑐3

𝛼2 , 𝑐2 = 𝑐3), which on proper scaling, shifting the
dependent variable, and finally applying Galilean boost reads as [2, 3]

𝑢𝑡 − 𝑢𝑡𝑥𝑥 + 4𝑢𝑢𝑥 = 3𝑢𝑥𝑢𝑥𝑥 + 𝑢𝑢𝑥𝑥𝑥. (2)

KdV type of equations has been an important and well studied class of nonlinear evolution equations with numerous
applications in physical sciences, engineering fields and arises in various physical contexts.

The Camassa-Holm equation was first introduced by Camassa and Holm as a shallow water equation [4]. Like
KdV equation it admits solitary waves that are solitons. In addition to that, the Camassa -Holm equation models wave
breaking which the KdV does not. It models the propagation of unidirectional shallow water waves on a flat bottom, and
then represents the fluid velocity at time 𝑡 in the horizontal direction 𝑥 [4, 5]. The Camassa-Holm equation is a water
wave equation at quadratic order in an asymptotic expansion for unidirectional shallow water waves described by the
incompressible Euler equations, while the KdV equation appears at first order in this expansion [1, 5]. For further details
on Camassa-Holm equation one may refer to a paper by Holm and Staley [6].

As mentioned above, the Degasperis-Procesi equation (2) was first introduced in [1] by an asymptotic integrabil-
ity test within a family of third order dispersive equations. Then Degasperis et al. [3] proved the exact integrability of
(2) by constructing a Lax pair. The n-peakon solutions of equation (2) are derived by Lundmark and Szmigielski [7]
using inverse scattering approach. Mustafa [8] proved that smooth solutions to (2) have infinite speed of propagation, that
is, they lose instantly the property of having compact support. Well-posedness (in terms of existence, uniqueness, and
stability of solutions) of the Cauchy problem for the Degasperis-Procesi equation (2) was studied by Yin in a series of
papers [9–12] and by Coclite and Karlsen [13].
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In this paper, we investigate the symmetries of the following one parameter family of non-evolution equations

𝑢𝑡 − 𝑢𝑥𝑥𝑡 + (𝑏+ 1)𝑢𝑢𝑥 = 𝑏𝑢𝑥𝑢𝑥𝑥 + 𝑢𝑢𝑥𝑥𝑥, (3)

where the parameter 𝑏 is real. The equation is introduced by D. D. Holm and M. F. Struley [6], which describes the
balance between the convection and the stretching for small viscosity in the dynamics of 1𝐷 nonlinear waves in fluids. In
the particular case 𝑏 = 2 equation (3) becomes the dispersionless version of the integrable Camassa-Holm equation

𝑢𝑡 − 𝑢𝑥𝑥𝑡 + 3𝑢𝑢𝑥 = 2𝑢𝑥𝑢𝑥𝑥 + 𝑢𝑢𝑥𝑥𝑥. (4)

It may be noted that for 𝑏 = 3, equation (3) takes the form of Degasperis-Procesi equation (2).

Exact solutions play a vital role in the study of nonlinear phenomena as these solutions provide much informa-
tion on various aspects of the physical phenomena. Since equation (3) represents an important class of nonlinear partial
differential equations including two physically relevant systems (Camassa-Holm and Degasperis-Procesi), its exact solu-
tions are desirable. The present work, which is purely due to the intrinsic theoretical interest in the nonlinear system (3), is
devoted to extract exact solutions of this system. We present some explicit exact solutions to equation (3) and from these
solutions; one can easily derive the solutions of Camassa-Holm equation and Degasperis-Procesi equations as particular
case.

The outline of this paper is as follows: In section 2, the classical Lie method is utilized to obtain optimal system
of the subalgebras for the equation (3) and In section 3, we used Direct method to obtain similarity reductions of the
equation (3). In section 4, we have given some explicit exact solutions of the equation. In the last section, we have drawn
some conclusions.

2 Classical Lie Symmetries Analysis

Lie method [14, 15] of infinitesimal transformation groups which essentially reduces the number if independent variables
in partial differential equation (PDE) and reduces the order of ordinary differential equation (ODE) has been widely used
in equations of mathematical physics, some recent and important contributions are in [15–20]. The classical method of
for finding symmetry reductions of PDEs is the Lie group method of infinitesimal transformations and the associated
determining equations are an over determined linear system. As mentioned in [14], We let the group of infinitesimal
transformations be is defined as

𝑡∗ = 𝑡+ 𝜖𝜏(𝑥, 𝑡, 𝑢) +𝑂(𝜖2),
𝑥∗ = 𝑥+ 𝜖𝜉(𝑥, 𝑡, 𝑢) +𝑂(𝜖2),
𝑢∗ = 𝑢+ 𝜖𝜂(𝑥, 𝑡, 𝑢) +𝑂(𝜖2)

(5)

and impose the condition of invariance on (3). The invariance under (5) means that if 𝑢 is solution of equation (3), then
𝑢∗ is also a solution of it.

Herein, too, on invoking the invariance criterion as mentioned in [14], the following relation from the coefficients of
the first order of 𝜖 is deduced:

−𝜂𝑡 + 𝜂𝑡𝑥𝑥 − (𝑏+ 1)[𝜂𝑢𝑥 + 𝑢𝜂𝑥] + 𝑏[𝜂𝑥𝑢𝑥𝑥 + 𝜂𝑥𝑥𝑢𝑥] + 𝑢𝜂𝑥𝑥𝑥 + 𝜂𝑢𝑥𝑥𝑥 = 0 (6)

where 𝜂𝑡, 𝜂𝑥, 𝜂𝑥𝑥, 𝜂𝑥𝑥𝑥 and 𝜂𝑡𝑥𝑥 are extended (prolonged) infinitesimals acting on an enlarged space corresponding to
𝑢𝑡, 𝑢𝑥, 𝑢𝑥𝑥, 𝑢𝑥𝑥𝑥 and 𝑢𝑡𝑥𝑥 respectively. The method for determining the symmetry group of (3) mainly consists of finding
the infinitesimals 𝜉, 𝜏 and 𝜂, which are functions of 𝑥, 𝑡 and 𝑢. The general solution of equation (6) provides the infinites-
imal elements 𝜉, 𝜏 and 𝜂, for which the equation (3) possesses Lie symmetry. Using the expressions for 𝜂𝑡, 𝜂𝑥, 𝜂𝑥𝑥, 𝜂𝑥𝑥𝑥

and 𝜂𝑡𝑥𝑥 in equation (6) and 𝑢𝑡 must be replaced by equation (3). On substituting the coefficients of different differentials
equal to zero lead to number of PDEs in 𝜉, 𝜏 and 𝜂, that need to be satisfied. The set of determining equations for the
group infinitesimals 𝜉, 𝜏 and 𝜂, which is obtained from (6), after equating the coefficients of various derivative terms to
zero, is as follows:
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𝜉𝑢 = 0
𝜏𝑥 = 𝜏𝑢 = 0
𝜂𝑢𝑢 = 0
2𝜂𝑥𝑢 − 𝜉𝑥𝑥 = 0
𝜂𝑥𝑥𝑢 − 2𝜉𝑥 = 0
𝑢𝜏𝑡 − 𝜉𝑡 + 𝜂 − 𝑢𝜉𝑥 = 0
−𝜏𝑡 + 𝜉𝑥 − 𝜂𝑢 = 0
𝜂𝑡𝑢 − 2𝜉𝑡𝑥 + 𝑏𝜂𝑥 − 3𝑢𝜂𝑥𝑢 = 0
𝜂𝑡 − 𝜂𝑡𝑥𝑥 + (𝑏+ 1)𝑢𝜂𝑥 − 𝑢𝜂𝑥𝑥𝑥 = 0𝑢𝜂𝑢 − 𝑏𝑢𝜂𝑥𝑥𝑢 + 𝜉𝑡 − (𝑏+ 1)𝜂 + 𝑏𝜂𝑥𝑥 = 0.

(7)

The set of equations (7) helps us to obtain the infinitesimals 𝜉, 𝜏 and 𝜂, as follows:

𝜉 = 𝑎1
𝜏 = −𝑎3𝑡+ 𝑎2
𝜂 = 𝑎3𝑢,

(8)

where 𝑎1, 𝑎2 and 𝑎3 are arbitrary constants. The Lie algebra associated with equation (3) consists of the following three
vector fields

𝑉1 = ∂
∂𝑥 , 𝑉2 = ∂

∂𝑡 and 𝑉3 = 𝑢 ∂
∂𝑢 − 𝑡 ∂

∂𝑡 .

The similarity variable and form can be obtained by solving the characteristic equations

𝑑𝑡

𝜏
=

𝑑𝑥

𝜉
=

𝑑𝑢

𝜂
. (9)

The general solution of these equations involves two constants; one becomes the new independent variable 𝜉 and the
other, say 𝐹 , plays the role of new dependent variable. On substituting these solutions of (9) in equation (3), one gets the
reduced ordinary differential equation (ODE).

As mentioned in Olver [14], the commutator Table-1 and the adjoint Table-2 for above Lie algebra can be easily
constructed as follows:

Table 1: Commutator Table
𝑉1 𝑉2 𝑉3

𝑉1 0 0 0
𝑉2 0 0 −𝑉2

𝑉3 0 𝑉2 0

Table 2: Adjoint Table
𝑉1 𝑉2 𝑉3

𝑉1 𝑉1 𝑉2 𝑉3

𝑉2 𝑉1 𝑉2 𝑉3 + 𝜖𝑉3

𝑉3 𝑉1 𝑉2𝑒
−𝜖 𝑉3

The optimal sub algebra comprises of two vector fields viz. (i)𝑉1 + 𝜇𝑉3 and (ii)𝑉3. Now we primary focus on the reduc-
tions associated with these vector fields and attempt to find some exact solutions.

Vector field 𝑉1 + 𝜇𝑉3

For this vector field, on using the characteristic equations (9), the similarity variable and the form of the similarity solution
are as follows:

𝜉(𝑡, 𝑥) = 𝑡𝑒𝜇𝑥, 𝑢(𝑡, 𝑥) =
1

𝑡
𝐹 (𝜉).
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On using these in equation (3), the reduced ODE is given by

−𝜉𝐹 ′(𝜉) + 𝐹 + 𝜇2𝜉3𝐹 ′′′(𝜉) + 2𝜇2𝜉2𝐹 ′′ − 𝜇(𝑏+ 1)𝜉𝐹𝐹 ′ + 𝑏𝜇3𝜉3𝐹 ′𝐹 ′′ + 𝑏𝜇3𝜉2(𝐹 ′)2

+𝜇3𝜉3𝐹𝐹 ′′′ + 3𝜇3𝜉2𝐹𝐹 ′′ + 𝜇3𝜉𝐹𝐹 ′ = 0, (10)

where ′ prime denotes the differentiation with respect to the variable 𝜉. On transforming the independent variable by the
relation , 𝜉 = 𝑒𝑥𝑝(𝜁), the ODE (10) becomes

−�̇� + 𝐹 + 𝜇2 ...
𝐹 − 𝜇2𝐹 − 𝜇(𝑏+ 1)𝐹�̇� + 𝑏𝜇3�̇�𝐹 + 𝜇3𝐹

...
𝐹 = 0. (11)

Vector field 𝑉3

In this case, the form of the similarity variable and similarity solution is as follows:

𝜉 = 𝑥, 𝑢(𝑡, 𝑥) =
1

𝑡
𝐹 (𝜉).

The reduced ODE in this case is as follows:

𝐹𝐹 ′′′ + 𝑏𝐹 ′′𝐹 ′′ − (𝑏+ 1)𝐹𝐹 ′ − 𝐹 ′′ + 𝐹 = 0. (12)

3 Similarity Reductions by Direct Method
In this section, we use direct method introduced by Clarkson and Kruksal [21] to obtain similarity reductions of the equa-
tion (3). The novel features of it are entirely straightforward without group analysis.The direct method to find similarity
reductions is a very simple method that does not use group theory. The main idea is to seek a reduction of a given PDE in
the form

𝑢(𝑥, 𝑡) = 𝛼(𝑥, 𝑡) + 𝛽(𝑥, 𝑡)𝑤(𝑧(𝑥, 𝑡)), (13)

where 𝛼(𝑥, 𝑡), 𝛽(𝑥, 𝑡) and 𝑧(𝑥, 𝑡) are to be determined.
Substituting (13) into (3) and collecting monomials of 𝑤 and its derivatives yields

−𝛽2𝑧3𝑥𝑤𝑤
′′′ − (𝛽𝑧𝑡𝑧

2
𝑥 + 𝛼𝛽𝑧3𝑥)𝑤

′′′ − (3𝛽2𝑧𝑥𝑧𝑥𝑥 + 3𝛽𝑥𝛽𝑧
2
𝑥 + 𝑏𝛽𝛽𝑥𝑧

2
𝑥)𝑤𝑤

′′

−𝑏𝛽2𝑧3𝑥𝑤
′𝑤′′ + (−2𝛽𝑥𝑧𝑥𝑧𝑡 − 3𝛼𝛽𝑥𝑧

2
𝑥 − 𝛽𝑡𝑧

2
𝑥 − 3𝛼𝛽𝑧𝑥𝑧𝑥𝑥 − 2𝛽𝑧𝑥𝑧𝑥𝑡

−𝛽𝑧𝑡𝑧𝑥𝑥 − 𝑏𝛼𝑥𝛽𝑧
2
𝑥)𝑤

′′ + (−2𝑏𝛽2
𝑥𝑧𝑥 − 𝑏𝛽𝛽𝑥𝑧𝑥𝑥 − 𝛽2𝑧𝑥𝑥𝑥 − 3𝛽𝛽𝑥𝑧𝑥𝑥 − 3𝛽𝛽𝑥𝑥𝑧𝑥

+(𝑏+ 1)𝛽2𝑧𝑥 − 𝑏𝛽𝛽𝑥𝑥𝑧𝑥)𝑤𝑤
′ + (−2𝛽𝑥𝑧𝑥𝑡 − 𝑏𝛼𝑥𝛽𝑧𝑥𝑥 + 𝑏𝛼𝛽𝑧𝑥 − 2𝛽𝑥𝑡𝑧𝑥

+𝛼𝛽𝑧𝑥 − 3𝛼𝛽𝑥𝑥𝑧𝑥 − 𝛽𝑥𝑥𝑧𝑡 + 𝛽𝑧𝑡 − 𝛼𝛽𝑧𝑥𝑥𝑥 − 𝑏𝛼𝑥𝑥𝛽𝑧𝑥 − 𝛽𝑧𝑥𝑥𝑡 − 3𝛼𝛽𝑥𝑧𝑥𝑥
−2𝑏𝛼𝑥𝛽𝑥𝑧𝑥)𝑤

′ + ((𝑏+ 1)𝛽𝛽𝑥 − 𝛽𝛽𝑥𝑥𝑥 − 𝑏𝛽𝑥𝛽𝑥𝑥)𝑤
2 + (−𝑏𝛽2𝑧𝑥𝑧𝑥𝑥 − 2𝑏𝛽𝛽𝑥𝑧

2
𝑥)𝑤

′2

+(−𝑏𝛼𝑥𝛽𝑥𝑥 − 𝑏𝛼𝑥𝑥𝛽𝑥 + 𝛼𝛽𝑥 + 𝛼𝑥𝛽 − 𝛼𝛽𝑥𝑥𝑥 − 𝛼𝑥𝑥𝑥𝛽 + 𝑏𝛼𝛽𝑥 + 𝑏𝛼𝑥𝛽 + 𝛽𝑡)𝑤
+(𝑏+ 1)𝛼𝛼𝑥 − 𝛼𝛼𝑥𝑥𝑥 + 𝛼𝑡 − 𝛼𝑥𝑥𝑡 − 𝑏𝛼𝑥𝛼𝑥𝑥 = 0.

(14)

Demand that result be a ODE, impose conditions upon 𝑤 and 𝑧 and their derivatives that enable one to solve for 𝛼, 𝛽 and
𝑧. However, before doing this we make some remarks about this direct mehtod of seeking similarity reductions (using the
simplified ansatz (13)).

Remark1. We substitute (13) into the partial differential equation and then require that the resulting equation is an
ordinary differential equation for 𝑤(𝑧), so it is necessary that the ratios of different derivatives and powers of 𝑤(𝑧) be
function of 𝑧 only. This gives a set of conditions for 𝛼(𝑥, 𝑡), 𝛽(𝑥, 𝑡), 𝑧(𝑥, 𝑡) in the form of an overdetermined system of
equations, any solution of which yield a similarity reduction. (These conditions are both necessary and sufficient for (13)
to reduce the partial differential equation for 𝑢(𝑥, 𝑡) to an ordinary differential equation for 𝑤(𝑧)).

Remark2. We use the coefficient of 𝑤′′′𝑤 as normalizing coefficient and therefore require that the other coefficients be
of the form 𝛽2𝑧3𝑥Γ(𝑧), where Γ is function to be determined.

Remark3. We reserve uppercase greek letters for undetermined functions of 𝑧 so that after performing operations the
result can be denoted by the same letter [e.g, the derivative of Γ(𝑧) will be called Γ(𝑧)].

Remark4. There are three freedoms in the determination of 𝛼, 𝛽, 𝑧 and 𝑤 we can exploit, without loss of generality,
that are valuable in keeping the method manageable: (i) if 𝛼(𝑥, 𝑡) has the form 𝛼 = 𝛼0(𝑥, 𝑡) + 𝛽(𝑥, 𝑡)Ω(𝑧), then we can
choose Ω ≡ 0 [by substituting 𝑤(𝑧) → 𝑤(𝑧) − Ω(𝑧)] (ii) if 𝛽(𝑥, 𝑡) has the form 𝛽 = 𝛽0(𝑥, 𝑡)Ω(𝑧), then we can take
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Ω ≡ 1 [by substituting 𝑤(𝑧) → 𝑤(𝑧)/Ω(𝑧)]; and (iii) if 𝑧(𝑥, 𝑡) is determined by the equation of the form Ω(𝑧) = 𝑧0(𝑥, 𝑡),
where Ω(𝑧) is any invertible function, then we can take Ω(𝑧) = 𝑧 [by substituting 𝑧 → Ω−1(𝑧)].

We shall now proceed to find general symmetry reduction of b-family equation using this method. Use the coeffi-
cient of 𝑤′′′𝑤 as normalizing coefficient and using the freedoms in aforementioned remarks (1-4) as explained in [21–23],
we find that

𝛼 = 0, 𝛽 = 𝜎′(𝑡)
𝜃′(𝑥) and 𝑧 = 𝜃(𝑥) + 𝜎(𝑡).

Put these values in (13), on simplification we get

−𝜎′2𝜃′(𝑤𝑤′′′ + 𝑤′′′ + 𝑏𝑤′𝑤′′)− (𝑏+ 6)𝜎′2 𝜃′′
𝜃′ 𝑤𝑤

′′ + (𝜎′2 𝜃′′
𝜃′ − 𝜎′′

𝜃′ )𝑤
′′

+(−3(𝑏+ 1)𝜎′2 𝜃′′2

𝜃′3 + (𝑏+ 1)𝜎
′2
𝜃′ − (𝑏+ 4)𝜎′2 𝜃′′′

𝜃′2 )𝑤𝑤
′ + (𝜎′′ 𝜃′′

𝜃′ + 𝜎′2 𝜃′′
𝜃′2 + 𝜎′2

𝜃′ )𝑤
′+

(−(𝑏+ 1)𝜎′2 𝜃′′
𝜃′3 + (2𝑏+ 6)𝜎′2 𝜃′′3

𝜃′5 − (𝑏+ 6)𝜎′2 𝜃′′𝜃′′′
𝜃′4 + 𝜎′2 𝜃′′′′

𝜃′3 )𝑤
2 + 𝑏𝜎′2 𝜃′′

𝜃′ 𝑤
′2

+𝜎′′
𝜃′ 𝑤 = 0.

(15)

We continue to make this an ordinary differential equation for 𝑤(𝑧). Then the remaining coefficients yield

−𝜎′2𝜃′Γ1(𝑧) = −𝜎′2 𝜃
′′

𝜃′
(16)

−𝜎′2𝜃′Γ2(𝑧) = −𝜎′2 𝜃
′′

𝜃′
− 𝜎′′

𝜃′
(17)

−𝜎′2𝜃′Γ3(𝑧) = −3(𝑏+ 1)𝜎′2 𝜃
′′2

𝜃′3
+ (𝑏+ 1)

𝜎′2

𝜃′
− (𝑏+ 4)𝜎′2 𝜃

′′′

𝜃′2
(18)

−𝜎′2𝜃′Γ4(𝑧) = 𝜎′′ 𝜃
′′

𝜃′
− 2𝜎′2 𝜃

′′2

𝜃′3
+ 𝜎′2 𝜃

′′′

𝜃′2
+

𝜎′2

𝜃′
(19)

−𝜎′2𝜃′Γ5(𝑧) = −(𝑏+ 1)𝜎′2 𝜃
′′

𝜃′3
+ (6 + 2𝑏)𝜎′2 𝜃

′′3

𝜃′5
− (𝑏+ 6)𝜎′2 𝜃

′𝜃′′′

𝜃′4
+ 𝜎′2 𝜃

′𝜃′′′′

𝜃′3
(20)

−𝜎′2𝜃′Γ6(𝑧) = 𝜎′2 𝜃
′′

𝜃′
(21)

−𝜎′2𝜃′Γ7(𝑧) =
𝜎′′

𝜃′
, (22)

where Γ1(𝑧),Γ2(𝑧),Γ3(𝑧),Γ4(𝑧),Γ5(𝑧),Γ6(𝑧) and Γ7(𝑧) has to be determined.

First consider (16), equation (15) will be ordinary differential equation if
𝜃′′ = 𝐴𝜃′, where 𝐴 is a arbitrary constant.

Now from equation (22), equation (15) will reduce to ODE only if

𝜃′ = 1. (23)

So from equation (17),
𝜎′′ = 𝐵𝜎′ (24)

where 𝐵 is a arbitrary constant. Similarly other equations will be satisfied by taking
Γ2 = 𝐵,Γ7 = −𝐵 and Γ3(𝑧) = Γ4(𝑧) = 𝐶,

where 𝐶 is a arbitrary constant. From equation (24), we get

𝜎 = − ln(𝐵𝑡+𝐷)

𝐵
+ 𝐸, (25)

where 𝐷 and 𝐸 are arbitrary constants.

Using equation (23) and (25), we get
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𝑧 = 𝑥− ln(𝐵𝑡+𝐷)
𝐵 + 𝐶1 and 𝛽 = − 1

𝐵𝑡+𝐷 ,
where 𝐶1 is constant.

So b-family equation possesses similarity reduction of the form

𝑢(𝑥, 𝑡) = − 1
𝐵𝑡+𝐷𝑤(𝑧) and 𝑧 = 𝑥− ln(𝐵𝑡+𝐷)

𝐵 + 𝐶1,

where 𝑤(𝑧) satisfies
𝑤𝑤′′′ + 𝑤′′′ + 𝑏𝑤′𝑤′′ +𝐵𝑤′′ − (𝑏+ 1)𝑤𝑤′ − 𝑤′ −𝐵𝑤 = 0. (26)

Now we seek solutions of the b-family equation (3) in the form

𝑢(𝑥, 𝑡) = 𝛼(𝑥, 𝑡) + 𝛽(𝑥, 𝑡)(𝑦(𝑥)). (27)

Substituting this into (3) yields

−𝛽2𝑦𝑦′′′ − 𝛼𝛽𝑦′′′ − 𝑏𝛽2𝑦′𝑦′′ − (𝑏+ 3)𝛽𝛽𝑥𝑦𝑦
′′ + (−𝛽𝑡 − 3𝛼𝛽𝑥 − 𝑏𝛼𝑥𝛽)𝑦

′′

−2𝑏𝛽𝛽𝑥𝑦
′2 + (−(𝑏+ 3)𝛽𝛽𝑥𝑥 + (𝑏+ 1)𝛽 − 2𝑏𝛽𝑥

2)𝑦𝑦′ + ((𝑏+ 1)𝛼𝛽 − 𝑏𝛼𝑥𝑥𝛽
−3𝛼𝛽𝑥𝑥 − 2𝛽𝑥𝑡 − 2𝑏𝛼𝑥𝛽𝑥)𝑦

′ + ((𝑏+ 1)𝛽𝛽𝑥 − 𝑏𝛽𝑥𝛽𝑥𝑥 − 𝛽𝛽𝑥𝑥𝑥)𝑦
2 + ((𝑏+ 1)𝛼𝑥𝛽

+(𝑏+ 1)𝛼𝛽𝑥 − 𝛼𝛽𝑥𝑥𝑥 − 𝛽𝑥𝑥𝑡 − 𝑏𝛽𝑥𝛼𝑥𝑥 − 𝛼𝑥𝑥𝑥𝛽 − 𝑏𝛼𝑥𝛽𝑥𝑥)𝑦 + (𝑏+ 1)𝛼𝛼𝑥 + 𝛼𝑡

−𝛼𝛼𝑥𝑥𝑥 − 𝑏𝛼𝑥𝛼𝑥𝑥 − 𝛼𝑥𝑥𝑡 = 0.

(28)

This is an ordinary differential equation for 𝑦(𝑥) if the ratios of coefficients of different powers and derivatives of 𝑦 are
functions of 𝑥 only. There are three cases to consider (since the calculations are similar to those done in the more general
case above, details are omitted).

case (i) 𝛽𝑡 = 0

In this case, we get solution in the form of 𝑢 = 𝑒𝑥𝑦(𝑥), where 𝑦(𝑥) is given be

𝑦𝑦′′′ + (𝑏+ 3)𝑦𝑦′′ + 2(𝑏+ 1)𝑦𝑦′ + 𝑏𝑦𝑦′′ + 2𝑏𝑦′2 = 0. (29)

case (ii) 𝛽𝑥 = 0, 𝛽𝑡 ∕= 0

In this case, we get solution in the form of 𝑢 = − 1
𝑡+𝐶1

𝑦(𝑥), where 𝐶1 is constant and 𝑦(𝑥) is given by

𝑦𝑦′′′ + 𝑏𝑦𝑦′′ + 𝑦′′ − (𝑏+ 1)𝑦𝑦′ − 𝑦 = 0. (30)

case (iii) 𝛽𝑥 ∕= 0, 𝛽𝑡 ∕= 0

In this case, we get 𝛽 = 1
𝑡+𝐶2

,where 𝐶2 is constant, which contradicts the initial assumption that 𝛽𝑥 ∕= 0. Therefore there
are no special solutions of the b-family equation in this case.

Now we seek solutions of the b-family equation (3) in the form

𝑢(𝑥, 𝑡) = 𝛼(𝑥, 𝑡) + 𝛽(𝑥, 𝑡)(𝑦(𝑡)).

In this case, we will get solution of equation (3) as

𝑢(𝑥, 𝑡) = (𝜃1(𝑡)𝑒
𝑥 + 𝜃2(𝑡)𝑒

−𝑥)𝑦(𝑡)

or
𝑢(𝑥, 𝑡) = (𝜃1(𝑡) sinh(𝑥) + 𝜃2(𝑡) cosh(𝑥))𝑦(𝑡), (31)

where 𝜃1(𝑡) and 𝜃2(𝑡) are arbitrary functions of 𝑡.
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4 Some Exact Solutions of b-family Equation
In above section, we have given various reductions of b-family equation using Lie classical method and Direct method. In
this section we have given some exact solution corresponding to the ODEs that are obtained by the reduction of b-family
equation.
For equation (11), let us assume a special solution of the form

𝐹 (𝜁) =
𝑘 tanh(𝜁) + 𝑙 +𝑚 secℎ(𝜁)

𝑡𝑎𝑛ℎ(𝜁) + 𝑝+ 𝑞 secℎ(𝜁)
,

where 𝑘, 𝑙,𝑚, 𝑝 and 𝑞 are constants to be found out.

The substitution of the form of 𝐹 (𝜁) in equation (11) brings forth the following four possibilities:
(𝑖) 𝑝 = −1, 𝑘 = 𝑙 = −𝑞𝑚, 𝜇 = 1
(𝑖𝑖) 𝑝 = −1, 𝑘 = 𝑙 = −𝑞𝑚, 𝜇 = −1
(𝑖𝑖𝑖) 𝑝 = −1, 𝑘 = −𝑞𝑚, 𝑙 = 𝑚𝑞, 𝜇 = 1
(𝑖𝑣) 𝑝 = −1, 𝑘 = −𝑞𝑚, 𝑙 = 𝑚𝑞, 𝜇 = −1

The solution to equation (3) for the above cases can be obtained, respectively, in the following forms

(𝑖) 𝑢(𝑥, 𝑡) = 𝑚(−𝑞 tanh(𝑥+ln(𝑡))−𝑞+secℎ(𝑥+ln(𝑡))
𝑡(tanh(𝑥+ln(𝑡))−1+secℎ(𝑥+ln(𝑡))

(𝑖𝑖) 𝑢(𝑥, 𝑡) = 𝑚(−𝑞 tanh(−𝑥+ln(𝑡))−𝑞+secℎ(−𝑥+ln(𝑡))
𝑡(tanh(−𝑥+ln(𝑡))−1+secℎ(−𝑥+ln(𝑡))

(𝑖𝑖𝑖) 𝑢(𝑥, 𝑡) = 𝑚(−𝑞 tanh(𝑥+ln(𝑡))+𝑞+secℎ(𝑥+ln(𝑡))
𝑡(tanh(𝑥+ln(𝑡))+1+secℎ(𝑥+ln(𝑡))

(𝑖𝑣) 𝑢(𝑥, 𝑡) = 𝑚(−𝑞 tanh(−𝑥+ln(𝑡))+𝑞+secℎ(−𝑥+ln(𝑡))
𝑡(tanh(−𝑥+ln(𝑡))+1+secℎ(−𝑥+ln(𝑡)) .

(32)

Proceeding in a similar manner as in the previous case, and assuming a solution of the reduced ODE (12) in the form

𝐹 (𝜉) =
𝑘 tanh(𝜉) + 𝑙 +𝑚 secℎ(𝜉)

𝑡𝑎𝑛ℎ(𝜉) + 𝑝+ 𝑞 secℎ(𝜉)
,

where 𝑘, 𝑙,𝑚, 𝑝 and 𝑞 are constants to be found.
In this case, following two possibilities arise:
(𝑖) 𝑝 = 1, 𝑘 = −𝑞𝑚, 𝑙 = 𝑚𝑞
(𝑖𝑖) 𝑝 = −1, 𝑘 = −𝑞𝑚, 𝑙 = −𝑚𝑞

and the final solution to equation (3) can be expressed, in respective order of cases, as follows:

(𝑖) 𝑢(𝑥, 𝑡) = 𝑚(−𝑞 tanh(𝑥)+𝑞+secℎ(𝑥))
𝑡(tanh(𝑥)+1+𝑞 secℎ(𝑥))

(𝑖𝑖) 𝑢(𝑥, 𝑡) = 𝑚(−𝑞 tanh(𝑥)−𝑞+secℎ(𝑥))
𝑡(tanh(𝑥)−1+𝑞 secℎ(𝑥)) .

(33)

For equation (26), let us assume a special solution of the form

𝑤(𝑧) =
𝑘 tanh(𝑧) + 𝑙 +𝑚 secℎ(𝑧)

𝑡𝑎𝑛ℎ(𝑧) + 𝑝+ 𝑞 secℎ(𝑧)
,

where 𝑘, 𝑙,𝑚, 𝑝 and 𝑞 are constants to be found out.

The substitution of the form of 𝑤(𝑧) in equation (26) brings forth the following four possibilities:
(𝑖) 𝑝 = −1, 𝑘 = 𝑙 = −𝑞𝑚,
(𝑖𝑖) 𝑝 = −1, 𝑘 = −𝑞𝑚, 𝑙 = 𝑚𝑞.

The solution to equation (3) for the above cases can be obtained, respectively, in the following forms

(𝑖) 𝑢(𝑥, 𝑡) = − 1
𝐵𝑡+𝐷

𝑚(−𝑞 tanh(𝑥− ln(𝐵𝑡+𝐷)
𝐵 +𝐶1)−𝑞+secℎ(𝑥− ln(𝐵𝑡+𝐷)

𝐵 +𝐶1)

(tanh(𝑥− ln(𝐵𝑡+𝐷)
𝐵 +𝐶1)−1+secℎ(𝑥− ln(𝐵𝑡+𝐷)

𝐵 +𝐶1)

(𝑖𝑖) 𝑢(𝑥, 𝑡) = − 1
𝐵𝑡+𝐷

𝑚(−𝑞 tanh(𝑥− ln(𝐵𝑡+𝐷)
𝐵 +𝐶1)+𝑞+secℎ(𝑥− ln(𝐵𝑡+𝐷)

𝐵 +𝐶1)

𝑡(tanh(𝑥− ln(𝐵𝑡+𝐷)
𝐵 +𝐶1)+1+secℎ(𝑥− ln(𝐵𝑡+𝐷)

𝐵 +𝐶1)
,

(34)

where 𝐵,𝐷 and 𝐶1 are arbitrary constants.
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Solution of ODE (29) are

(𝑖) 𝑦 (𝑥) = C1 e(−2 𝑏−3/2−1/2
√
16 𝑏2+16 𝑏+1)𝑥

(𝑖𝑖) 𝑦 (𝑥) = C1 e(−2 𝑏−3/2+1/2
√
16 𝑏2+16 𝑏+1)𝑥,

(35)

where 𝐶1 is a arbitrary constants.

In this case, we get stationary solution of equation (3) as

(𝑖) 𝑢(𝑥) = 𝑒𝑥C1 e(−2 𝑏−3/2−1/2
√
16 𝑏2+16 𝑏+1)𝑥

(𝑖) 𝑢(𝑥) = 𝑒𝑥C1 e(−2 𝑏−3/2+1/2
√
16 𝑏2+16 𝑏+1)𝑥.

(36)

Now consider the ODE (30). Solutions of ODE (30) are given as

(𝑖) 𝑦 (𝑥) = C2 e𝑥

(𝑖𝑖) 𝑦 (𝑥) = C3 − C1+C2 𝑥
(𝑏+1)C2

,
(37)

where 𝐶2 and 𝐶3 are arbitrary constants and final solution of equation (3) can be expressed as

(𝑖) 𝑢(𝑥, 𝑡) = − 1
𝑡+𝐶1

C2 e𝑥

(𝑖𝑖) 𝑢(𝑥, 𝑡) = − 1
𝑡+𝐶1

(C3 − C4+C2 𝑥
(𝑏+1)C2

).
(38)

Let us assuming a solution of the reduced ODE (30) in the form

𝑦(𝑥) =
𝑘 tanh(𝑥) + 𝑙 +𝑚 secℎ(𝑥)

𝑡𝑎𝑛ℎ(𝑥) + 𝑝+ 𝑞 secℎ(𝑥)
,

where 𝑘, 𝑙,𝑚, 𝑝 and 𝑞 are constants to be found.

In this case, following two possibilities arise:
(𝑖) 𝑝 = 1, 𝑘 = −𝑞𝑚, 𝑙 = 𝑚𝑞
(𝑖𝑖) 𝑝 = −1, 𝑘 = −𝑞𝑚, 𝑙 = −𝑚𝑞

and the final solution to equation (3) can be expressed, in respective order of cases, as follows:

(𝑖) 𝑢(𝑥, 𝑡) = − 1
𝑡+𝐶1

𝑚(−𝑞 tanh(𝑥)+𝑞+secℎ(𝑥))
(tanh(𝑥)+1+𝑞 secℎ(𝑥))

(𝑖𝑖) 𝑢(𝑥, 𝑡) = − 1
𝑡+𝐶1

𝑚(−𝑞 tanh(𝑥)−𝑞+secℎ(𝑥))
𝑡(tanh(𝑥)−1+𝑞 secℎ(𝑥)) ,

(39)

where 𝐶1 is arbitrary constant.
From (31), We get the solution of (3) as follows

𝑢(𝑥, 𝑡) = (𝜃1(𝑡)𝑒
𝑥 + 𝜃2(𝑡)𝑒

−𝑥)𝑦(𝑡)

or
𝑢(𝑥, 𝑡) = (𝜃1(𝑡) sinh(𝑥) + 𝜃2(𝑡) cosh(𝑥))𝑦(𝑡),

where 𝜃1(𝑡) and 𝜃2(𝑡) are arbitrary functions of 𝑡.

5 Conclusion

We have investigated the symmetries and invariant solutions of b-family equation. Firstly, the Lie group method is utilized
for the purpose of obtaining the group infinitesimals. The basic fields of the optimal system lead to reductions that are
inequivalent with respect to the symmetry transformations.Secondly, we used direct method introduced by Clarkson and
Krusksal to find symmetries of b-family equation. We obtain the exact solutions of b-family equation corresponding to
reduced ODEs, which have been verified by putting them back into the original equation using Maple. One can easily
derive the exact solutions of Camassa-Holm equation and Degasperis-Procesi equations as particular case.

IJNS email for contribution: editor@nonlinearscience.org.uk



K. Singh, R.K. Gupta, S. Kumar: Exact Solutions of b-family Equation: Classical Lie Approach and Direct Method 67

References
[1] A. Degasperis and M. Procesi, Asymptotic Integrability, in: Symmetry and Perturbation Theory Ed.A. Degasperis

and G. Gaeta, World Scientific (1999):23-37.
[2] A. Degasperis, D.D. Holm and A. N. W. Hone, Nonlinear Physics: Theory and Experiment, II (Gallipoli 2002),

World Sci. Publ., River Edge, NJ (2003):37-43.
[3] A. Degasperis, D. D. Holm and A. N. I. Khon, A new integrable equation with peakon solutions, Teoret. Mat. Fiz.

133(2)(2002):170-183.
[4] R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett.

71(1993):1661-1664.
[5] R. S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves , J. Fluid Mech.

455(2002):63-82.
[6] D. D. Holm and M. F. Staley, Wave Structure and Nonlinear Balances in a Family of Evolutionary PDEs, SIAM J.

Appl. Dyn. Systems 2(2003):323-380.
[7] H. Lundmark and J. Szmigielski, G. Multi-peakon solutions of the Degasperis-Procesi Equation, Inverse Problems

19(2003):1241-1245.
[8] O. G. Mustafa, A note on the Degasperis-Procesi equation, J. Nonlinear Math. Phys. 12(2005):10-14.
[9] Z. Yin, Global existence for a new periodic integrable equation, J. Math. Anal. Appl. 283(2003):129-139.

[10] Z. Yin, On the Cauchy problem for an integrable equation with peakon solutions, Illinois J. Math. 47(2003):649-666.
[11] Z. Yin, Global solutions to a new integrable equation with peakons, Indiana Univ. Math. J. 53(2004):1189-1209.
[12] Z. Yin, Global weak solutions for a new periodic integrable equation with peakon solutions, J. Funct. Anal.

212(2004):182-194.
[13] G. M. Coclite and K. H. Karlsen, On the well-posedness of the Degasperis-Procesi equation, J. Funct. Anal.

233(2006):60-91.
[14] P. J. Olver, Applications of Lie Groups to Differential Equations, Graduate Texts Math. Vol. 107, Springer Verlag,

New York, 1993.
[15] K. Singh and R. K. Gupta, Lie symmetries and exact solutions of a new generalized Hirota-Satsuma coupled KdV

system with variable coefficients, Int. J. Engng. Sci. 44(2006):241-255.
[16] R. K. Gupta and Anupma, The Dullin-Gottwald-Holm Equation: Classical Lie Approach and Exact Solutions, Int.

J. Nonlinear Sci. 9(2010)(accepted).
[17] R. O. Popovych, Sophocleous and O. O. Vaneeva, Exact Solutions of a Remarkable Fin Equation, Appl. math. lett.

21(2008):209-214.
[18] M. Oberlack and A. F. Cheviakov, Higher Order Symmetries and Conservation laws of the G-Equation for Premixed

Combustion and Resulting Numerical Schemes, J. Engg. Math. 66:(2010):121-140.
[19] G. Bluman, P. Broadbridge, J. R. King and M. J. Ward, Similarity:Generalizations, Applications and Open Problems,

J. Engng. Math. 66(2010):1-9.
[20] O. Bogoyavlenskij, Restricted Lie Point Symmetries and Reductions for Ideal Magnetohydynamics Equilibria, J.

Engng. Math 66(2010):141-152.
[21] P. A. Clarkson and M. D. Kruskal, New Similarity Reduction of the Boussinesq Equation, J. Math. Phys.

30(1989):2201-2213.
[22] P. A. Clarkson, New Similarity Reductions and Painlev𝑒 Analysis for the Symmetric Regularised Long Wave and

Modified Benjamin-Bona-Mahoney equations, J. Phys. A: Math. Gen 22(1939):3821-3848.
[23] M. A. Hong-Cai, Generating Lie Point Symmetry Groups of (2+1)-Dimensional Broer Kaup Equation, Commun.

Theor. Phys 43(2005):1047-1052.

IJNS homepage: http://www.nonlinearscience.org.uk/


