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Abstract

In the Bénard problem for two-fluid layers, Takens—Bogdanov bifurcations can arise when the stability thresholds for both
layers are close to each other. In this paper, we provide an analysis of bifurcating solutions near such a Takens—Bogdanov
point, under the assumption that solutions are doubly periodic with respect to a hexagonal lattice. Our analysis focusses on
periodic solutions, secondary bifurcations from steady to periodic solutions and heteroclinic solutions arising as limits of
periodic solutions. We compute the coefficients of the amplitude equations for a number of physical situations. Numerical
integration of the amplitude equations reveals quasiperiodic and chaotic regimes, in addition to parameter regions where
steady or periodic solutions are observed. ©1999 Elsevier Science B.V. All rights reserved.

1. Introduction

The two-layer Bénard problem concerns instabilities that arise when a two-layer system is heated from below. An
instability may take place when the temperature difference between the upper and lower walls reaches a threshold
value, or it may take place even at very low Rayleigh humbers due to the stratification in the fluid properties. A
time-periodic onset of instability is possible, and there are two very distinct mechanisms involved. Each mechanism
consists of two modes competing with each other to set up the oscillations. The first is associated with a deformable
interface, and the oscillations are due to the competition between the Bénard instability (due to a bulk mode
destabilization) and a stabilizing interface (due to an appropriate stratification in fluid properties). The eigenmodes
consist of time-periodic convection cells which extend through both fluids. This mechanism was studied in [1,2].

* Corresponding author. Tel.: +1-540-231-8258; fax: +1-540-231-5960; e-mail: renardyy@math.vt.edu.
1 Permanent address. Department of Applied Mathematics and Physics, Tottori University, Tottori 680, Japan.

0167-2789/99/$ — see front matter ©1999 Elsevier Science B.V. All rights reserved.
PIl: S0167-2789(99)00007-X



172 Y.Y. Renardy et al./ Physica D 129 (1999) 171-202

real eigenvalues

<

>/1

Fig. 1. Sketch of cross-over of eigenvalues for a degenerate double zero eigenvalue over a range of bifurcation p&aneisbe defined
later as the Rayleigh number and the dimensionless depth of the lower liquid.
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Fig. 2. Sketch showing cross-over of real eigenvalues to form complex conjugates at two Takens—Bogdanov points.

A second mechanism for oscillatory onset arises when interface deformation is negligible. In this case, the critical
eigenmode consists of two cells arranged one above the other, that is, one in each fluid [3—6]. This mechanism
has recently drawn the interest from experimental physicists [7,8,24]. Oscillatory onset can occur if the effective
Rayleigh numbers for each layer are roughly equal. The fact that a criterion of nearly equal Rayleigh numbers
applies suggests that the occurrence of complex eigenvalues can be thought of as resulting from the near crossover
of two real eigenvalues. Indeed, there are special values for the ratios of fluid properties for which the problem is
self-adjoint, so real eigenvalues would then cross without becoming complex. This observation has led to studies of
bifurcations in the neighborhood of a double zero eigenvalue which represents such a crossover [9,10]. Fig. 1 is a
sketch of the situation for the two-layer problem, with the vertical axis representing a parameter such as the Rayleigh
number, and the horizontal axis representing another parameter, such as the dimensionless depth of the lower liquid.
In this paper, we focus on a less degenerate situation, which is that of a Takens—Bogdanov point. Fig. 2 is a sketch of
this in terms of the relevant parameters for the two-layer problem, analogous to Fig. 1. Such a point represents the
merger of two real eigenvalues which then form a complex conjugate pair. This is less degenerate than the crossover
of two real eigenvalues, which can be thought of as arising from the merger of two Takens—Bogdanov points. Since
the window for the complex eigenvalues in Fig. 2 is small, this picture may be thought of as a perturbation of the
situation in Fig. 1.

Takens—Bogdanov bifurcations without symmetries or with simple symmetries such @sO(2) are well-
studied and much is known about periodic and homoclinic solutions [11-14]. However, the case of the hexagonal
lattice, which is of interest for the Bénard problem, remains to be investigated.

Below, we discuss how to derive the amplitude equations governing the neighborhood of a Takens—Bogdanov
point, and how to obtain them by a limiting procedure when the frequency of a Hopf bifurcation tends to zero. We
then analyze the existence of bifurcating solutions of various symmetry classes. For the case of Hopf bifurcation,
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Fig. 3. Sketch of the region of validity of the analysis carried out in this paper ine, plane, where the bifurcation parameters are defined in
Section 5. The analysis for the Hopf case, with small frequencies, is limited to the region closeiaxigas shown.

periodic solutions which have ‘maximal’ symmetry were classified by Roberts, Swift and Wagner [15]. In the
Takens—Bogdanov case, we recover the same types of periodic solutions, but some of them can now also arise as a
secondary bifurcation from steady solutions rather than as a bifurcation directly from the rest state. In some cases,
we can also establish the existence of homoclinic or heteroclinic orbits which arise as limits of periodic solutions.
The aim of this bifurcation analysis is to provide solutions that are valid far enough from the point of onset to be
applicable to experiments. Recall that the analysis for the Hopf bifurcation case [5] is based on assuming a honzero
frequency, and as the frequency tends to zero, the region of validity of the analysis shrinks. Hopf bifurcations close
to a Takens—Bogdanov point involve eigenvalues with small frequencies, which limits the region of validity of the
theory in Fig. 3 to the area close to the negativexis, while the analysis for the Takens—Bogdanov case would
apply to the larger shaded region.

We identify several physical situations where a Takens—Bogdanov point occurs, and evaluate the coefficients of
the amplitude equations for each of them. We then look for stable patterns by integrating the amplitude equations in
time. In most cases, we find steady solutions on one side of the Takens—Bogdanov point and time-periodic solutions
on the other side with a transition regime in between. The preferred steady patterns are rolls and hexagons, and the
preferred periodic patterns are traveling rolls and “wavy rolls (1)”, and, in one particular case, oscillating triangles
[15]. We note that these were also the patterns predicted in the analysis of the Hopf bifurcation [5]. We do not find
a transition directly from steady to periodic behavior; instead we observe a variety of quasiperiodic and chaotic
solutions in the transition regime.

2. Double-layer convection

Fig. 4 illustrates the problem configuration. The upper boundary=at* is kept at a constant temperatugs
and the lower boundary at= 0 is kept at a higher constant temperatgife= 65 + A9*. At the temperature of the
top plate, fluidi has coefficient of cubical expansian thermal diffusivityk;, thermal conductivity;, viscosityu;,
densityp;, and kinematic viscosity; = u;/p;. S* is the dimensional interfacial tension coefficient. The average
height of the lower fluid (fluid 1) ig]. The average height of the upper fluid (fluid 2)is- /7 = I5. Length is made
dimensionless with the plate separatiéntime with *2/«1, velocity with «1/7*, and pressure Witl(lplicf)/l*z.
The dimensionless interface position is denoted by i1 + h(x, y, t), velocity byv = (u, v, w), the pressure by
p and the temperature l# The dimensionless temperature is denoted By (6* — 67)/A6* (asterisks denote
dimensional quantities).
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Fig. 4. Problem definition.

There are six independent dimensionless ratios arising from the stratification in the fluid propetties;/ 2,
r = p1/p2, ¥y = Kk1/k2, { = ki/ka, B = a1/az, h = 1/1* = 1— I, wherel, = [5/1*. There are four more
independent parameters: a Rayleigh nuniber ga1 A0**3/(k1v1), a PrandtlnumbeP = vy /1, a dimensionless
measure of the temperature difference between the glateg* which should be sufficiently small to be consistent
with the Oberbeck—Boussinesq approximation, and a surface tension par&raei™* /(k1u1). Here,a1 A9* =
RP/G,whereG = g(l*)3/xf. The gravity parametat appears in the base pressure field, and enters the analysis
through the interfacial normal stress condition if there is a density jump across the interface.

In each fluid, the governing equations are the heat transport equation, the Navier—Stokes equation and incom-
pressibility. The boundary conditions are zero velocity and constant temperatdré:atz = 0, 6 = 0 atz = 1.
The interface is at = 11 + h(x, y, t). The conditions to be satisfied at the interface are continuity of velocity,
temperature and heat flux, and balance of tractions.

2.1. Base Solution

A base solution to the problem is given by

1- Az for 0<z<l,

h:o, 'UZO, 9={A2(1_Z) for ll_f Z_<11 (1)

A1 =1/(1+ ¢l2), A2 = ¢ A1. Note the corresponding pressure field is found in Joseph and Renardy [16] and
enters into the interface continuity conditions in the perturbation equations.

2.2. Perturbation equations

We denote by the difference betweehand the base solution (1), and pyhe difference betweemand the base

solution. The perturbation stress tensor is dendted P[Vv+(Vv) "] — plinfluid 1, and P /m)[Vv+(Vv) T]— pl

influid 2, wherg V)T denotes the transpose\ob. The governing equations are, for0z < l1+h(x, y, t) (layer1),

the heattransportequatiér-Ajw— A6 = —(v-V)d, the momentum equatian- P Av+V j—RPle, = —(v-V)v,

and forly + h(x, y, 1) <z < 1(layer2)§ — Apw — A0y = —(v-V)0,0 — (r/m)PAv+rVj — (RP/B)0e, =

—(v - V), together with incompressibility div = 0. The boundary conditions at the watls= 0 andz = 1 are

v = 0,0 = 0. Letty, 1, denote two unit tangent vectors and Aebe a unit normal to the interface. By][we

denote the jump of a quantity across the interface, i.e. its value in fluid 1 minus its value in fluid 2. The interface
conditions at. = /1 + h are the continuity of velocity, shear stress, the jump in the normal stress is balanced by
surface tension and curvature, continuity of temperature, continuity of heat flux, and the kinematic condition. These
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are, respectively,

[v] =0, [t:-T-n] =0, i=12 2)

92 A% 82h on\2 92h_dh oh
Ps{Eh[1+ (5) ]+ B[+ (8)] - 20 )
[1+ (Vh)2J3/2 ’
oh oh

[6]1 =h(A1— A2, [kn-V]l =0, h+u—+v—=uw,
dax ay

1 1 RP (A
Mi=G|1l——-|)+RPA(—-1), My=——=—-A41).
r rp 2 \rB

Terms up to third order are required in the derivation of the amplitude equations. The momentum and heat transport
equations contribute quadratic nonlinearities. The interface conditions (2), expanded in Taylor series about the known
positionz = /5 and truncated, yield quadratic and cubic nonlinearities. These are lengthy expressions and can be
found in ([16] Chapter Ill) and [2]. We denote by the solution vectotu, v, w, p, 8, h) and write the system of
equations, boundary and interface conditions in the schematic form

[n-T-n] = —Mih + Moh® +

L(®) = N2(®, @) + N3(P, @, ), ©))

whereL, N2, N3 represent the linear, quadratic and cubic operators, respectively. We perform a three-dimensional
bifurcation analysis.

3. Examples of Takens—Bogdanov points

The examples investigated in this section are taken from [4,5]. The work in [5] was motivated by experiments on
Fluorinert lying under silicone oil Rhodorsil 47v10. A fictitious fluid, Anderinert, was inadvertently created by a
software package which was used by the experimental group to convert units. Anderinert has a thermal diffusivity
3.24 times that of Fluorinert. As it turns out, the onset of instability in the Fluorinert/silicone oil system is always
to a steady mode, while the Anderinert system has a window of parameters where a Hopf onset occurs. The
coalescence of two real eigenvalues to form a complex conjugate pair as shown in Fig. 2 occurs in both systems,
but for the Fluorinert system it only happens after the system has already become unstable, and oscillatory onset
does not happen unless the spatial period of solutions is artificially constrained. Indeed, the experiments of [8]
show a steady bifurcation occurring first, and then periodic solutions arise from a secondary bifurcation. In both the
Fluorinert/silicone oil and Anderinert/silicone oil systems, the onset of instability is close to a Takens—Bogdanov
pointif /1 is chosen appropriately. Below, we shall pursue the parameters for both of these systems, as well as those
used in [4].

The fluid parameters for the Anderinert/silicone oil system are given in row (a) of Table 1. Fig. 5 shows the
Rayleigh number and wave number at which onset of instability occurs as functibn®askillatory onset occurs
inthe interval 0486 < /1 < 0.504. The endpoints of this interval are not Takens—Bogdanov points, because the onset
of instability shifts to a different wave number:at= 0.486, there is an interaction of a real mode with wavenumber
6 and Hopf mode with wavenumber 5.3. /At= 0.504, there is an interaction of a real mode with wavenumber 5.6
and a Hopf mode with wavenumber 5.2. We find Takens—Bogdanov points if we fix the wavenumber, say at 5.3,
and this is illustrated in Fig. 6. The detailed numerical values for the left and right hand ends of the band of Hopf
modes in Fig. 6 are given in Table 2. We note that throughout the interval where Hopf modes exist, the frequencies
of the oscillatory modes remain small. In dimensionless terms, the largest frequencies we found are around 5 (for
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Table 1

(a) The first row gives the fluid parameters for Anderinert/silicone oil. For interfacial tension, a value of 20 in CGS units is used. (b) The second
row gives the parameters for Fluorinert/silicone oil. (c) The third row gives parameters for our. description of the example used in Fig. 2 of [17].
In their notation|(«, «, p, A, a) correspond to outs, y, r, ¢, l2/11). Rl‘l‘ is their Rayleigh number, their wavenumigegris a/1

P G N y B r ¢ m
(@) 125.3 1.57%10° 8.3x10* 1.299 0.926 2.092 0.5385 2.929
(b) 406.3 1.6510° 2.7x10° 0.401 0.926 2.092 0.5385 2.929
(c) 10 100 10° 2 0.2 10 1 1
x 10* onset conditions
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critical wavenumber
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Fig. 5. Onset conditions for the Anderinert/silicone oil system with fluid parameters as in row (a) of Table 1.
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Fig. 6. Onset conditions for row (a) of Table 1 when the wavenumber is fixed=ab.3.
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Table 2

The values of the lower fluid depth, Rayleigh number® and the least stable eigenvalue$or the Anderinert/silicone oil system are given

for points close to the left and right hand ends of the Hopf onset range of Fig. 6, wavenumber 5.3, showing the sensitivity with respect to the
parameters. In the cases belowRagicreases, complex conjugate eigenvalues turn into reals

11 R o
0.48417472 14190625 —0.0001£0.0006i
0.48417472 14190629 0.00008
0.48417472 14190629 —0.0003
0.50487 13883828 —0.0035:0.0037i
0.50487 13883853 0.00002&-0.00692
R=26,498.125
10 - . . ; . T . . .

[}

S st

>
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S of
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< 5F
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34 35 38 4 42 44 46 48 5 52 54
wavenumbers

Fig. 7. Fluorinert and silicone oil system with= 0.423 R = 26 498125. The Takens—Bogdanov point is closerte- 4.711.

Table 3
Values of the wavenumber, Rayleigh number and least stable eigenvalues are given for the Fluorinert system, second row of Table 1, with

1 = 0.423 fixed

a R o
4711 26498125 —0.006£0.0178i
471 26505 0.003+0.066i

instance in Fig. 6 the maximum value is between 3 and 4), in contfastaround 25 (note that the heat equation
involves the combinatiod — A#). Hence the assumption of small frequency is actually satisfied throughout the
range where Hopf modes exist. The Takens—Bogdanov analysis carried out in this paper applies near either end of
this range; a more comprehensive treatment would need to consider the merger of two Takens—Bogdanov points
which leads to a more degenerate and complicated bifurcation (see [9,10]).

The fluid parameters for the Fluorinert/silicone oil system are given in the second row of Table 1. If the wave
number is unconstrained, the onset of instability is always due to real eigenvalues. However, if we fix the spatial
period, there are windows of Hopf onsets and Takens—Bogdanov points in this system as well. This is illustrated
in Fig. 7, which shows the eigenvalues as a function of wavenumber for a fixed Rayleigh number and depth ratio
numerical values for the Takens—Bogdanov point are given in Table 3.

The third row of Table 1 shows data modeling Fig. 2 of [4]. They give the thermal diffusivity ratio (heir
m/(rpB) (theirv/«), m, the conductivity ratio, their wavenumbley = 2.7, volume ratiaz = I/11. Our wavenumber
a iskg/ 11, theira is ourlz/ I3, their Rayleigh number iRli‘. In their problem, the interface is constrained to remain
flat and P = oo. In order to model their problem we choose appropriately large values for our interfacial tension
parameter, Prandtl number atd With our choice of parameters, we examined the second row of their Table 1,
where they givéd; = 0.5, their Rayleigh number 1173, frequeney = 1.29 = Im olf. This translates t® =
18768 Imo = 5.16. We find Imo = 5.26 and neutraR = 18 777. The variation with respect to wavenumbers
was examined aR = 18 768 and the maximum growth rate was attained at 5.2 rather than 5.4. The small
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Table 4

The parameters for the third row of Table 1, with= 5.4 fixed

11 R o

0.48303 19560 0.03+0.006i
0.4837929 19516 0.0087+1.54i
0.5199 17850 M06:+0.135i
0.52 17825390625 —0.044-0.03i
0.52 17825 —0.04+0.08i

difference between our results and theirs may be due to the fact that they use an approximate set of equations for
the limit of infinite Prandtl number (Table 4) .

4. Bifurcation analysis at a Hopf bifurcation

We give a brief synopsis leading up to the amplitude equation for solutions in the neighborhood of a Hopf
onset, with double periodicity on the hexagonal lattice. These results have appeared in [2,5,16], where the final
amplitude equations are given in Birkhoff normal form. In this form, several terms including quadratic terms have
been transformed away under suitable coordinate transformations and the amplitude equation is then in its simplest
form. The Birkhoff normal form of the amplitude equations is the starting point for the analysis of [15], where a
comprehensive analysis of bifurcating periodic solutions with maximal symmetry is given.

Our analysis for the Takens—Bogdanov case will begin with the amplitude equations that result just prior to the
transformation to Birkhoff normal form, because it is precisely these coordinate transformations that break down
when the frequency tends to zero. In the Takens—Bogdanov case, a straightforward calculation of the generalized
eigenfunctions is lengthy so we wish to avoid this; we can find them more efficiently by taking a suitable limit of
the Hopf eigenfunctions as the problem approaches the Takens—Bogdanov case. We return to this issue in Section 5.

4.1. Spatial periodicity on the hexagonal lattice

In the x- and y-directions, the solution is assumed to be doubly periodic, @g.+ n1x1 + noxo, t) = 6(x, 1)
for every pair of integergni, n2), where the vectors; andx, span a hexagonal lattice of peridd : x; =
W - (V/3/2,1/2,0),xo = W - (0, 1, 0). The lattice obtained from this double periodicity is invariant under the
symmetries of the hexagon; that is, rotation by multiples ¢f, 86flection across the vectaes defined bya; =
(4 /W+/3)(1,0,0),as = (41/ W~/3)(—1/2, +/3/2,0), a3 = —a1 — a», and reflection across axes perpendicular
to thea;. The same periodicity condition holds #rv, 7 and5. These variables are expanded in Fourier series; e.g.,
6(x, v, z, t) is the sum ovet and! of modesy (z, r)ekar*+ilazx \We next recall the results for a Hopf bifurcation,
show the amplitude equation for this case, and then later build the connection to the Takens—Bogdanov case.
For the linearized problem (Section 3), the method of separation of variables §jietds’4(z), and similarly
for v, p, h. This leads to an eigenvalue problem &arin which the results do not depend on the direction of the
vectorkay + lay, but on its magnitude given by ka1 + las| = (47 /~/3W) (k? + 1% — k1)Y/?; the wavenumben
denotes the critical value determined in Section 3. This equation determines thelpgesidte lattice. The factor
k?+1? —kl canbe 01, 3,4, 7, .... The mean flow mode = [ = 0 is not of interest in the linear problem, but will
enter into the nonlinear interactions. The smallest nonzero valii@ f/2 — kl is 1, for whichW is (47'[/\/_305).
This occurs for six possible paits, /) : (+1, 0), (0, 1), (1, 1), and(—1, —1), yielding a sixfold degeneracy of
the corresponding eigenvalue. We pursue this case where the lattice size fits exactly into the critical period, and look
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Fig. 8. The eigenvectorg denote waves traveling to the six vertices of a hexagon constructed with veg¢tars az, —ai, —ay, —a3. The
corresponding wave amplitudes are

at the nonlinear interaction generated by the six Fourier modd& {12 — k! is chosen larger than one, then we
would seek solutions on a larger lattice with period a multiple of the critical one.) At criticality, there is a complex
conjugate pair of eigenvalues= *iw which has six eigenfunctions denoteddyycorresponding to the six values
of (k, ). The eigenfunctions computed in Section 3 correspond to the cdse 6f k = 1 and are denoted hy
and of the fornt (z) explias - x), wherea; = (a., 0, 0). The vectorsta,, +a» and+a3 emanate from the center
of a hexagon and terminate at its six vertices. The critical eigenfunctions are waves propagating in the directions of
the vertices. Fig. 8 illustrates the eigenvectors.

Let the parametex denote a set of bifurcation parameters, e.g., the difference between the Rayleigh number and
its critical valueR — Rc, or one of the fluid property ratios. Close to criticality, an initial disturbance proportional
to ¢x (L) evolves as expfu(1)t]. At criticality, . = 0, ©(0) = iw.

We denote the complex time-dependent amplitude function of the wave propagating in the direatidwy of
z;. In order to obtain an amplitude evolution equation for the weakly nonlinear analysis, the governing equations
are reduced to a system of ordinary differential equations in the 12-dimensionali}Famg invoking the center
manifold theorem which says roughly that in the neighborhood of criticality, the dynamics is governed by interactions
among the six critical modes. This allows us to write the solution in the form

® = &1 + Wy + higher order terms (4)
6 6 6
P = ZZ[Q + ZZ;’Q, ¥, =2Re Z ziZjVij +2iZjXij | »
i=1 i=1 i,j=1

where the interaction termfg;, x;; are found by certain projections in the center manifold reduction scheme. Details
of the derivation are contained in [2,16]. The following amplitude equation is obtained at the bifurcation point:

dz; .

d—; + Fi(z1,22, 23,24, 25,26, A) =0, i=1,...,6, %)
whereF;,i = 2, ..., 6 can be retrieved froni; by permutation of the arguments:

F2(z1, 22,23, 24,25, 26) = Fi(z2, 23, 21, 25, 26, 24),

F3(z1, 22, 23, 24,25, 26) = F1(z3, 21, 22, 26, 24, 25),

F4(z1, 22,23, 24,25, 26) = F1(z4, 25, 26, 21, 22, 23), (6)

Fs(z1, 22, 23,24, 25,26) = Fi(zs, 26, 24, 22, 23, 21),

Fs(z1, 22, 23,24, 25, 26) = F1(ze, 24, 25, 23, 21, 22),
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and

F1(21, 22, 23, 24, 25, 26, &) = (L(M)z1 + B1(M)z526 + B2(A)Z2Z3 + B3(1) (2573 + 2622) + Y1 (M)|21]21
+r2(M)zal’z1 + y3(W)z8za + ya()Z571 + vs(W)21l°Za + ve(M) |24l°Za
+r1(M) (122 + z31%)z1 + ve(W) (1221 + 1231974 + yo(A) (|25 + |z61%)22
+y1000) (12512 + 261274 + y11(A) (2225 + 2326)21 + Y12(2) (2225 + 2326)74
+y13(A) (2225 + Z3%6)z1 + v14(X) (2275 + Z3Z6)Z4- (7)

Terms of higher than third degree have been ignored. We remark that, in order to remove certain degeneracies, it
is necessary to include some fifth-order terms in the analysis of the Hopf bifurcation [15]. This is not the case for
the Takens—Bogdanov analysis, because the degeneracy is also removed by quadratic terms. These quadratic terms
transform away in the Birkhoff normal form for the Hopf bifurcation, but this transformation breaks down in the
Takens—Bogdanov limit. The coefficienis andy; are the Landau constants defined in [2] and in ([16], Chapter
.7).

The numerical code for calculating the Landau coefficients is developed from that used in [2,5]. We comment in
passing that, in the process, an error has been detected in the calculatigraofl x24. This affects the value of
the Landau coefficient, in [2,5]. It turns out that the qualitative nature of results in [2] is unaffected. The problem
studied in [2] is the two-layer Bénard problem in the case where oscillatory onset arises due to the coupling between
the Bénard instability and the interface motion; it is found in this case that the 11 solutions found in [15] are unstable
for the three data considered in [2].

In the present problem, where oscillatory onset arises due to the coupling of the motions in both layers, with
negligible interface motion, the results are different, and stable periodic branches are found to exist. The revised
results for [5] are contained in [18]. The results indicate that the periodic solutions most likely to be stable are the
traveling rolls and the wavy rolls (1).

5. Bifurcation analysis at a Takens—Bogdanov point

In the linearized stability analysis, we focus on an onset condition with a double zero eigenvalue. Associated with
this, there are six eigenfunctions denoted byand six generalized eigenfunctions denoted;byVe consider this
as a limiting case of the Hopf bifurcation analysis. As an example of the limits, we consider the case &f 2he 2
matrices

01 0 1
2=(o o) 2= (5 o)

The second matrix is a perturbation of the firB has a double zero eigenvalue, abd (the Hopf case) has
complex eigenvalueg = i /€ andjix = —i\/€. The eigenvectors for the Hopf case are

(10e) s ive)

In analogy with the present problem, we refer to these;aand ¢4, respectively. A& — 0, ¢; andZ4 become
the same and the set of eigenvectors is no longer linearly indeperdehas eigenvectof(l,). The generalized
eigenvectof satisfiesD1& = the eigenvector, s = (2). The eigenvector i$¢; + £4)/2 and the generalized
eigenvector ig¢1 — ¢4)/(n — f1). Note that ag — 0, the latter approaches a finite limit due to the expression
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w — it in the denominator. Thus¢y + ¢4)/2 and(¢1 — ¢4)/(u — 1) provide a linearly independent basis for the
eigenspace in the limit as— 0.

We return to the Hopf bifurcation on the hexagonal lattice, and consider the component of the sbjuiiopor-
tional to exgiax). We express this in terms of the eigenvector and generalized eigenvector of the Takens—Bogdanov
problem:

4142r§4_w1€1 ;i _ ®)
M=

The amplitude functions for the Takens—Bogdanov casej@rdw1. From this, we seethat = v1/2—w1/(u—
n),za = v1/2+ w1/(n — @), z2 = v2/2 — w2/(k — i1),25 = v2/2 + w2/(u — @A), 23 = v3/2 — w3/(1 — ),
andzg = v3/2 + w3/(n — &). The amplitude equations (7) have the fofin+ wz1 = nonlinear terms, and
74 + 1Z4 = nonlinear terms (this is obtained from (7) with — z4, zo0 — z5, z3 — z6). Our aim is to obtain
amplitude equations for the; and w1. Therefore, we add thg;-and z4-equations, and use + z4 = v1 and
uz1+iza = [(u+ ) /2]vy — w1, to obtainiy + [ (n + 1) /2]vy — w1 = nonlinear terms. We subtract the equations,
multiply through by(u — f1)/2, and obtainii — ((x — )2/4)v1 + ([1 + ] /2)w1 = nonlinear terms. We define
bifurcation parameters, = (u + 1)/2 ande, = (1 — 1)2/4. Our previously defined notationrepresents the set
(€1, €2). On the Hopf side of the Takens—Bogdanov point)) = iw soe; = 0, e = —w? (w — 0). The base
solution is unstable for; < 0 (sincez; ~ exp(—u(A)1)). This leads to amplitude equations as follows (up to cubic
order)

2101 + Zala =1

0=1w1 + €qw1 — €2v1 + brwows + bovov3 + b3(Wwov3 + wW3v2) + 01|w1|2w1 + czlw1|2v1
2 2 2- 2- 2 2 2 2
+c3lva|“wi + calvalva + csviwy + cewiv1 + c7(Jva|© + |va|9)v1 + cg(|v2| + v wa
+co(vaw2 + v3wz)vy + c10(vow2 + vzwz)vy + ..., 9

0=11 — w1 + €101 + b1waw3 + bav203 + b3(Wabs + W3d2) + é1|w1l>w1 + E2lwi|?ve
L2 ~ 2 B Y S 2 2 - 2 2
+c3lva|“wq + calva|va + csviw + cewiv1 + c7(Jv2|© + |va|9)v1 + cg(|v2| + |val9)wa
+Co(v2w2 + v3W3z)v1 + E10(Vo2w2 + Vzwa)ve + ..., (10)

where the coefficients, c;, b;, ¢; are real. The remaining equations are found by cyclic permutation of the indices.
We can transform away thg-term in Eq. (10) by the substitutiah; = w1 — €1v1. This yields the new equations

0= 11 + 2eqwy — €pv1 + b1213 4 botalis + b3(203 4 W3b2) + c1|wi|?w1 + c2lwi|?v1
2 2 2= 2- 2 2 2 2
+c3lva|“w1 + calvalva + csviw + cewiv1 + c7(Jv2|© + |va|9)v1 + cg(|v2]|” + |v3]F)wa
+co(vo2w2 + v3w3)v1 + c10(Vow2 + V3w3)vy + ..., (11)

0= i1 — w1 4 b1z + bavpva + ba(W2i3 + Wavz) + é1lw|?wy + E2lwi[?v1 + E3lva|?wr
+4lv1|Pv1 + Esvir + Gewiy + E7(|v2l? + [val®)v1 + Eg(lv2l? + [valP)wr
+E9(vo2w2 + vawa)v + E10(V2w2 + V3wW3) VL + . .. (12)
Here we have suppressed the hats, as well as terms which représgpe@urbations to the coefficients. The
following analysis will proceed on the basis of Egs. (11) and (12).

The small parameteeg ande, determine the behavior of the linearized system. We note that the eigenvalues of
the linearization are

—e1 £,/ ef + €. (13)
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Thus, we have real eigenvaluesif> —ef and complex eigenvaluesd$ < —ef. Moreover,—e¢1 is the average
of the two eigenvalues, and in the case of complex eigenvalues, the onset of instability (Hopf bifurcation) occurs
whene; = 0.

5.1. Rescaling of the equations

The aim of introducing new scales is to balance the linear terms with some of the nonlinear terms, while keeping
the symmetries in the problem as they are. Thusypttege scaled in the same manner, anduh@lso. According
to Eq. (12), we ought to scalg in the same manner as, and Eq. (11) suggests scaliig in the same way as
€2v;. We can balance linear and quadratic terms in Eq. (11) if we sgaie the same fashion az;z For the case
where the coefficients of the quadratic terms are small, and also to study the pattern of rolls for which quadratic
interaction terms vanish identically, it is of interest to consider a second scaling whisrecaled in the same way
aSvi?’. These considerations lead to the following two cases.

5.1.1. Case A

Here the coefficients of quadratic terms are assumed to be of order one, and cubic terms enter only as a lower
order perturbation. tir = /ed/dr,v; = €, e0 = +e, w; = €%, e1 = ye. To simplify notation, we
have writtenv;, w; for v;, w; in the equations that follow, and we now use a dot to dengtlr dThis leads to
V1 — w1+ ﬁégﬁzﬁg = 0 andwi F v1 + bovovs + /€(2yw1 + b3(w2v3 + w3v2)) = 0. These combine into one
equation:

U1 F v1 + bataiiz + V€[2y v1 + (V203 + V302) (b2 + b3)] = 0.

5.1.2. Case B
The coefficients of the quadratic terms are small (this scaling is also appropriate for rolls for which the quadratic

terms vanish): gdr = ed/dr, v; = €¥;, w; = €2W;, b; = el;i, b; = €b;, ep = +€2, €1 = ye2.

01 — w1 + €(batiats + Ealval?v1 + E7(Jv2| + |v3Hv1) = 0,
W1 T v1 + bavavs + calval?va + c7(Jv2f® + [vg)v1 + €[2y w1 + b3(203 + Wav2)
+ calv/Pw + csvZib + ca(|v2l? + vs|?) w1 + co(Wav2 + W3va)v:
+ c10(w2v2 + wavz)vy)] = 0. (14)

Elimination yields:

i1 F v1 + bavavs + calvi/?v1 + c7(jv2l? + |vs[P)vs + €[2y 01 + (bs + b2) (V203 + v302)
+ (c3 + 284)[v1|%01 + (c5 + Ea)v201 + (cg + E7)([v2]? + |v3|P)v1 + (cg + &7) (V22 + D3vg)vs
+ (c10 + ¢7) (V202 + v303)v1] = 0. (15)
In the following, we discuss various types of solutions for these equations. We shall focus on Case B, since first,
the equations for Case A are a subset of those for Case B, and second, the equations for Case A are too severely
truncated to capture important aspects of the dynamics; for instance, they do not allow for rolls solutions or for

stable steady hexagons. In the following discussion, we shall drop the hat bnaheb; in Eq. (15).
We note that foe = 0, the Eq. (15) is a Hamiltonian system with Hamiltonian

3 3 3
1 1 1 1
H=3) lﬁ|vi|2 F52 lﬁ|vi|2 + bz Re(1203) + 7ca) 1:|v,-|“ + Ser(ual?val*+ vzl val*+vs*|v1|?). (16)
1= 1= 1=
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(Denotev; = x; +iy;, thenH = (1/2)ka,f+ V(q1, ... ,qs), Where they, denotexs, y1, ..., x3, y3, gk = Pk,
the p denotexy, ..., y3, pr = —0V/dgx.)

It would be possible to subject Eq. (15) to further transformations to achieve a normal form with fewer coefficients
involved. We shall not pursue this, since our discussion below focusses on the Hamiltonian system obtained for
€ = 0, which cannot be simplified further.

5.2. Time-periodic patterns

Our analysis will be concerned mostly with periodic solutions. In contrast to the case of Hopf bifurcation,
however, we are not concerned just with the bifurcation of periodic solutions from the rest state. A new possibility
in the Takens—Bogdanov case is the secondary bifurcation of periodic solutions from steady states, which we shall
investigate in some detail. Other new features include quasiperiodic states and homoclinic or heteroclinic orbits
which can arise as limiting cases of periodic orbits.

The patterns found in [15] for the Hopf bifurcation will play an important role in our analysis as well as in the
numerical results below. The following is a list of possible steady solutions and of the periodic solutions of [15],
together with the symmetries which they satisfy. We note that the translation symmetries of the original problem
manifestthemselvesin Eq. (15) as the symmetry> viexp(2ia), v — voexp(—ia+iB), vz — vaexp(—ia—ip).

For the list below, we have placed centers or axes of symmetry conveniently to get the simplest possible form (e.g.
hexagons as listed have their center of symmetry at the origin); clearly other solutions (e.g. a two-parameter family
of hexagons) can be generated by spatial translations.

The possible steady patterns are as follows:

1. Rolls:vy = v3 =0, vy real.

2. Hexagonsvi; = vy = vy real.

3. Rectangles (patchwork quilt); real,vo = v3 real.

The latter class of solutions is the one referred to as type IV in [19].

The periodic solutions of Roberts, Swift and Wagner [15] are as follows:

Standing rollsvy = v3 = 0, vy real,v1(t + 7/2) = —v1(t).

Standing hexagonsj = vy = vz real.

Standing patchwork quilii; real,vp = va real,vo(t + T/2) = —v2(t), v1(t + T/2) = v1(2).
Standing regular trianglesj = vy = vz, v1(t + T/2) = v1(¢).

Traveling rollsiwvy; = v3 = 0, v1 = Vexpliot).

Traveling patchwork quilt (1v; = Viexp2iwt), v2 = vz = Voexp(—iwt).

Traveling patchwork quilt (2uy = Vi real,vo = 3 = Voexpliowt).

Oscillating trianglesv1 = vy = vs, v1(t + T/3) = exp2ri/3)v1(t).

Twisted patchwork quiltyg real,v2(¢) = v1(z + T/3), v3(t) = v1(t + 2T /3).

. Wavy rolls (2)w1(t + T/2) = v1(2), v2(t) = v1(t + T/3), v3(t) = v1(¢t + 2T/3).

11. Wavy rolls (1)1, v2, vz real,va(t) = —v1(t + T/4), v1(t) = va(t + T/4), v3(t + T/4) = —v3(t).

To look for periodic solutions of Eq. (15), we proceed in two steps. We firgt se0 and look for periodic orbits
of the Hamiltonian system. These will exist in one-parameter families (once we fix centers or axes of symmetry to
eliminate the translation symmetries). When dissipation is addéd in 0), only isolated solutions in each one-
parameter family persist. In nondegenerate cases, persistence is determined by an integral condition requiring the
average dissipation to be zero. For each periodic orbit of the Hamiltonian system, this yields a condition determining
y as a function ot if the other coefficients are given.

Specifically, the condition for persistence of periodic orbits is obtained as follows (this discussion is analogous
to Lemma 2.1, on p. 445 of [20]). Witly, defined as in the remark following Eq. (16), we can put Eq. (15) in the

©CoNoGORWNE
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o
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form

.. A%
G = =3+ €Fi(q). (17)
qk

Fore = 0, let¢%(r) be a periodic solution with period. If we then look for periodic solutions for smadlby a
regular perturbation expansion, then the solvability condition

T
/0 > 42 Fe(g®)) dr = 0 (18)
k

arises at the leading order. Since

Fr(@) = —2yqc+ ..., (19)

with the dot indicating terms which do not dependygnwe can use Eq. (18) to solve for

5.3. Secondary bifurcation of periodic orbits from steady solutions

We shall now look for branches of periodic solutions which bifurcate from steady solutions. We focus our analysis
on the Hamiltonian system which is obtained by setting 0 in Eq. (15):

B1 F v1 + boiais + calvi|®v1 + c7(lval® + 3?1 = 0,
2 F v2 + b2v1¥i3 + calvzl?v2 + c7(jvaf? + |vs[Pvz = 0,
i3 F v3 + bavai1 + calva|®va + c7(Jv2|® + v1|?)vs = 0. (20)
For steady solutions, the system (20) is exactly the same which is found in the study of steady onset for the Bénard
problem (without up—down symmetry, see [19]). With the equations truncated at the cubic level as in Eq. (20), there
are three types of steady solutions: rolls, hexagons, and solutions with rectangular symmetry, which we shall refer

to as steady patchwork quilt (they are called type IV solutions in [19]). The latter solutions do not bifurcate directly
from the trivial state unless, = 0, instead they form a secondary branch which connects rolls and hexagons.

5.3.1. Bifurcation from steady rolls
Steady rolls are given byy = V, vo = v3 = 0, whereV is real and

V +caV3=0. (21)
ZF

The linearization of Eqg. (20) at a steady roll solution leads to the problem (wittenoting the linearized
perturbation ta;)

1+ caV?(y1+ 1) =0,
2+ b2Vyz+ (c7 — ca)V2y2 =0,
Y3+ b2Vy2 + (c7— ca)V2y3 =0. (22)
We are interested in periodic solutions with a time dependence proportionalfeexdhe eigenvalue problem
for w leads to the following eigenspaces:

1. y1 = —¥y1, y2 = y3 = 0andw = 0. This zero eigenvalue results from the translation symmetry of the problem,
which allows for a translation of the steady rolls pattern. Associated with this translation symmetry, we have
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traveling rolls bifurcating from the one-parameter family of steady rolls. We shall find traveling wave solutions
explicitly in the next subsection.

The abstract situation for bifurcation of traveling waves is as follows: we have a system of equations of the
form

i = F(u), uecR?, (23)

whereF is invariant under an )-symmetry, i.e. there is a group of rotation €kp) and a reflectiork such
that

F(exp(LT)u) = exp(Lt)F(u),  F(Ru) = RF(u), = RL = —LR. (24)

Letug be a steady solution invariant under reflection, but not rotationRitg.= uo, Lug # 0. The spac®&?"

can be decomposed into an even subspRae= 1) and an odd subspa¢Bu = —u), both these subspaces are
invariant under the JacobidhF (ug). We haveD F (ug) Lug = 0, andLug is in the odd subspace; generically,
there are no null vectors @i F (1) in the even subspace. Now look for solutions of Eq. (23) which are traveling
waves, i.e. they have the form exd.r)v, wherew is a constant and does not depend an We impose the
additional condition that is even:Rv = v. Then Eq. (23) yields

o?L% = F(v), (25)

and the implicit function theorem yields a unique solutios: v(«?) in a neighborhood of = 0, v = uo.

2. y1 = y1,y2 = y3 = 0 andw? = 2c4V2. If ¢4 > 0, then there exists a family of periodic orbits of the
Hamiltonian system, which are standing rolls, kgis real andy, = y3 = 0. These standing rolls are not the
standing rolls of [15], since they oscillate about a nonzero mean. In the analysis of [21], these are the standing
rolls of type SWs.

3.y1 = 0,yo = jzandw? = bV + (c7 — c4)V?, This eigenspace is two-dimensional. We have &8)O
symmetry, with translation given by — y2 explia), y3 — yzexp(—ia) and reflection given by exchange of
yo andys. If w2 > 0, the nonlinear problem will therefore allow for standing and traveling wave solutions (see
[22], Chapter XVII). This leads to a family of periodic orbits which are standing patchwork quilts: v3
real, and a family of traveling patchwork quilts (2)(r + ) = expiot)va(2).

4. y1 =0, yp = —jareal andw? = —b,V + (c7 — c4) V2. This case is equivalent to the situation obtained when
y2 = y3 and the sign oW is reversed (note that Eq. (15) is invariant under simultaneous sign change of
andvs, and that this transformation can be interpreted as a translation). Hence the periodic orbits which exist
for w? > 0 are again a family of standing patchwork quilts and a family of traveling patchwork quilts (2).

5.3.2. Secondary bifurcation from steady hexagons
Steady hexagons are given by= vo = v3 = V, whereV is real and
FV 4+ boV2 + (c4+ 2c7)V3 = 0. (26)
The linearization of Eq. (20) at a steady hexagon leads to the system
V14 b2V (52 + 3 — 1) + caV2 (1 + 70 + 7V (2 + J2 + y3 + 73) =0,

524 b2V (31 + 33 — y2) + caV2(y2 + ¥2) + c7V2(y1 + 31+ y3 + y3) = 0,
3+ b2V (2 + 31 — y3) + caV2(y3 + 73) + c7V2(y2 + 2 + y1+ 31) = 0. (27)

We have the following eigenspaces for the linearized problem and associated bifurcating branches:
1. y1 = yo = yareal andw? = boV + (2c4 + 4c7) V2. If w? > 0, there is a branch of standing hexagons.
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. y1 = y2 = y3 imaginary andw? = —3b,V. If w? > 0, this leads to a branch of standing regular triangles

bifurcating from the steady hexagons.

. ¥1, y2, ysimaginary andi1 + y2+ y3 = 0. This leads to a double zero eigenvalue associated with the translation

invariance of the problem. Associated with this double zero eigenvalue, we have bifurcating branches of both
types of traveling patchwork quilt, see the next subsection.

. y1, y2, yareal,y1 4+ y2 + y3 = 0, andw? = —2boV + 2c4V2 — 2c7V2. If »? > 0, we can use the equivariant

Hopf bifurcation theorem for systems withz-symmetry (see Theorem 4.1, p. 390 in [22]) to obtain the

following types of bifurcating solutions:

(a) Solutions for which two of the amplitudes, say and vz are equal. Such solutions have rectangular
symmetry. They are a type of standing patchwork quilt, but not the standing patchwork quilts of [15],
since they oscillate about a steady hexagon, so all amplitudes have nonzero mean.

(b) Solutions for which2(t) = v1(t +T/3), v3(t) = v1(t +27/3). Inthe linearized problem, these solutions
are given byy; = coqwt), y2 = coJwt + 27/3), y3 = coSwt + 4 /3). These solutions are twisted
patchwork quilts.

(c) Solutions for whichua(t +T/2) = v3(t), v3(t+T/2) = v2(t) andvy(t + T/2) = v1(¢). In the linearized
problem, such a solution is given by = —y3, y1 = 0. The spatial patterns on this solution branch have
point symmetry across the origin (sineg vz andvg are real). Moreover, shift by half a temporal period
is equivalent to reflection across theaxis (i.e., exchange ab andvs).

5.3.3. Secondary bifurcation from steady patchwork quilts
Steady patchwork quilts are given by = U, v2 = v3 = V, whereU andV are real and

FU 4 baV2 +caU% +2c7V2U =0,  FV +boUV 4 caV3+ c7(U% + V)V = 0. (28)

If we exclude the case of rolld/ = 0), we can divide the second equation Byand obtain

F1+boU + caV? + c7(U%2 4+ V?) = 0. (29)

Next, we subtract the two equations in (28) from each other and dividé byV (the case/ = V leads to
hexagons). The result is

F1—boV 44U+ UV + V) +c7(V2—UV) =0. (30)
Next, we subtract Eq. (30) from Eqg. (29) and divideldy+ V (the casd/ + V = 0 also leads to hexagons). The
result is

b
U=—2_. (31)
c4—C7
From Eg. (29), we then find
b2
(catepV?=dl- —22 (32)
(c4—c7)

The equations for linearized perturbations are

$1F y1 4 b2V (G2 + 73) + caU?y1 + y1) + 2¢7V2y1 + crUV(y2 + y2 4 y3 + y3) =0,

Y2 F y2 4 ba(Uys + V1) + caV?Q2y2 + 32) 4+ c7(U? + V)ya + c7UV (y1 + 1) + ¢7V2(y3 + 73) =0,

¥3 F 3+ ba(Uy2 4+ V1) 4 caV2(2y3 + 33) + c7(U? 4+ V) y3 + c7UV (y1 + 1) + c7V2(y2 + 32) = 0.
(33)
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We can identify the following eigenspaces

1. y1, y2, y3 imaginary,y» = ys, y1 = —2Uy»/V, w? = 0. This zero eigenvalue is associated with the
translation symmetry in the-direction. Associated with this symmetry, we have a bifurcation of traveling
patchwork quilts (1).

2. y», ya imaginary,y» = —y3, y1 = 0,,»? = 0. This zero eigenvalue is associated with the translation
symmetry in they-direction. Associated with this translation symmetry, there is a bifurcating branch of
traveling patchwork quilts (2).

3. y1, y2, yaimaginary,y> = y3, y1 = Vy2/U, w? = ba(2U + V2/U). A branch of periodic solutions exists
if o2 > 0. These periodic solutions retain symmetry acrossthgis, i.e.v, = vs, but they become reflected
across the-axis every half periodv1(t + T/2) = v1(2), va2(t + T/2) = v3(t), v3(t + T/2) = v2(2).

4. y1, y2, yareal,yo = —y3, y1 = 0, w? = F1 — boU + 3c4V2 + c7(U? — V?). This leads to branches of
periodic solutions which preserve point symmetry across the origin, but become reflected across the axes every
half period:vi(t + T/2) = v1(2), v2(t + T/2) = v3(t), v3(t + T/2) = va(t).

5. y1, y2, yareal,y» = y3. Such solutions preserve the rectangular symmetry. The linearized eigenvalue problem
is two-dimensional:

—w?y1 F y1+ 2b2Vyo + 3c4U%y1 + 2c7V2y1 + 4c7UVy, = 0,
—w?y2 F y2 4+ b2(Uy2 4+ Vy1) + 3caV2y2 + c7(U2yp + 2U Vy1 + 3V2yp) = 0. (34)
In general, there are two different eigenvaluesd#8r and branches of periodic solutions exist if one or both of

these eigenvalues are positive. The patterns resulting from this are standing patchwork quilts with nonzero mean,
analogous to those which we found bifurcating from steady hexagons.

5.4. Traveling waves

We can identify two types of traveling waves (other than rolls), corresponding to the two types of traveling
patchwork quilts in [15]. For the first kind of tra\_/eling wawve, is real and time-independent, angl = 3 is
complex and has a time dependence proportiondifo e

v, = W1, vy = Vo v3 = Vze"“”.

This type of traveling wave corresponds to the traveling patchwork quilt (2) in [15] and to the traveling wave of
type C2 in [10]. For the present case, we obtain the algebraic system

FV1+ ba|Val® + caV + 2¢7|V2|*V1 = 0,
—w?Va F Vo + baViVa + cal Val?Va + c7(IVal* + Vi) V2 = 0. (35)
We divide the second equation by, and solve for Vz|?:
w? £ 1— bV — c7V2
c4+c7

We can now insert this result in the first equation of (35), leading to a cubic equatidf.féve note that this
type of traveling wave becomes a steady roll when= 0. See also the discussion of secondary bifurcations from
steady rolls above.

The second type of traveling wave corresponds to the traveling patchwork quilt (1) of [15] and the traveling waves
of type D of [10]. For these solutions, we have

|Vo|? = > 0. (36)

v = Vleiwt, V) = v3 = Vze_iwt/z. (37)
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We obtain the algebraic system

—?ViF VI + bz‘_/zz + c4| V12 V1 + 2¢7|Va|?Vy = 0,
w? Y7 2 2 2
_TVZ F Vo + baViVa + cal Va|“ Vo + c7(| V2|~ + | V1|9) V2 = 0. (38)

We multiply the first equation by, and the second by, resulting in

—?|V1I? F [V1[% + baVEV1 + cal Vil* + 2c7|Val?|V1|? = O,
2
w - -
‘Z'VZ'Z T V22 + baViV2 + cal Val* + c7(1Val? + [V11?)| V2)? = 0. (39)

If b2 £ 0, we conclude thaV22V1 must be real. We set = +| V1|, po» = |V»|?, with the sign chosen such that
V1VZ = r1p. After dividing the first equation of (39) by and the second by, we find
—w?ry T r1+ bop2 + card + 2c7por1 = 0,
Y F 1+ bor1+cap2 + c7(p2 +r7) =0. (40)

We solve the second equation fer.

_ (@?/4) £ 1—bory — c7rf

> 0. 41
c4+c7 ( )

02
By inserting Eq. (41) into the first equation of (40), we obtain a third-degree equatignThis type of traveling
wave becomes a traveling roll whegn = 0.
We note that if we seb = O for either type of traveling patchwork quilt, we recover the steady patchwork quilts.

5.5. Heteroclinic orbits

We can expect a multitude of solutions with more complicated time dependence than periodicity. For instance,
the Hamiltonian system far = 0 will have many invariant tori, and if we include the dissipation, we can expect
some of these tori to persist, leading to quasiperiodic solutions. Dangelmayr and Knobloch [21] identified such a
family of quasiperiodic solutions for the case of rolls. In the numerical results of the next section, we shall indeed
see some quasiperiodic regimes, as well as chaotic ones.

For the simple cases of rolls and hexagons, the Hamiltonian system can be integrated, and it is easy to see that
homoclinic or heteroclinic orbits exist as limiting cases of periodic solutions. Although many such solutions are
expected to exist in other symmetry classes, it is not possible to obtain the global dynamics of the Hamiltonian
system from direct integration. We shall show indirectly that a heteroclinic connection between steady hexagons
arises as a limit of oscillating trianglesép # 0 andcs + 2c7 < 0. Let us consider solutions with triangular
symmetry, i.e.p1 = v2 = v3. In this case, our Hamiltonian system reduces to:

U F v+ bov? + (ca + 2c7)|v%v = 0. (42)

If we choose the plus sign, there is a family of oscillating triangles bifurcating from the origin. By the global Hopf
bifurcation theorem [17,23], this family of periodic solutions must either grow unbounded, reach a bifurcation point
from another steady solution, or else the period must tend to infinity. Since oscillating triangles have zero average,
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bifurcation from a steady solution other than the origin is impossible. Next, we show that the family of oscillating
triangles cannot be unbounded.
We rewritev in terms of its real and imaginary paris= x + iy. We also introduce the ‘momentum’ variables
p = x andg = y. The equation of motion is then= 0H/dp, y = dH/dq, p = —0H/dx, ¢ = —0H/dy, and
the Hamiltonian is
H = 3" +¢° +x* + %) + ba(3x° — xy%) + §(ca + 2c7) (x* + y9)2.
Consider now the potential part of the energy

U= 3(x®+y%) + b2(3x° — xy%) + F(ca + 2c7) (% + y)2.

We have
AL 1Y
T ox? ayq’
.U . AU . U , U 3°U ,
U=—p+—q¢+ + :

ox ay 8x2p + 8x8ypq 8y2q
Using the equation of motion, we find

. 9°U 3°U 92U
_ 2 .2 2 2
U=-p"—q¢°+ 2P +23xaypq+ ayzq. (43)

If c4 + 2¢7 < 0, thenU is negative and concave for largé + y2. This means that the expression in Eq. (43)
is also negative if? + y? is large. However, at a minimum @f along a periodic solutior] must be positive.
This means that, along every periodic solution, we obtain a priori bouncffar y? at the point wheré/ has its
minimum, and consequently, everywhere. The a priori boundscf@and|y| yield a priori bounds fotx| and|¥|
by means of the equation of motion, and a priori bounds for the first derivatives follow by the identity

t+1 prt
() =x(t+1) —x(t)—/ / X(s)ds dr.
t t

Consequently, the family of oscillating triangles cannot be unbounded.

Therefore, there must be a family of oscillating triangle solutions for which the period tends to infinity. We shall
now show that this necessarily implies a heteroclinic connection between hexagons. For thig) wersetn(i¢)
in Eq. (42), and we obtain

P —rd? +r + bor? cog3¢) + (cq + 2c7)r =0,
ré + 2 — bor? sin(3¢p) = 0. (a4)

For oscillating triangles close to the bifurcation from the origins clearly an increasing function of We claim
that there is a global family of oscillating triangles such that

(a)r is never zero ang is increasing monotonically with time.

(b) v(r) winds around the origin once during one period.

We note that as long as (a) holds, a winding number is well-defined. Since this winding number is a topological
invariant, it remains constant along a continuous family of solutions. Now suppose that (a) fails at some point.
Then eitherv(¢) must cross the origin op must become zero at some pointulft) crosses the origin, it must
do so at least three times in three different directions, due to the spatio-temporal symmetry of oscillating triangles
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Table 5

List of coefficientsb;, b;, c;, & of Egs. (11) and (12) in (a) the Anderinert/silicone oil system, (b) Fluorinert/silicone oil system, (c) those of
[17]. The values of; and coefficients of the last column are given to two decimal places. The coefficients of the last column is given to four
places in order to distinguisty andcio

@ (b) ©

I 0.48 051 0423 Q052 048303
by 14.613 524 —-5.79 —-4.11 —0.76
b3 —-1.079 —0.34 126 097 —0.081
c3 —1.489 117 —0.86 31 0.0036
c4 11584 —8.85 —0.78 54 0.023
5 —0.738 129 —0.004 24 0.0017
c7 12.855 —-9.79 —2.96 —4.95 0027
cg —0.706 —0.02 062 082 00025
cg —0.425 152 197 258 00033
c10 —-0.715 148 006 263 00023
by 1.000 —0.08 —0.42 —0.36 0082
C4 3.010 157 159 021 00010
c7 3.736 200 194 059 00015

(v(t4T/3) = v(r) exp(2ri/3)). Such a solution cannot be a limit of simple loops) liecomes zero at some point,
while ¢ > 0 elsewhere, then necessarly= 0 at the same point. From Eq. (44), we infer that then necessarily
sin(3¢) = 0 and¢ is a constant independent of time. The orbit would therefore contain a straight line segment,
which is also impossible.

The only possibility left is that the period tends to infinity because the solution comes close to a steady solution.
Since the only steady solutions with triangular symmetry are hexagons, this implies the existence of heteroclinic
orbits between hexagons as claimed.

6. Numerical results

Table 1 gives the physical parameters for each of the three systems we examine: Anderinert/silicone oil, Fluo-
rinert/silicone oil and Fig. 2 of [4]. Tables 2—4 give further numerical data on the Takens—Bogdanov points. The
corresponding coefficients, b;, ¢;, & of Egs. (11) and (12) are listed in Table 5 We note that for the systems a
and ¢ we have listed values for two different Takens—Bogdanov points; these two points are on opposite ends of the
‘window’ in parameter space where Hopf bifurcations occur. That is, for valugsrobetween these two extremes,
complex conjugate eigenvalues occur, while the eigenvalues are real for valyesitside this interval.

The analysis of Sections 5.2, 5.3, 5.4 and 5.5 concerns case B of Section 5.1.2, i.e., the case where the coefficients
of the quadratic terms vanish. In the actual physical systems, the coefficients of the quadratic terms have some
finite value so that for extremely small solutions, the cubics are small compared with quadratics and case A is
appropriate. For this case, numerical calculations revealed no stable patterns of very small amplitudes. For more
moderate amplitudes that may be physically realizable, numerical simulations are based directly on Eqgs. (11) and
(12), together with those coefficients which enter into case B and are tabulated in Table 5. Although we cannot
justify this procedure rigorously, we expect it to have at least qualitative validity for our situation. We note that the
analysis of case B assumed that the terms invol¥ig4 andc7 are the dominant ones, and indeed the table shows
numerical values of these particular coefficients which are large relative to the others.

For the numerical simulations reported below, we integrated the differential equations with a fourth-order
Runge—Kutta scheme. We chose = —0.1, so that the trivial solution is always unstable, and we vatied
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(a) Im(v1) vs. Re(v1) Im(v2) vs. Re(v2) Im(v3) vs. Re(v3)
0.4 0.4 0.4

Fig. 9. (a) Temporal evolution af;, v, andvs for the data of Case (a), column 1, Table 5 apg= —1.5. The real and imaginary parts gfare

shown. (b) Spatial evolution for the data of Case (a), column 1, Table 5zard—1.5. The patterns are in the{y) plane. Here, and in the
subsequent plots, positive contour lines are solid, and negative contour lines are dashed. The sequence in all plots is spaced in time intervals of
0.2, left to right.

The initial condition was chosen to be small and without any particular symmetry; specifically, we chose the initial
datav; = 0.02, v = 0.04, v3 = 0.01+ 0.01li andw1 = w2 = w3 = 0. We then observed the long time behavior
of the numerical solution which evolves from these initial data.

For all the data of Table 5, we see a general trend from steady to chaotic to quasiperiodic to periodic solutions as
€2 is decreased. Specifically, we found the following behaviors:

Case (a), column 1:

SummaryFore; > 1.5, solutions become infinite in finite time. Fordl> ¢, > —1.4, steady hexagons are
observed. For-1.5 > €2 > —4.4, we observe chaotic, then quasiperiodic solutions, which we shall describe in
more detail below. At; = —4.5, we find a periodic solution; in the terminology of [15], this solution is a traveling
patchwork quilt (1). Foe < —4.6, we find traveling rolls.

SpecificsWe now show more details of the observed patterns in the chaotic and quasiperiodic regimes. In
Figs. 9-18, we show the temporal and spatial evolution of patterms fer—1.5,—-1.8, —2.1, —2.7, —3.2, —3.5,

—3.8, —4.0, —4.4 and—4.5. In all cases, the first figure shows the temporal evolution of the amplitydes and

v3 in the complex plane as a function of time. The second figure shows a sequence of the corresponding spatial
patterns; the plots are the level curvesvgxp(ix) + voexp(—ix/2 + iv/3y/2) + vzexp(—ix/2 — iv/3y/2). The
sequence of pictures, left to right, is spaced in time intervals 2f The spatio-temporal evolution for this range

of €5 is complicated, but some general trends can be noted. The temporal evolution is very irregutar-al.5,

and as; decreases, it gradually becomes more regular. At the same time, spatial patterns change from a regime
dominated by triangles to one dominated by rolls.&dn the range from-2.1 to—3.5 (Figs. 11-14), the temporal

pattern appears to be a chaotic perturbation of a quasiperiodic solution. We also note that the temporal evolution of
two of the components; is very similar (e.g.p1 andvz in Fig. 11 (a)), while the third one is completely different.
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(a) Im(v1) vs. Re(v1) Im(v2) vs. Re(v2) Im(v3) vs. Re(v3)
0.4 0.4 0.4

Fig. 10. (a) Temporal evolution af;, v, andvs for the data of Case (a), column 1, Table 5, apa= —1.8. (b) Spatial evolution for the data of
Case (a), column 1, Table 5, aagl= —1.8.

(a) Im(v1) vs. Re(v1) Im(v2) vs. Re(v2) Im(v3) vs. Re(v3)
. . 0.4

Fig. 11. (a) Temporal evolution af;, v, andvs for the data of Case (a), column 1, Table 5, apd= —2.1. (b) Spatial evolution for the data of
Case (a), column 1, Table 5, aagl= —2.1.
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(a) Im(v1) vs. Re(v1) Im(v2) vs. Re(v2) Im(v3) vs. Re(v3)
0.4 4 0.4

fig, \W
m\l m

Fig. 12. (a) Temporal evolution af;, v, andvs for the data of Case (a), column 1, Table 5, apd= —2.7. (b) Spatial evolution for the data of
Case (a), column 1, Table 5, aagl= —2.7.

(a) Im(v1) vs. Re(v1) Im(v2) vs. Re(v2) Im(v3) vs. Re(v3)
0.4 0.4 0.4
0.2 0.2 0.2
0 0 0
-0.2 -0.2 -0.2
-0.4 -0.4 -0.4
-0.5 0 05 -05 0 0.5 -0.5 0 0.5

Fig. 13. (a) Temporal evolution af;, v, andvs for the data of Case (a), column 1, Table 5, apg= —3.2. (b) Spatial evolution for the data of
Case (a), column 1, Table 5, aagl= —3.2.
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(a) Im(v1) vs. Re(v1) Im(v2) vs. Re(v2) Im(v3) vs. Re(v3)
0.2 0.2 0.4

Fig. 14. (a) Temporal evolution af;, v, andvs for the data of Case (a), column 1, Table 5, apg= —3.5. (b) Spatial evolution for the data of
Case (a), column 1, Table 5, aagl= —3.5.

(a) Im(v1) vs. Re(v1) Im(v2) vs. Re(v2) Im(v3) vs. Re(v3)
0.2 0.4

Fig. 15. (a) Temporal evolution af;, v, andvs for the data of Case (a), column 1, Table 5, apd= —3.8. (b) Spatial evolution for the data of
Case (a), column 1, Table 5, angl= —3.8.
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Im(v2) vs. Re(v2) Im(v3) vs. Re(v3)

(a) Im(v1) vs. Re(v1)

0.4

0.2

-0.2

—-0.4

0.2

-0.2

0.5

-0.5

0.2

0

-0.2

0.2

0

—4.0. (b) Spatial evolution for the data of

Table 5, ape=

v andwjg for the data of Case (a), column 1,

)

Fig. 16. (a) Temporal evolution af

4.

angl

1

Case (a), column 1, Table 5

Im(v2) vs. Re(v2) Im(v3) vs. Re(v3)

(a) Im(v1) vs. Re(v1)

0.04

0.02
—0.02

0
-0.2

0.04

0.02

0.05

0

0

0

4.4. (b) Spatial evolution for the data of

, ape=

Table 5

vz andvs for the data of Case (a), column 1,

)

Fig. 17. (a) Temporal evolution af;

aafl= —4.4.

1

Case (a), column 1, Table 5
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(@) Im(v1) vs. Re(v1) Im(v2) vs. Re(v2) Im(v3) vs. Re(v3)
0.4 0.01

0.01

0.005

-0.005

-0.01
-0.

% P :—' Z

S 2"

Fig. 18. (a) Temporal evolution af;, v, andvs for the data of Case (a), column 1, Table 5, apg= —4.5. (b) Spatial evolution for the data of
Case (a), column 1, Table 5, aagl= —4.5.

Forey; < —3.8 (Figs. 15-17), the motion becomes quasiperiodic. It changes to a periodic motioa at4.5
(Fig. 18(a)). This periodic solution is a traveling patchwork quilt (1), in the terminology of [15]. The fact that such
a solution is observed is somewhat remarkable, because the analysis of the Hopf bifurcation in [15] shows that
the traveling patchwork quilt (1) is never stable near the bifurcation from the rest state. Of course, in the current
situation, we do not see the traveling patchwork quilt (1) near a bifurcation from the rest state, but near a bifurcation
from traveling rolls as discussed in the analysis of the preceding section.

Case (a), column 2:

SummaryHere we find steady rolls far, > 5.7, steady hexagons fot&> ¢, > —3.5, chaotic solutions for
—3.6 > ¢ > —3.7, and wavy rolls (1) foe, < —3.8.

SpecificsFigs. 19(a,b) show the spatio-temporal evolutiondp= —3.6, and Figs. 20(a,b) shoey = —3.8.

The solution fore, = —3.6 is temporally chaotic, while the spatial pattern has the appearance of wavy rolls (1).
The solution fore, = —3.8 is the temporally periodic wavy rolls (1).
Case (b):

SummaryThis is the only case where no steady regime was found. We have blow-up in finite tieaefor 1.8,
and a chaotic regime for1.9 > ¢, > —2.3. For—2.4 > ¢ > —2.6, we find solutions which are temporally
chaotic but have a triangular spatial symmetry. F&7 > ¢, > —3 and again foe, < —4, we have oscillating
triangles. In the intervening interval, we have a traveling patchwork quilt (1381 > ¢p > —3.9.

Specifics Figs. 21-24 show patterns foundat = —2.1, —2.5, —2.7 and—3.2. At e = —2.1, we have
a temporally chaotic solution, with an approximate but not exact triangular symmetry in the spatial pattern. At
€2 = —2.5, the temporal evolution is still chaotic, but the spatial pattern now has triangular symmetry and looks
very much like oscillating triangles. Ab = —2.7, we find the temporally periodic oscillating triangles solution. We
note the distinct triangular shape of the periodic orbits in Fig. 23(b). This, and the appearance of chaotic solutions
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(a) Im(v1) vs. Re(v1) Im(v2) vs. Re(v2) Im(v3) vs. Re(v3)
0.4 0.5 0.2
0.1
0 0
-0.1
-0.5 -0.2
.5 -0. -0.2

Fig. 19. (a) Temporal evolution af;, vz andvs for the data of Case (a), column 2, Table 5, apng= —3.6. (b) Spatial evolution for the data of
Case (a), column 2, Table 5 aagl= —3.6.

(a) Im(v1) vs. Re(v1) Im(v2) vs. Re(v2) Im(v3) vs. Re(v3)
0. 0.2 A

Fig. 20. (a) Temporal evolution af;, vz andvs for the data of Case (a), column 2, Table 5, apg= —3.8. (b) Spatial evolution for the data of
Case (a), column 2, Table 5, angl= —3.8.
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(a) Im(v1) vs. Re(v1) Im(v2) vs. Re(v2) Im(v3) vs. Re(v3)
0. 0.5 0.5

Fig. 21. (a) Temporal evolution ef;, v, andvz for Fluorinert/silicone oil, Case (b) of Table 5, ang= —2.1. (b) Spatial evolution for the data
of Fluorinert/silicone oil, Case (b), Table 5, aad= —2.1.

(a) Im(v1) vs. Re(v1) Im(v2) vs. Re(v2) Im(v3) vs. Re(v3)
0. 0.5 0.5

N
M

7
ZAVA\
7

Fig. 22. (a) Temporal evolution af;, v2 andvs for the data of Fluorinert/silicone oil, Case (b) of Table 5, ane= —2.5. (b) Spatial evolution
for Fluorinert/silicone oil, Case (b) of Table 5, aad= —2.5.
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(a) Im(v1) vs. Re(v1) Im(v2) vs. Re(v2) Im(v3) vs. Re(v3)
0.4 0.4

0.4

0.2

-0.2

-0.4
-0.

«

0 5

Fig. 23. (a) Temporal evolution afy, v2 and vz for Fluorinert/silicone oil, Case (b) of Table 5, aag = —2.7. (b) Spatial evolution for
Fluorinert/silicone oil, Case (b) of Table 5, aagl= —2.7.

(a) Im(v1) vs. Re(v1) Im(v2) vs. Re(v2) Im(v3) vs. Re(v3)
0.5 0.5 0.

o

-5

Fig. 24. (a) Temporal evolution afy, v2 and vz for Fluorinert/silicone oil, Case (b) of Table 5, aag = —3.2. (b) Spatial evolution for
Fluorinert/silicone oil, Case (b) of Table 5, aagl= —3.2.
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for nearby parameters, suggest that this solution is close to one of the heteroclinic orbits which we investigated in
Section 5.5. Ak = —3.2, the solution is a traveling patchwork quilt (1).

Case (c), column 1:

The patterns are qualitatively similar to the Anderinert/silicone oil system, Case (a), column 2. We have steady
rolls for e, > 2.5, steady hexagons fot2> ¢; > —2.9, a chaotic regime for-3.0 > ¢ > —3.4, and wavy rolls
(1) forep < —3.5.

Case (c), column 2:

In this case, we have steady rolls tor> 206, steady hexagons for 2@5¢, > —2.0, a variety of chaotic and
quasiperiodic patterns fer2.1 > ¢, > —7 (qualitatively similar to Case (a), column 1 patterns), traveling rolls for
—7.5> ¢ > —18 and wavy rolls (1) foe, < —19.

7. Conclusion

We have derived the amplitude equations governing the evolution near a Takens—Bogdanov bifurcation with the
symmetry of the hexagonal lattice. As in the classical Takens—Bogdanov problem, the leading order approximation
is a Hamiltonian system, which is perturbed by dissipative terms at the next order of approximation. We have
identified families of periodic solutions of the Hamiltonian system which bifurcate from one of the steady solutions.
We have also proved the existence of heteroclinic connections between steady hexagons; these heteroclinic loops
represent the limit of a family of periodic solutions (‘oscillating triangles’). Numerical integration of the amplitude
equations shows that steady solutions (rolls and hexagons) as well as periodic solutions (traveling rolls, wavy rolls
(1), oscillating triangles, traveling patchwork quilt (1)) can be observed. The transition from steady to periodic
regimes does not occur directly; instead chaotic and quasiperiodic solutions are observed in the intermediate region
of parameter space.
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Appendix A. Coefficients in the amplitude equations

The coefficients in Egs. (7), (11) and (12) are related as follows. The rest of the coeffigients;, & are not
required in the analysis of Section 5.

_ (=B1— P2 — 2Bz + 1+ P2+ 2B3)(1n — 1)

b
2 8
B1— P2+ P1— B2
bz = ,
4
Q:M+m—m—m+h+%—ﬂ—%

4
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cq = (=v1—v2—v3—va—ys—VetyVi+Vvo+ra+tya+ys+ ve)u— i)
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10 8 ;

B _ B+ B+ 283+ B+ B2+ 283

2 4 b

: nitretystvatystyetvitreotyst+vat+ s+

4 = 8 ,

57_Vlo+)/ll+)/12+V13+)/14+V7+]/8+79+J710+)711+1712+7713+)714+J77+)78+J79 (A1)
- 8 . .

References

[1] K. Fujimura, Y. Renardy, The 2:1 steady-Hopf mode interaction in the two-layer Bénard problem, Physica D 85 (1995) 25-65.

[2] M. Renardy, Y. Renardy, Bifurcating solutions at the onset of convection in the Benard problem of two fluids, Physica D 32 (1988) 227-252.

[3] G.Z. Gershuni, E.M. Zhukhovitskii, Convective stability of incompressible fluids, Translated from Russian by D.Lowish, Keter Publishing
House, Jerusalem Limited, 1976.

[4] P. Colinet, J.C. Legros, On the Hopf bifurcation occurring in the two-layer Rayleigh—Bénard convective instability, Phys. Fluids 6 (1994)
2631-2639 .

[5] Y. Renardy, Pattern formation for oscillatory bulk-mode competition in a two-layer Bénard problem, Zeitschr. fuer Angew. Math. u. Phy.
47 (1996) 567-590.

[6] Y. Renardy, C.G. Stoltz, Time-dependent pattern formation for two-layer convection, in: M. Golubitsky, D. Luss, S. Strogatz (Eds.), Proc.
IMA Workshop on Pattern Formation in Continuous and Coupled Systems, Springer, New York, in press.

[7] F.H. Busse, G. Sommermann, Double-layer convection: a brief review and some recent experimental results, Advances in Multi-Fluid
Flows, Proc. of the 1995 AMS-IMS-SIAM Joint Summer Res. Conf. on Multi-Fluid Flows and Interfacial Instabilities, in: Y. Renardy, A.V.
Coward, D. Papageorgiou, S.-M. Sun (Eds.), Society for Industrial and Applied Mathematics, 1996, pp. 33-41.

[8] C.D. Andereck, P.W. Colovas, M.M. Degen, Observations of time-dependent behavior in the two-layer Rayleigh—Benard system, paper
Da.05, Annual Meeting of the American Physical Society Division of Fluid Dynamics, 19-21 November 1995, also in Advances in Multi-
Fluid Flows, Proc. 1995 AMS-IMS-SIAM Joint Summer Res. Conf. on Analysis of Multi-Fluid Flows and Interfacial Instabilities, in: Y.
Renardy, A.V. Coward, D. Papageorgiou, S.-M. Sun (Eds.), Society for Industrial and Applied Mathematics, 1996, pp. 3-12.

[9] K.A. Julien, Strong spatial interactions with 1:1 resonance: a three-layer convection problem, Nonlinearity 7 (1995) 1655-1693.

[10] M. Renardy, Hopf bifurcation on the hexagonal lattice with small frequency, Advan. in Diff. Eq. 1 (1996) 283-299.

[11] M.D. Graham, U. Muller, P.H. Steen, Time-periodic convection in Hele—-Shaw slots: the diagonal oscillation, Phys. Fluids A 4 (1992)
2382-2393.

[12] E. Knobloch, Oscillatory convection in binary mixtures, Phys. Rev. A 34 (1986) 1538—1549.

[13] J. Guckenheimer, Ph. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer, New York, 1983.

[14] J. Guckenheimer, D. Armbruster, S. Kim, Chaotic dynamics in systems with square symmetry, Phys Lett. A 140 (1989) 416-428.

[15] M. Roberts, J.W. Swift, D.H. Wagner, The Hopf bifurcation on a hexagonal lattice, Multiparameter Bifurcation Theory, in: M. Golubitsky,
J.M. Guckenheimer (Eds.), AMS Series Contemp. Math., 56 (1986) pp. 283-318.

[16] D.D. Joseph, Y.Y. Renardy, Fundamentals of Two-Fluid Dynamics, Springer, New York, 1993.

[17] S.N. Chow, J. Mallet-Paret, The Fuller index and global Hopf bifurcation, J. Diff. Eq. 29 (1978) 66—85.



202 Y.Y. Renardy et al./ Physica D 129 (1999) 171-202

[18] Y. Renardy, Errata for [5], Zeitschr. fuer Angew. Math. u. Phys. 48 (1997) 171.

[19] E. Buzano, M. Golubitsky, Bifurcation on the hexagonal lattice and the planar Bénard problem, Phil. Trans. Roy. Soc. London A 308 (1983)
617-667.

[20] S.N. Chow, J.K. Hale, Methods of Bifurcation Theory, Springer, New York, 1982.

[21] G. Dangelmayr, E. Knobloch, The Takens—Bogdanov bifurcation with O(2) symmetry, Phil. Trans. Roy. Soc. London 322 (1987) 243-279.

[22] M. Golubitsky, I. Stewart, D.G. Schaeffer, Singularities and Groups in Bifurcation Theory I, Springer, New York, 1988.

[23] J.C. Alexander, J. Yorke, Global bifurcation of periodic orbits, Am. J. Math. 100 (1978) 263-292.

[24] S. Rasenat, F.H. Busse, |. Rehberg, A theoretical and experimental study of double-layer convection, J. Fluid Mech. 199 (1989) 519-540.



