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A Revised Approach for
One-Dimensional Time-Dependent
Heat Conduction in a Slab
Classical Green’s and Duhamel’s integral formulas are enforced for the solution of one
dimensional heat conduction in a slab, under general boundary conditions of the first
kind. Two alternative numerical approximations are proposed, both characterized by fast
convergent behavior. We first consider caloric functions with arbitrary piecewise contin-
uous boundary conditions, and show that standard solutions based on Fourier series
do not converge uniformly on the domain. Here, uniform convergence is achieved by
integrations by parts. An alternative approach based on the Laplace transform is also
presented, and this is shown to have an excellent convergence rate also when discontinu-
ities are present at the boundaries. In both cases, numerical experiments illustrate the
improvement of the convergence rate with respect to standard methods.
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1 Introduction

Due to its one-dimensional character, heat conduction in a slab
is a typical introductory case to heat transfer theory. Besides its
mathematical interest, the case has practical importance for
two main reasons. First, a one-dimensional feature is in many
cases a good approximation to real conditions of two- and three-
dimensional heat flow in structures and, second, analytical solu-
tions to the one-dimensional heat equation are easily found, and
they form a very valuable basis for the benchmarking of multidi-
mensional numerical approaches. For these reasons, heat conduc-
tion in slabs has been studied along the last century for either
steady or unsteady conditions, and under a variety of thermal
boundary and initial conditions [1–4].

The basic case is described as follows: two opposite faces of a
slab are kept at uniform temperatures T1 and T2, while the periph-
eral contour of the slab is adiabatic. Adding the assumptions of
homogeneous and isotropic material, the temperature T within the
wall only varies with the coordinate x normal to the active boun-
daries, and possibly with time; the thermal problem is therefore
one-dimensional in space. In the absence of internal heat genera-
tion and for constant properties, the steady-state temperature dis-
tribution within the slab for fixed values of T1 and T2 is readily
found to be linear.

Several analytical methods have been proposed and used so far
to tackle the time-dependent one-dimensional heat equation. As
summarized in Ref. [5], these include the separation of variables,
the use of Laplace transforms, the modeling by sources and sinks,
the method of images, and the Duhamel’s method. Among
those, the method of separation of variables has been the most
widely adopted to investigate transient 1D heat conduction in
slabs [6]. We refer to Refs. [7,8] and to the bibliography therein
for a survey on the recent literature on this subject. Very recently,
semi-analytical methods were also employed to solve steady-state
1D conduction at the nanoscale [9], and 2D transient conduction

between two parallel, isothermal cylinders in an infinite medium
[10].

It is noteworthy that Eq. (1) is analogous to the Couette prob-
lem, which is a simplified Navier–Stokes equation governing the
flow of a fluid between two parallel plates moving at different
velocities. Provided that the fluid is constant-property and Newto-
nian, no axial pressure gradient is imposed, and advective acceler-
ation terms are overlooked, the governing equation for this class
of fluid-dynamic problems coincides with Eq. (3) when appropri-
ate nondimensional terms are used. The solutions provided here
therefore hold for both the general 1D heat conduction and the
Couette problems.

In this paper, classical Green’s representation formulas for
time-dependent heat diffusion in a slab are revised. General, pos-
sibly discontinuous, Dirichlet’s boundary conditions are consid-
ered where no limitation is imposed to the shape of the functions
describing either the initial temperature distribution within the
system or the time-dependent boundary values.

Following standard solution procedures [1] a series expansion
of the Green’s function is first obtained by the Duhamel’s method.
Since only continuous functions appear in this series, it cannot
converge uniformly on the domain to a discontinuous function.
This implies that the accuracy of the solution deteriorates when a
numerical approximation of such series is calculated. When the
boundary data are more regular, twice differentiable for instance,
we achieve the uniform convergence by using a double integration
by parts. The rate of convergence is seen to be higher when con-
sidering smooth boundary conditions, while it slows down in the
presence of discontinuities at the boundaries.

The theoretical and numerical study is also carried out for a sec-
ond method, based on the Laplace transform [5]. In this case, the
improvement is demonstrated to be independent of the regularity
of the boundary data. On the contrary, we get a good rate of con-
vergence also for discontinuous boundary conditions. From the
theoretical point of view, this issue depends on the fact that
the first term in the series expansion may be discontinuous at the
boundary, so that the discontinuities of the boundary data do not
prevent the fast convergence of the series.

For the sake of validation, the transient due to an exponential-
law change in one of the boundary values is considered. A further
numerical example is provided as well, including a general initial
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temperature distribution within the slab, and the imposition of two
time-varying temperatures at the slab extremities.

2 Statement of the Problem

The physical problem to be examined is sketched in Fig. 1.
Along the x axis we assume to have a slab, whose material is
homogeneous and isotropic, and whose thermal diffusivity a, is
constant. An initial temperature distribution T0 is prescribed at
each point of the slab, and the boundary temperature values vary
with time following the given general laws T1ðtÞ and T2ðtÞ.
According to Fourier’s law, the one-dimensional heat equation
without internal heat source writes

@T

@t
¼ a

@2T

@x2
(1)

where t denotes time ð0 < t <1Þ, x is the space variable
ð0 � x � LÞ, and L is the slab length. When coupled with the fol-
lowing boundary and initial conditions:

Tðx; 0Þ ¼ T0ðxÞ; 0 � x � L

Tð0; tÞ ¼ T1ðtÞ; t � 0

TðL; tÞ ¼ T2ðtÞ; t � 0

(2)

Equation (1) has a unique solution. Here T0; T1, and T2 are given
bounded continuous functions of their arguments, with
T0ð0Þ ¼ T1ð0Þ and T0ðLÞ ¼ T2ð0Þ. We recall that T satisfies the
maximum principle: if we let

TminðsÞ ¼ min min
½0;L�

T0; min
½0;s�

T1; min
½0;s�

T2

� �
TmaxðsÞ ¼ max max

½0;L�
T0; max

½0;s�
T1; max

½0;s�
T2

� �
for every positive s, we have TminðsÞ � Tðx; tÞ � TmaxðsÞ, for all
ðx; tÞ 2 ½0; L� � ½0; s�. Setting Tmin ¼ infs>0 TminðsÞ and TmaxðsÞ
¼ sups>0 TmaxðsÞ, we recast Eqs. (1) and (2) by using the follow-
ing dimensionless coordinates and unknown:

z :¼ x

L
; s :¼ ta

L2
; #ðz; sÞ :¼ Tðx; tÞ � Tmin

Tmax � Tmin

In heat transfer literature, s is also called the Fourier number.
Using the above changes, the governing equation can be written
in the form

@#

@s
¼ @

2#

@z2
ðz; sÞ 2 0; 1� ½ � 0;1� ½ (3)

with

#ðz; 0Þ ¼ wðzÞ :¼ T0ðLzÞ � Tmin

Tmax � Tmin

; 0 � z � 1

#ð0; sÞ ¼ u1ðsÞ :¼ T1ðxsÞ � Tmin

Tmax � Tmin

; s � 0

#ð1; sÞ ¼ u2ðsÞ :¼ T2ðxsÞ � Tmin

Tmax � Tmin

; s � 0 (4)

We finally note that 0 � #ðz; sÞ � 1 for all ðz; sÞ 2�0; 1½��0;þ1½,
by the maximum principle.

3 The Standard Approach

In this section we recall a well-known solution to problem
(3)–(4), based on Green representation formulas [1]. A Green’s
function is an integral kernel G that gives the solution of a partial
differential equation with Dirichlet boundary conditions. In our
case, the representation formula reads as follows:

#ðz; sÞ ¼
ð1

0

Gððz; sÞ; ðy; 0ÞÞwðyÞdyþ
ðs

0

Gððz; sÞ; ð0; kÞÞu1ðkÞdk

þ
ðs

0

Gððz; sÞð1; kÞÞu2ðkÞdk (5)

The solution approach consists in deriving a series expansion for
the Green’s function G. Such series, provided that it satisfies some
convergence properties, can then be used to obtain a numerical
solution of the Dirichlet problem.

We start by splitting, without any loss of generality, problem
(3)–(4) into three subproblems

#ðz; sÞ ¼ gðz; sÞ þ nðz; sÞ þ vðz; sÞ � ð1� zÞwð0Þ � zwð1Þ (6)

where

@g
@s
¼ @

2g
@z2

ðz; sÞ 2 0; 1� ½ � 0;1� ½

gðz; 0Þ ¼ wðzÞ � wð0Þ � zwð1Þ; gð0; sÞ ¼ 0; gð1; sÞ ¼ 0 (7)

@n
@s
¼ @

2n
@z2

ðz; sÞ 2 0; 1� ½ � 0;1� ½

nðz; 0Þ ¼ 0; nð0; sÞ ¼ u1ðsÞ � u1ð0Þ; nð1; sÞ ¼ 0 (8)

and

@v
@s
¼ @

2v
@z2

ðz; sÞ 2 0; 1� ½ � 0;1� ½

vðz; 0Þ ¼ 0; vð0; sÞ ¼ 0; vð1; sÞ ¼ u2ðsÞ � u2ð0Þ (9)

It is not restrictive to assume that wð0Þ ¼ u1ð0Þ ¼ 0 and
wð1Þ ¼ u2ð0Þ ¼ 0.

3.1 Solution to Subproblem (7). Let us consider first prob-
lem (7). Following the method introduced by Fourier [1], we look
for solutions in the form gðz; sÞ ¼ f ðzÞhðsÞ, and rely on the super-
position principle. We find

gðz; sÞ ¼
X1
n¼1

ane�n2p2s sinðnpzÞ; an ¼ 2

ð1

0

sinðnpyÞwðyÞdy

(10)Fig. 1 Schematic diagram of the problem
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If we assume that the initial condition w is smooth enough, say
differentiable with continuous derivative w0, then the series (10)
converges uniformly on the whole domain.

If we consider a merely continuous, or possibly discontinuous,
initial condition w, we have a weaker convergence near s ¼ 0
(see, for instance, Di Benedetto [11], Secs. 6 and 10 in Chapter 5).
More specifically, if w belongs to L2ð½0; 1�Þ, the series (10) is uni-
formly convergent in the set ½0; 1� � ½e;þ1½ for any positive e.
Indeed, we have

X1
n¼1

janj2 � 2 kwk2
L2ð½0;1�Þ (11)

so that

sup
½0;1��½e;þ1�

ane�n2p2s sinðnpzÞ
��� ��� � ffiffiffi

2
p

e�n2p2e kwkL2ð½0;1�Þ

for every n. Since
P1

n¼1 e�n2p2e converges, we have that series
(10) is uniformly convergent. It is also known that g takes the
initial data in the L2ð½0; 1�Þ sense, i.e.,

lim
s!0
kgð�; sÞ � wkL2ð½0;1�Þ¼ 0 (12)

Moreover, from Eq. (11) we also get the following stability
estimate:

kgN kL2 0;1½ �� 0;T½ �ð Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T

2

X1
n¼1

a2
n

s
¼

ffiffiffi
T
p
kwkL2ð½0;1�Þ (13)

for any positive integer N, where

gNðz; sÞ ¼
XN

n¼1

ane�n2p2s sinðnpzÞ

We finally note that the regularity of the initial condition w,
improves the convergence of the series (10). For instance, if w0

belongs to L2ð½0; 1�Þ, then

X1
n¼1

janj � c0 kw0 kL2ð½0;1�Þ (14)

for some universal positive constant c0. Equation (14) is a proof
of both stability and uniform convergence of Eq. (10).

3.2 Solution to Subproblems (8) and (9). The standard
approach to problem (8) is based on the Duhamel’s integral.
Assuming u1ð0Þ ¼ 0, the solution reads

nðz; sÞ ¼
ðs

0

u1ðkÞ
@F1ðz; s� kÞ

@s

� �
dk (15)

where F1 satisfies

@F1

@s
¼ @

2F1

@z2
; ðz; sÞ 2 0; 1� ½ � 0;1� ½

F1ðz; 0Þ ¼ 0; F1ð0; sÞ ¼ 1; F1ð1; sÞ ¼ 0 (16)

Note that Eq. (15) provides us with the Green’s function

Gððz; tÞ; ð0; kÞÞ ¼ @F1ðz; s� kÞ
@s

and that F1 is discontinuous at (0, 0).

Problem (16) can be further redefined by putting F1ðz; sÞ
¼ 1� zþ qðz; sÞ, where q is the solution of

@q
@s
¼ @

2q
@z2

ðz; sÞ 2 0; 1� ½ � 0;1� ½

qð0; sÞ ¼ 0; qð1; sÞ ¼ 0; for s � 0

qðz; 0Þ ¼ z� 1; for 0 < z < 1 (17)

Problem (17) is analogous to problem (7), except for the jump of
the initial condition at z¼ 0. Since qðz; 0Þ belongs to L2ð½0; 1�Þ,
the series (10) gives a solution of the above problem which
takes the initial condition in the L2ð½0; 1�Þ sense. By computing
the Fourier coefficients of (1 – z) we find

F1ðz; s� kÞ ¼ 1� z� 2

p

X1
n¼1

1

n
e�n2p2ðs�kÞ sinðnpzÞ (18)

From the above equation and Eq. (15) we get the solution of
Eq. (8) in the following form:

nðz; sÞ ¼ 2p
ðs

0

X1
n¼1

ne�n2p2ðs�kÞ sinðnpzÞu1ðkÞdk (19)

Analogously, the solution v to problem (9) writes

vðz; sÞ ¼
ðs

0

u2ðkÞ
@F2ðz; s� kÞ

@s

� �
dk (20)

where F2ðz; sÞ ¼ F1ð1� z; sÞ, with F2ðz; 0Þ ¼ 0;F2ð0; sÞ ¼ 0,
and F2ð1; sÞ ¼ 1. In light of the above considerations, we can
write

vðz; sÞ ¼ 2p
ðs

0

X1
n¼1

ne�n2p2ðs�kÞ sinðnpzÞð�1Þnþ1u2ðkÞdk (21)

3.3 Convergence Properties. In view of Eqs. (10), (19), and
(21), it is natural to seek the solution # of Eq. (3) as
#ðz; sÞ ¼ limN!1 #Nðz; sÞ, where #N ¼ nN þ gN þ vN , with

nNðz; sÞ ¼ 2p
ðs

0

XN

n¼1

ne�n2p2ðs�kÞ sinðnpzÞu1ðkÞdk

vNðz; sÞ ¼ 2p
ðs

0

XN

n¼1

ne�n2p2ðs�kÞ sinðnpzÞð�1Þnþ1u2ðkÞdk

gNðz; sÞ ¼ 2
XN

n¼1

e�n2p2s sinðnpzÞ
ð1

0

wðyÞ sinðnpyÞdy (22)

However, nN ! n as N !1 if and only if

ðs

0

X1
n¼1

ne�n2p2ðs�kÞ sinðnpzÞu1ðkÞdk

¼
X1
n¼1

ðs

0

ne�n2p2ðs�kÞ sinðnpzÞu1ðkÞdk (23)

The same remark also applies to vN .
Since the uniform convergence of the series (19) and (21) is a

sufficient condition for interchanging integration and summation,
some remarks about their convergence properties are in order.
When discussing Eq. (14), we already noticed that the regularity
of the initial condition w improves the convergence of the series
(10). However, this is not the case for Eqs. (19) and (21), even if
the boundary conditions u1 and u2 are smooth. As an example, let
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us consider problem (3) with Eq. (24) (as defined in the next para-
graph), and define fnðz; sÞ as

fnðz; sÞ ¼ n sinðnpzÞ
ðs

0

en2p2ðk�sÞu2ðkÞdk

We have that

sup
½0;1��½s0;þ1�

jfnðz; sÞj ¼ n

ðs

0

en2p2ðk�sÞu2ðkÞdk �

n 1� e�10s0
� 	 ðs

0

en2p2ðk�sÞdk � 1

p2n
1� e�10s0
� 	

1� e�n2p2s0


 �
for every n, so that

P1
n¼1 supjfnj diverges.

3.4 Numerical Test. The unsatisfactory convergence of se-
ries (19) and (21) can be easily demonstrated by the following
simple numerical test, where the initial-boundary value problem
(3) is considered with:

#ðz; 0Þ ¼ wðzÞ :¼ 0; 0 � z � 1

#ð0; sÞ ¼ u1ðsÞ :¼ 0; s � 0

#ð0; sÞ ¼ u2ðsÞ :¼ 1� e�10s; s � 0 (24)

Figure 2(a) portrays a surface plot of the solution for
ðz; sÞ 2 ½0; 1� � ½0; 1�, alongside with contour lines for selected
values of z and s. The finite sums in Eq. (22) have been evaluated
with N¼ 30 terms, integrals having been computed by adaptive
Lobatto quadrature methods. A finite-difference solution of

problem (3) with conditions (24) has also been computed and
displayed for reference in the left and right panels of Fig. 2(a).
Explicit Euler and second-order central differences schemes have
been adopted for the time and spatial derivative, respectively,
and constant time and spatial steps have been used, namely
Ds ¼ 0:005 and Dz ¼ 0:1.

The comparison clearly points out the poor convergence of the
series. Indeed, the maximum principle states that the maxima of
analytical solutions of the heat equation necessarily lie on the
boundary of the domain. This principle is evidently not respected
by solution (22): in fact, the plots in Fig. 2(a) reveal the appear-
ance of a Gibbs phenomenon, which typically occurs when con-
sidering the Fourier series of a discontinuous function.

4 Improving Convergence of the Standard Approach

Stemming from the standard approach, we will now propose an
improved solution to problem (3)–(4), based on a simple integra-
tion by parts [12].

Considering Eq. (15) first, we recall that F1 is continuous at
every point ðz; sÞ 2 ½0; 1� � ½0;þ1½, with ðz; sÞ 6¼ ð0; 0Þ. In
addition, we observe that, for every z 2�0; 1½, the derivative of the
series (19) converges uniformly for k 2�e; s½, for any e 2�0; s½.
Hence, if u1 is continuously differentiable, we can writeðs�e

0

@F1

@s
ðz; s� kÞu1ðkÞdk ¼ �

ðs�e

0

@F1

@k
ðz; s� kÞu1ðkÞdk

¼ F1ðz; sÞu1ð0Þ � F1ðz; eÞu1ðs� eÞ

þ
ðs�e

0

F1ðz; s� kÞ _u1ðkÞdk

Fig. 2 Solutions to Eq. (3) with boundary conditions (24), computed on the ½0; 1�3½0; 1� domain,
according to: (a) Eq. (22); (b) Eq. (29); (c) Eq. (36). All the finite sums are evaluated up to a num-
ber of terms N 5 30. Left panels: profiles of #(z ; s) for selected z-values. Middle panels: surface
visualization of #(z ; s). Right panels: profiles of #(z ; s) for selected s-values. Dashed lines in left
and right panels denote a numerical solution obtained by second-order finite differencing.
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for every z 2�0; 1½; s > 0 and e 2�0; s½. Letting e! 0, and noting
that F1ðz; 0Þ ¼ 0, we getðs

0

@F1

@s
ðz; s� kÞu1ðkÞdk ¼ F1ðz; sÞu1ð0Þ þ

ðs

0

F1ðz; s� kÞ _u1ðkÞdk

(25)

We first consider the case u1ð0Þ ¼ 0. The above identity and
Eq. (18) give

nðz; sÞ ¼ ð1� zÞu1ðsÞ �
2

p

ðs

0

X1
n¼1

1

n
sinðnpzÞe�n2p2ðs�kÞ _u1ðkÞdk

(26)

If u1 is twice differentiable, we integrate by parts once more,
and we find

nðz; sÞ ¼ ð1� zÞu1ðsÞ �
2

p3

X1
n¼1

1

n3
sinðnpzÞ _u1ðsÞ

þ 2

p3

X1
n¼1

1

n3
sinðnpzÞe�n2p2s _u1ð0Þ

þ 2

p3

ðs

0

X1
n¼1

1

n3
sinðnpzÞe�n2p2ðs�kÞ €u1ðkÞdk (27)

After the second integration by parts, the series that define n in
Eq. (27) converge uniformly, and we can interchange integration
and summation.

Analogously, if u2 is twice continuously differentiable, we get
the following solution to Eq. (20):

vðz; sÞ ¼ zu2ðsÞ �
2

p3

X1
n¼1

ð�1Þnþ1

n3
sinðnpzÞ _u2ðsÞ

þ 2

p3

X1
n¼1

ð�1Þnþ1

n3
sinðnpzÞe�n2p2s _u2ð0Þ

þ 2

p3

ðs

0

X1
n¼1

ð�1Þnþ1

n3
sinðnpzÞe�n2p2ðs�kÞ €u2ðkÞdk (28)

Considering Eqs. (10), (27), and (28), we set

#Nðz;sÞ¼2
XN

n¼1

e�n2p2s sinðnpzÞ
ð1

0

wðyÞsinðnpyÞdy

þ½ð1�zÞu1ðsÞþzu2ðsÞ�

� 2

p3

XN

n¼1

1

n3
sinðnpzÞ½ _u1ðsÞþð�1Þnþ1 _u2ðsÞ�

þ 2

p3

XN

n¼1

1

n3
sinðnpzÞe�n2p2s½ _u1ð0Þþð�1Þnþ1 _u2ð0Þ�

þ 2

p3

ðs

0

XN

n¼1

1

n3
sinðnpzÞen2p2ðk�sÞ½€u1ðkÞþð�1Þnþ1 €u2ðkÞ�dk

(29)

and we note that #ðz; sÞ ¼ limN!1 #Nðz; sÞ is the solution to prob-
lem (3)–(4).

Figure 2(b) shows the solution to problem (3) with boundary
conditions (24), as given by Eq. (29). Note that the oscillations
highlighted in Fig. 2(a) now disappear. The quality of the solution
is improved by the good rate of convergence of the series in
Eqs. (10), (27), and (28).

Indeed, if the functions u1;u2, and w are bounded with their
first and second derivatives on the interval [0, s], then we have

max
ðz;sÞ2½0;1��½0;s�

#ðz; sÞ � #Nðz; sÞj j � Cs

N2
(30)

for some positive constant Cs only depending on u1;u2;w, and s.
This statement directly follows from the elementary inequality

X1
n¼Nþ1

1

n3
�
ð1

N

1

y3
dy ¼ 1

2N2

As a consequence, we also get the following stability estimate:

#Nðz; sÞk kL1 ½0;1��½0;s�ð Þ� Cs (31)

with the same constant Cs appearing in Eq. (30).
In conclusion, the regularity of the boundary and initial data

improves the convergence of the numerical approximations. This
remark agrees with the results provided by Surana et al. [7], where
it is shown that finite element methods are even more sensitive to
the regularity of the boundary data.

It is important to point out, however, that if we remove the
assumption u1ð0Þ ¼ u2ð0Þ ¼ 0, we need to add the term
F1ðz; sÞu1ð0Þ þ F2ðz; sÞu2ð0Þ in the definition of #ðz; sÞ. Note
that F1 and F2 are discontinuous at ðz; sÞ ¼ ð0; 0Þ and ðz; sÞ
¼ ð1; 0Þ, respectively, then the convergence of series (18) is not
uniform, and an approximation of F1ðz; sÞ and F2ðz; sÞ based on
Eq. (18) cannot preserve the convergence rate (30). The alterna-
tive method introduced in next section will overcome the above
difficulty.

5 An Alternative Approach

In this section, we rely on another classical method, based on
the Laplace transform, (see for instance Ref. [3]) that gives a
different expression of the function F1 appearing in Eq. (15).

To avoid ambiguities, we will denote such expression by eF1

eF1ðz; sÞ ¼
X1
n¼0

erfc
2nþ z

2
ffiffiffi
s
p

� 

� erfc

2ðnþ 1Þ � z

2
ffiffiffi
s
p

� 
� �
(32)

Here, erfc is the complementary error function

erfcðzÞ ¼ 2ffiffiffi
p
p
ðþ1

z

e�y2

dy z 2 R

A good feature of series (32) is that the discontinuity in F1 does
not affect its uniform convergence. Indeed

gðz; sÞ ¼ z

2
ffiffiffi
s
p

is the Green’s function of the half line fðz < 1Þg and is discontinu-

ous at ðz; sÞ ¼ ð0; 0Þ, while eF1 � g is continuous at ðz; sÞ ¼ ð0; 0Þ.
It is immediate to show that Eq. (32) has an excellent rate of con-
vergence. In fact, for any given positive s, we haveX1

n¼0

sup
ðz;sÞ2½0;1��½0;s�

erfc
2nþ z

2
ffiffiffi
s
p

� 

� erfc

2ðnþ 1Þ � z

2
ffiffiffi
s
p

� 
���� ����
�
X1
n¼0

erfc
nffiffi
s
p
� 


(33)

where the convergence of the right-hand side term is very fast.
Hence, if n denotes the solution of Eq. (8), by Eqs. (15) and (25),
we get

nðz; sÞ ¼
ðs

0

_u1ðkÞ
X1
n¼0

erfc
2nþ z

2
ffiffiffiffiffiffiffiffiffiffiffi
s� k
p

� 

� erfc

2ðnþ 1Þ � z

2
ffiffiffiffiffiffiffiffiffiffiffi
s� k
p

� 
� �
dk
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Here, F1 has been replaced by eF1. The good rate of convergence
of Eq. (32) allows us to remove the assumption u1ð0Þ ¼ 0. We
get

nðz;sÞ ¼u1ð0Þ
X1
n¼0

erfc
2nþ z

2
ffiffiffiffiffiffiffiffiffiffi
s�k
p

� 

� erfc

2ðnþ1Þ� z

2
ffiffiffiffiffiffiffiffiffiffi
s�k
p

� 
� �
þ
ðs

0

_u1ðkÞ
X1
n¼0

erfc
2nþ z

2
ffiffiffiffiffiffiffiffiffiffi
s�k
p

� 

� erfc

2ðnþ1Þ� z

2
ffiffiffiffiffiffiffiffiffiffi
s�k
p

� 
� �
dk

(34)

Analogously, the solution v to problem (9) writes

vðz; sÞ ¼
ðs

0

u2ðkÞ
@ eF2ðz; s� kÞ

@s

" #
dk

where eF2ðz; sÞ ¼ eF1ð1� z; sÞ, so that

vðz; sÞ ¼ u2ð0ÞeF2ðz; sÞ þ
ðs

0

_u2ðkÞeF2ðz; s� kÞdk (35)

From Eqs. (10), (34), and (35) we deduce a novel expression of
#N , in the form

#Nðz;sÞ¼u1ð0Þ
XN

n¼0

erfc
2nþz

2
ffiffiffi
s
p

� 

�erfc

ð2nþ2Þ�z

2
ffiffiffi
s
p

� 
� �

þu2ð0Þ
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2
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p
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�erfc

ð2nþ1Þþz

2
ffiffiffi
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p

� 
� �

þ
ðs

0

_u1ðkÞ
XN

n¼0

erfc
2nþz

2
ffiffiffiffiffiffiffiffiffiffi
s�k
p

� 

�erfc

ð2nþ2Þ�z

2
ffiffiffiffiffiffiffiffiffiffi
s�k
p

� 
� �
dk

þ
ðs

0

_u2ðkÞ
XN

n¼0

erfc
ð2nþ1Þ�z

2
ffiffiffiffiffiffiffiffiffiffi
s�k
p

� 

�erfc

ð2nþ1Þþz

2
ffiffiffiffiffiffiffiffiffiffi
s�k
p

� 
� �
dk

þ2
XN

n¼1

e�n2p2s sinðnpzÞ
ð1

0

wðyÞsinðnpyÞdy (36)

The numerical method based on the above approximation remains
numerically stable and maintains a very fast convergence even if
the boundary data are discontinuous. The convergence properties
of the function #N defined in Eq. (36) entail the result of Fig. 2(c),

where the solution to problem (3) with boundary conditions (24)
is shown, as computed by Eq. (36). The shape of the solution is
perfectly identical to that displayed in Fig. 2(b), highlighting that
the two expressions (29) and (36) lead to substantially equivalent
results.

As already stated, the difference between the two approaches
lies in the faster convergence of Eq. (36) with respect to Eq. (29).
This is consequential to the fact that Eq. (19) involves the Fourier
series of a discontinuous function, and its convergence rate is
slower than the one of the series appearing in Eqs. (34) and (35).

The above assertion can easily be demonstrated by computing
some norm of the n-th term of the series appearing in Eqs. (29)
and (36), #nðz; sÞ, and by evaluating its value for increasing n. As
an example, by taking problem (3) with boundary conditions (24),
we evaluated the infinity norm of #nðz; �sÞ, for �s ¼ 1 with both
approaches, and plotted it as a function of n. The result is shown
in Fig. 3(a). From the graphs it appears clearly that the magnitude
of terms in solution (29) decreases by a power law (�n�3), whilst
the rate of decay of the terms in solution (36) is exponential and,
therefore, much faster. For both solutions, Table 1 reports the
value of n for which #nðz; �sÞ falls below selected thresholds, thus
providing a useful indication for the application of the formulas
(29) and (36) whenever a numerical evaluation of the solution to a
problem of the kind (3)–(4) is sought for.

Figure 3(b) reports the trends of the ratio R#

R# ¼
k#ðz; �sÞnþ1 k1
k#ðz; �sÞn k1

for increasing n. We note that R# tends to a finite limit in the inter-
val ]0,1[ for the solution obtained by Eq. (29), suggesting that the
convergence of the series is linear. On the other hand, R# goes
rapidly to 0 for the solution obtained by Eq. (36), proving that the
series has superlinear convergence.

Fig. 3 Numerical assessment of convergence rates: (a) infinity norm of the n-th series terms
and (b) ratio between the norms of successive terms versus n in Eqs. (29) and (36)

Table 1 Number of terms in Eqs. (29) and (36) after which the
infinity norm of the n-th term falls below a given threshold

Threshold Eq. (29) Eq. (36)

10�6 n¼ 6 n¼ 4
10�8 n¼ 27 n¼ 5
10�10 n¼ 60 n¼ 5
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In a similar fashion to Fig. 2, numerical solutions to problem
(3), for the following set of initial and boundary conditions:

#ðz; 0Þ ¼ wðzÞ :¼ 4z2 � 4z; 0 � z � 1

#ð0; sÞ ¼ u1ðsÞ :¼ 1� e�10s; s � 0

#ð1; sÞ ¼ u2ðsÞ :¼ sinð25sÞ; s � 0 (37)

are reported in Fig. 4, according to Eqs. (a) (22), (b) (29), and (c)
(36). Being this a more general case than the example given by
Eq. (24), it confirms the qualities of the two solution methods pro-
posed here. It also highlights the suitability of the two approaches
to problems with oscillating boundary values.

6 Concluding Remarks

Analytical solutions to the one-dimensional heat equation were
considered for time-varying Dirichlet-type boundary conditions
and arbitrary initial values.

Standard approaches in the literature, based on Green represen-
tation formulas and the Duhamel’s integral, were shown to have
poor convergence rates and to provide inaccurate results, in partic-
ular when discontinuities are present at the boundaries, or the
imposed boundary values oscillate in time.

More accurate and uniformly convergent solutions were
obtained following two alternative approaches. The first solution
was derived by double integration by parts starting from the clas-
sical Fourier expansions. The second procedure enforced the
Duhamel’s integral coupled with the Laplace transform.

We gave a rigorous theoretical estimate of the rate of conver-
gence of the series that define the two solutions, and we showed
that they both converge uniformly on the domain. In addition, we

demonstrated that the second solution maintains its validity even
in the presence of a finite number of discontinuities in the bound-
ary functions.

A numerical estimate of the convergence rate of the two solu-
tions was provided for two test cases, showing that both methods
have superior accuracy and convergence properties towards the
standard approach. The numerical experiments also indicated that
the second method has a higher convergence rate than the first
one, thus representing a very attractive computational tool for
direct use or the benchmarking of numerical discretizations.

Nomenclature

C ¼ constant
f,g ¼ auxiliary functions

F1; eF1;F2; eF2 ¼ auxiliary functions for the Duhamel’s integral
G ¼ Green’s functions

R# ¼ ratio of the norms of successive series terms
t ¼ time (s)

T0 ¼ initial temperature distribution
T1 ¼ boundary temperature values at z¼ 0
T2 ¼ boundary temperature values at z¼ 1

s ¼ arbitrary scalar
x ¼ space coordinate (m)
y ¼ auxiliary integration variable
z ¼ dimensionless space variable

Greek Symbols

a ¼ thermal diffusivity
# ¼ dimensionless temperature
k ¼ auxiliary integration variable

Fig. 4 Solutions to Eq. (3) with boundary conditions (37), computed on the ½0; 1�3½0;1� domain
according to: (a) Eq. (22); (b) Eq. (29); (c) Eq. (36). All the finite sums are evaluated up to a num-
ber of terms N 5 30. Left panels: profiles of #(z ; s) for selected z-values. Middle panels: surface
visualization of #(z ; s). Right panels: profiles of #(z ; s) for selected s-values. Dashed lines in left
and right panels denote a numerical solution obtained by second-order finite differencing.
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s ¼ dimensionless time
u1 ¼ dimensionless boundary condition at z¼ 0
u2 ¼ dimensionless boundary condition at z¼ 1

n; g;q; v ¼ auxiliary functions
w ¼ dimensionless initial condition
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