
Analyzing Response Time of Batch Signing∗

Turgay Korkmaz†

Department of Computer Science
University of Texas at San Antonio

San Antonio, TX, USA
korkmaz@cs.utsa.edu

Suleyman Tek
Department of Mathematics

University of the Incarnate Word
San Antonio, TX, USA

tek@uiwtx.edu

Abstract

Digital signatures are mainly used to make the receiver believe that a document is actually sent
by the claimed sender. However, since generating digital signatures requires intensive computations,
researchers proposed batch signing systems to sign multiple documents at once while having almost
the same cost of signing one document. In this paper, we analyze how the batch formation strategies
and batch sizes impact the response time. Using simulations, we verify our analytical results obtained
under the assumption of non-bursty arrivals. We also consider bursty arrivals in our simulations. In
general, we observe that using appropriate batch sizes and strategies minimizes the response time in
all cases. The improvements are specifically significant when the arrival rate is bursty and dynamic
bach sizes are used.

Keywords: Digital signatures; Batch signing; Performance modeling

1 Introduction

In electronic commerce and many other distributed applications, it is necessary to verify that a received
message or document is actually sent by a claimed sender. This can be done by using digital signa-
tures [11, 6, 12]. For a given document Di, the sender first computes a hash value Hi and then crypto-
graphically signs this hash to generate a digital signature DS(Hi). The sender then attaches this digital
signature to the document and send it. The receiver similarly computes Hi and then checks the digital
signature if the receiver has the right key. In general, computing a hash (e.g, SHA1 or MD5) is a compu-
tationally cheap task [3]. However, computing a digital signature for each document is a computationally
intensive task due to complex mathematical operations in digital signature schemes. So, as illustrated
in Figure 1, if a dedicated server is in the charge of generating a digital signature for each document
individually, then there will be significant computational overhead. This will result in extra delays and
inefficient use of resources, particularly when the document arrival rate increases.

To cope with the intensive computations, researchers proposed batch signing systems to sign multiple
documents at once while having almost the same cost of signing one document [10, 5, 13]. Specifically,
a simple batch signing server first collects m requests/documents. As before, the server computes a
hash Hi for each document and concatenate these hashes H = H1|H2|...|Hm. Finally, the server uses
the concatenated hash to compute a digital signature DS(H). Figure 2 illustrates a server that performs
simple batch signing when m = 3. Clearly, computing one digital signature instead of computing m
digital signatures will significantly reduce the computational load on the server. However, to let the
receiver verify the digital signature, we need to also attach the concatenated hash to each document,
causing extra bandwidth overhead in the order of m∗sizeof(hash).

Journal of Internet Services and Information Security, volume: 1, number: 1, pp. 70-85
∗An abridged version of this paper was presented in IEEE ICCCN 2009 Workshop on Security, Privacy and Trust of

Computer and Cyber-Physical Networks (SecureCPN). This research is supported by DoD Infrastructure Support Program
for HBCU/MI, Grant: 54477-CI-ISP (UNCLASSIFIED).

†Corresponding author. Phone: +1-210-458-7346, fax: +1-210-458-4437.

70

Analyzing Response Time of Batch Signing Korkmaz and Tek

D3 D2 D1 D3 D2 D1

DS(H3) DS(H2) DS(H1)

Server

DS

Figure 1: Digital signing of each document independently.

D3 D2 D1 D3

DS(H)

H=

H1|H2|H3

D2

DS(H)

H=

H1|H2|H3

D1

DS(H)

H=

H1|H2|H3

Server

DS

Figure 2: Simple batch signing when m = 3.

To minimize the bandwidth overhead, researchers have proposed tree-based batch signing [10]. The
basic idea is to first compute hashes for each document as above and then create a binary tree of hashes as
illustrated in Figure 3. This means that the server needs to compute total 2m hashes. Due to efficiency

R=hash(L|H3)

L=hash(H1|H2)

H1=hash(D1) H2=hash(D2)

H3=hash(D3)

Figure 3: Formation of batch tree for m = 3.

of hash computations, this would not create a significant burden on the server; thus, it can be traded
to improve bandwidth efficiency. After batch signing tree is constructed, the server only signs the root
node and attaches it to each document along with the intermediate hashes that are the sibling nodes on
the unique path from the node representing the document to the root. For example, we need to add

71

Analyzing Response Time of Batch Signing Korkmaz and Tek

D3 D2 D1 D3 D2 D1

DS(R)
DS(R)DS(R)

L
H1|H3 H2|H3

Server

DS

Figure 4: Tree-based batch signing when m = 3.

H2 and H3 for D1 while adding only L for D3. Figure 4 illustrates a server that performs tree-based
batch signing when m = 3. As proven in [10], the number of hashes added to the document increases
as O(log2 m). So, the bandwidth overhead of tree-based signing is in the order of log2 m∗sizeof(hash).
Table 1 summarizes the computation and bandwidth overhead costs of generating and verifying digital
signatures for m documents under different signing schemes.

No Batch Simple Batch Tree-based Batch
Signing Signing Signing

Number of hashes computed m m 2m
Number of digital signatures computed m 1 1
Number of hashes checked 1 m log2 m
Number of digital signatures verified 1 1 1
Bandwidth overhead per message sizeof(hash) m∗sizeof(hash) log2 m∗sizeof(hash)

Table 1: Computation cost and bandwidth overhead for generating and verifying digital signatures for m
documents under different batch signing schemes.

In this paper our goal is to analyze the response time of batch signing, particularly we consider the
cost functions of tree-based batch signing. Since processing a batch of requests takes significantly less
amount of time than processing requests one at a time, it would be better to use larger size batches. On
the other hand, since a request has to wait until a batch is formed, it would be better to use smaller size
batches to minimize response time. Given this trade-off, it is necessary to carefully analyze the batch
formation strategies and determine the batch size so that the average response time for a signing request
is minimized. Accordingly, we model batch signing as a queueing system and analyze its response time
behavior based on the system parameters and document arrival rate. In any queuing system, the service
rate (µ) must be greater than the arrival rate (λ); otherwise, the system will be in an instable condition
(i.e., queue will be built up and the delay will go to infinity) [1]. If λ < µ , then requests can be signed
one at a time to minimize the response time. However, when λ > µ , then we need to increase the batch
size and re-consider the underlying queuing model and other components of the response time, as done
in this paper.

In the rest of this paper, we first study the problem in case of fixed-size batches and try to analytically
determine the optimal batch size to minimize response time under the assumption that document arrival
rate is Poisson (non-bursty). Using simulations, we verify our analytical results under non-bursty arrivals.
We also consider bursty arrivals in our simulations. In addition to fixed size batch sizing, we investigate
dynamic batch sizing strategies and evaluate them using simulations under both non-bursty and bursty

72

Analyzing Response Time of Batch Signing Korkmaz and Tek

arrivals. In general, we observed similar trends regarding how batch sizing improves the response time.
The improvements are particularly significant when the arrival rate is bursty and dynamic batch signing
is used. We also study how much increase in document arrival rate and/or degradation in service rate
can be handled by batch signing. This analysis might be useful during the provisioning of the underlying
system. Finally, we conclude this paper.

2 Fixed-size Batching (FSB)

For a given batch size m ≥ 1, we can define the average response time for a request as follow:

RT (m) = f (m)+wq(m)+ s(m)+ v(m) (1)

where

• f (m) is the cost function denoting the average delay for a request to wait until a m-size batch of
signing requests is formed,

• wq(m) is the cost function denoting how much time an already formed m-size batch (and thus each
request in that batch) waits in queue to be processed,

• s(m) is the cost function denoting how much time the server spends to sign an already formed
m-size batch,

• v(m) is the cost function denoting how much time a user/client spends to verify a signature bundled
in an m-size batch.

In general, the computation required for signing and verifying a batch of m requests is mainly the same
as that of signing and verifying a single request. However, since we specifically focus on the tree-
based batching discussed in previous section, we have take into account some additional costs such as
generating 2m hashes when signing, and checking log2(m) hashes when verifying. Based on the cost
functions in Table 1, we model the cost for s(m) and v(m) as the functions of m in the forms of

s(m) = ts +2mas

and
v(m) = tv + log2(m)av,

where ts and tv are the times required to generate and verify a digital signature for a single request,
respectively; and as and av are the times for computing and checking a hash value during signing and
verification, respectively. In general, ts > tv >> as > av. Given ts, tv, as, and av, we can easily compute
s(m) and v(m).

Therefore, we next focus on f (m) and wq(m) in a batching system. To analytically compute these
components of response time, we first assume that incoming requests follow the Poisson process with
mean arrival rate λ (i.e., inter-arrival time is exponentially distributed with mean 1/λ) while the process-
ing time is deterministically given with the service rate µ (when processed one at a time). Accordingly,
we obtain an approximate closed form expression for RT (m) and check its validity using simulations
under Poisson (i.e., non-bursty) arrivals. We also evaluate the performance of batch signing using simu-
lations under busty arrivals generated by a two-state Markov Modulated Poisson Process (MMPP).

73

Analyzing Response Time of Batch Signing Korkmaz and Tek

2.1 Stability condition

For a stable batch signing system, λbatch =
λ
m must be smaller than µbatch =

1
s(m) =

1
ts+2mas

. Accordingly,
we can determine that

m >
λ ts

1−2λas

for a stable system. In addition, denumerator 1−2λas must be greater than zero so that batch size will
not reach to infinity. To satisfy this,

as <
1

2λ
or λ <

1
2as

.

2.2 Computing f (m) under Non-Bursty Arrivals

Suppose the first request of a batch is arrived at time t and t = 0 without loss of generality. As illustrated
in Figure 5, the second request arrives with inter-arrival time T1, the third request arrives with inter-
arrival time T2, and so on until the mth request arrives to complete the formation of a batch. Note that

1 2 3 mm-1

T1 T2 Tm-1

Figure 5: Formation of a fixed-size batch.

T1,T2, · · · ,Tm−1 are independent and identically distributed (iid) random variables corresponding to inter-
arrival times in Poisson process. As a result, we can compute the average delay for a request during the
formation of a batch as follows:

f (m) =
E[T1]+2E[T2]+ · · ·+(m−1)E[Tm−1]

m
.

Since inter-arrival times are iid and exponentially distributed random variables with mean 1/λ , we have

f (m) =
1/λ ∑m−1

i=1 i
m

=
m−1

2λ
.

2.3 Computing wq(m) under Non-Bursty Arrivals

First we need to determine the inter-arrival times between batches and the distribution of these inter-
arrival times. Suppose a batch has been formed at time t and t = 0 without loss of generality. The next
batch will be formed when m requests arrive. In other words, the inter-arrival time between batches is
the sum of m inter-arrival times between requests, as illustrated in Figure 6. Since inter-arrival times
are independent exponential random variables with mean 1/λ and the sum of m exponential random
variables has gamma distribution (more specifically m-Erlang distribution) with parameters of α = m

74

Analyzing Response Time of Batch Signing Korkmaz and Tek

1 2 3 mm-1

T2 T3 Tm

m

T1

1 2 m-1

Batch inter-arrival time

Figure 6: Inter-arrival time of fixed-size batches.

and β = λ [1, 9], we conclude that the batch inter-arrival time is an m-Erlang distributed random variable
with mean of α/β = m/λ and variance of α/β 2 = m/λ 2.

In summary, the arrival of batches has a general distribution with the rate of λbatch = λ/m and the
deterministic batch processing with the rate of µbatch = 1/s(m). To determine the average delay (wq(m))
that a batch encounters in the queue, we consider the G/G/1 queuing system. In the literature (e.g., [7]),
the researchers have provided good approximations for the average queuing delay of G/G/1 systems.
With our notation, the average queuing delay can be computed as follows:

wq(m)≃ ρ
1−ρ

C2
a +C2

s

2
1

µbatch
,

where ρ = λbatch/µbatch =
λ s(m)

m , C2
a and C2

s are the coefficients of variations of batch inter-arrival and
service times, respectively. Since the inter-arrival time has m-Erlang distribution, C2

a = 1/m. Since
the service time is deterministic, C2

s = 0. As a result, the average queuing delay can be approximately
computed by:

wq(m)≃ λ s(m)

m−λ s(m)

1
2m

s(m).

By substituting f (m), and wq(m) into (1), we obtain

RT (m)≃ m−1
2λ

+
λ s(m)2

2m(m−λ s(m))
+ s(m)+ v(m) (2)

Using this approximate formula of RT (m), we can also analytically determine the optimal batch size
(say m∗) by taking the derivative of RT (m) with respect to m and then solving RT ′(m) = 0. For this, first
let

u = λ s(m)2 = (4λa2
s)m

2 +(4λasts)m+(λ t2
s)

and
v = 2m(m−λ s(m)) = (2(1−2λas))m2 − (2λ ts)m.

Then

RT ′(m) =
1

2λ
+

vu′−uv′

v2 +2as +av
1

m ln(2)
,

75

Analyzing Response Time of Batch Signing Korkmaz and Tek

where
u′ = (8λa2

s)m+(4λasts)

and
v′ = (4(1−2λas))m− (2λ ts).

After substituting u, u′ v, and v′ and doing some algebraic operations, it is easy to see that we will
obtain a fourth degree polynomial for RT ′(m) = 0. Unfortunately, finding roots of such a polynomial
will not be an easy task. Instead, we can use Newton’s method [4]. To solve RT ′(m) = 0, Newton’s
method has the following formula

mi+1 = mi −
RT ′(mi)

RT ′′(mi)
i = 0,1,2, . . . ,

where m0 is given as an initial guess. As seen in the above formula, Newton’s method requires us to also
take the second derivative of RT (m). This can easily be done as follows.

RT ′′(m) =
v2(vu′−uv′)′− (vu′−uv′)(v2)′

v4 − av

m2 ln(2)

=
v2(v′u′+ vu′′−u′v′−uv′′)− (vu′−uv′)2vv′

v4 − av

m2 ln(2)

where u′′ = 8λa2
s and v′′ = 4(1−λas).

In our case, Newton’s method is easier than solving a forth degree polynomial and it converges
quickly since we are able to make a good guess for m0 as follows. As discussed above, for a stable
batch signing system, m > λ ts

1−2λas
. Accordingly, we set m0 = λ ts

1−2λas
+ 1 and in a few iterations, we

determine mn as the root of RT ′(m) = 0. Note that mn might be a real number. In this case, we check
if RT (⌈mn⌉) < RT (⌊mn⌋), then set m∗ = ⌈mn⌉; otherwise, m∗ = ⌊mn⌋. For example, we obtained the
optimal batch sizes of m∗ = 7 within 6 iterations, and m∗ = 18 within 7 iterations for the two cases that
we consider during our simulations in the next subsection (see Figure 7).

2.4 Simulation Results under Non-Bursty Arrivals

To check the validity of the analytical approximation in Equation (2), we conduct several simulations. We
implemented our simulator in C language using CSIM [8] library. It simply generates signing requests
according to Poisson process with the given parameters, forms batches based on the given strategy, and
then process batches using a queuing system. We run our simulations for 100,000 requests and take
averages of their response times.

Since we observed the similar trends under many runs with different parameters, we just report two
cases as shown in Figure 7. Clearly, the figure shows that the analytical formula in Equation (2) captures
the response time behavior of a batch signing system with a slight overestimation of RT . Both simulation
and analytical results give the same optimal batch size. Using the Newton’s method described in previous
subsection, we determined that the optimal batch size for Case I is m∗ = 7 within 6 iterations, and that
for Case II is m∗ = 18 within 7 iterations.

2.5 Simulation Results under Bursty Arrivals

We extended our simulator to also generate bursty arrivals. For this we used a two-state Markov Modu-
lated Poisson Process (MMPP) with parameters λ1, λ1, r1, r2 [2]. As a doubly stochastic Poisson process,
a two-state MMPP controls the arrival rate by a continuous-time Markov chain that has two states, namely
S1 and S2. Transition intensities from S1 to S2 and from S2 to S1 are r1 and r2, respectively. In state S1,

76

Analyzing Response Time of Batch Signing Korkmaz and Tek

5 10 15
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Case−I:Fixed batch size, λ=8, t
s
=0.5, a

s
=0.01, t

v
=0.1, and a

v
=0.001

Batch size (m)

R
es

po
ns

e
tim

e
R

T
(m

)

Analytical Results (non−bursty)
Simulation results (non−bursty)

15 20 25 30 35
6

6.5

7

7.5

8

8.5

9

9.5

Case−II:Fixed batch size, λ=5, t
s
=1.5, a

s
=0.05, t

v
=0.8, and a

v
=0.01

Batch size (m)

R
es

po
ns

e
tim

e
R

T
(m

)

Analytical Results (non−bursty)
Simulation results (non−bursty)

Figure 7: Comparison of analytical and simulation results in case of fixed-size batches under non-bursty
(Poisson) arrivals.

the arrival process follows a Poisson process with rate λ1. In state S2, the arrival process again follows a
Poisson process but with rate λ2. The mean arrival rate λ is given as

λ =
λ1r2 +λ2r1

r1 + r2
(3)

In our simulations, we use (3) to determine the parameters of MMPP such that the same mean arrival
rate λ will be used for both non-bursty and bursty arrivals. Specifically, we use the same parameters and
constants that were used to generate bursty web traffic in [2]. Accordingly, we set r1 and r2 to 0.05 and
0.95, respectively, while setting λ1 to λ1 = 0.75λ . Then from (3), we determine λ2 as

λ2 =
(r1 + r2)λ −λ1r2

r1

In summary, λ1 is the low arrival rate and will be used 95% of the time while λ2 is the high arrival rate
and will be used 5% of the time to generate sudden bursty arrivals.

5 10 15 20 25 30
1

2

3

4

5

6

7

8

9

10

11

Case−I:Fixed batch size, λ=8, t
s
=0.5, a

s
=0.01, t

v
=0.1, and a

v
=0.001

Batch size (m)

R
es

po
ns

e
tim

e
R

T
(m

)

Analytical Results (non−bursty)
Simulation results (bursty)

15 20 25 30 35 40
6

8

10

12

14

16

18

Case−II:Fixed batch size, λ=5, t
s
=1.5, a

s
=0.05, t

v
=0.8, and a

v
=0.01

Batch size (m)

R
es

po
ns

e
tim

e
R

T
(m

)

Analytical Results (non−bursty)
Simulation results (bursty)

Figure 8: Comparison of analytical and simulation results in case of fixed-size batches under bursty
(MMPP) arrivals.

77

Analyzing Response Time of Batch Signing Korkmaz and Tek

Under the same two cases we considered before, we just changed the arrival process and obtained
the results shown in Figure 8. Clearly, the analytical formula derived based on Poisson process cannot
capture the response time behavior of a batch signing system when arrivals are bursty. However, the
general trend shows that when an appropriate batch size is selected the response time will be reduced
significantly. Also we observed that since the very large batch sizes smooths the burstiness, the analytical
formula derived based on Poisson process may closely approximate the performance behavior under
bursty arrivals.

3 Varying-size Batching (VSB)

Instead of fixed-size batching (FSB) described above, we may also use other strategies that use batches
with different sizes. We now consider what would be the best strategy in case of varying-size batches.
We mainly consider the following three varying-size batching strategies:

• Lower-bounded batching (LBB): This strategy requires a minimum batch size (e.g., MINB=3).
In other words, the server will wait at least 3 requests to come in. It will then process them. While
processing these 3 requests, 10 more requests might come in. When the server is done with these
3 requests, it can process all of the 10 requests in the next batch and so on. In general, the batch
size will vary in the range [MINB, ∞).

• Upper-bounded batching (UBB): This strategy puts a maximum limit on the batch size (e.g.,
MAXB=20) and processes any batch that is smaller than MAXB. For example, suppose the server
founds 10 requests when it gets idle, then it starts processing these 10. While processing these 10,
the server may receive 30 requests. In this case, the server takes the first 20 in a batch and process
them while the other 10 is waiting in queue. Thus, the batch size in this case will vary in the range
[1,MAXB].

• Lower and Upper-bounded batching (LUBB): This strategy is the combination of the previous
two strategies. It simply maintains MINB and MAXB, and process any batch that has the size in
the range [MINB, MAXB].

Unfortunately, it is very difficult if not impossible to obtain analytical models in case of varying
batch sizes. Therefore, we mainly use simulations for analyzing and comparing these strategies under
both non-bursty and bursty arrivals.

3.1 Simulation Results

We extended our simulator to handle varying batch sizes. We again consider the same two cases under
the non-bursty and bursty arrivals as described before. Figures 9 and 10 show the simulation results
for varying size batches under non-bursty arrivals for Case-I and Case-II, respectively. Similarly, Fig-
ures 11 and 12 show the simulation results for varying size batches under bursty arrivals for Case-I and
Case-II, respectively.

In all these figures, part (a) presents the average response times for fixed-size batching (FSB), LBB,
and UBB. In all cases, both LBB and UBB give better response time (RT) than FSB as long as the MINB
in LBB is less than the optimal batch size found for FSB, and MAXB in UBB is greater than the optimal
batch size found for FSB.

Part (b) presents the average batch size for FSB, LBB, and UBB. For FSB, the average batch size
naturally increases as the fixed batch size (m) increases. LBB uses the batch sizes within the range
[MINB= m, ∞). As long as MINB is less than the optimal batch size in FSB, LBB strategy is able to

78

Analyzing Response Time of Batch Signing Korkmaz and Tek

0 5 10 15
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

m

R
es

po
ns

e
tim

e
(R

T
)

Case−I: λ=8, t
s
=0.5, a

s
=0.01, t

v
=0.1, and a

v
=0.001

FBS with m
LBB [MINB=m, ∞)
UBB [1, MAXB=m]

(a)

0 5 10 15
4

6

8

10

12

14

16

m

A
ve

ra
ge

 b
at

ch
 s

iz
e

Case−I: λ=8, t
s
=0.5, a

s
=0.01, t

v
=0.1, and a

v
=0.001

FBS with m
LBB [MINB=m, ∞)
UBB [1, MAXB=m]

(b)

5 10 15
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

m

R
es

po
ns

e
tim

e
(R

T
)

Case−I: λ=8, t
s
=0.5, a

s
=0.01, t

v
=0.1, and a

v
=0.001

LUBB [MINB=1, MAXB=m]
LUBB [MINB=2, MAXB=m]
LUBB [MINB=3, MAXB=m]
LUBB [MINB=4, MAXB=m]
LUBB [MINB=5, MAXB=m]
LUBB [MINB=6, MAXB=m]
LUBB [MINB=7, MAXB=m]

(c)

5 10 15
4.5

5

5.5

6

6.5

7

7.5

m

A
ve

ra
ge

 b
at

ch
 s

iz
e

Case−I: λ=8, t
s
=0.5, a

s
=0.01, t

v
=0.1, and a

v
=0.001

LUBB [MINB=1, MAXB=m]
LUBB [MINB=3, MAXB=m]
LUBB [MINB=5, MAXB=m]
LUBB [MINB=7, MAXB=m]

(d)

Figure 9: Case-I: Comparison of strategies using varying size batches under non-bursty (Poisson) ar-
rivals.

adjust the batch size and operate around the optimal point in terms of both average batch size as well as
the average response time as seen in part (a). When MINB is increased beyond the optimal batch size
in FSB, the average batch size as well as the average response time as seen in part (a) keep increasing.
UBB uses the batch sizes within the range [1, MAXB= m]. So UBB is also able to adjust the batch size
and operate around the optimal point as long as the MAXB is greater than the optimal batch size in FSB.
If MAXB is less than the optimal batch size in FSB, then the system cannot be stable and the average
response time will be significant as seen in part (a).

Part (c) and (d) present the average response time and average batch size for LUBB, which uses the
batch sizes within the range [MINB, MAXB] as the combination of both LBB and UBB. So when MINB
is 1, LUBB is the same as UBB. Increasing MINB does not cause any significant change in response
time. Actually, when we zoom in the figures in part (c), we see that a small value for MINB (e.g., 2 or 3)
may give better results. This is due to fact that the batch signing system is now able to better deal with
the random fluctuations in the arrival rate of signing requests by jointly minimizing the batch formation
delay and queuing delay. However, increasing MINB beyond 3 usually causes slight increase in response
time. Moreover, increasing MINB naturally increases the average batch size as seen in part (d). As a

79

Analyzing Response Time of Batch Signing Korkmaz and Tek

0 5 10 15 20 25 30 35
5.5

6

6.5

7

7.5

8

8.5

9

9.5

m

R
es

po
ns

e
tim

e
(R

T
)

Case−II: λ=5, t
s
=1.5, a

s
=0.05, t

v
=0.8, and a

v
=0.01

FBS with m
LBB [MINB=m, ∞)
UBB [1, MAXB=m]

(a)

0 5 10 15 20 25 30 35
10

15

20

25

30

35

40

m

A
ve

ra
ge

 b
at

ch
 s

iz
e

Case−II: λ=5, t
s
=1.5, a

s
=0.05, t

v
=0.8, and a

v
=0.01

FBS with m
LBB [MINB=m, ∞)
UBB [1, MAXB=m]

(b)

15 20 25 30 35
5.5

6

6.5

7

7.5

8

m

R
es

po
ns

e
tim

e
(R

T
)

Case−II: λ=5, t
s
=1.5, a

s
=0.05, t

v
=0.8, and a

v
=0.01

LUBB [MINB=1, MAXB=m]
LUBB [MINB=2, MAXB=m]
LUBB [MINB=3, MAXB=m]
LUBB [MINB=4, MAXB=m]
LUBB [MINB=5, MAXB=m]
LUBB [MINB=6, MAXB=m]
LUBB [MINB=7, MAXB=m]

(c)

15 20 25 30 35
14.4

14.6

14.8

15

15.2

15.4

15.6

15.8

16

m

A
ve

ra
ge

 b
at

ch
 s

iz
e

Case−II: λ=5, t
s
=1.5, a

s
=0.05, t

v
=0.8, and a

v
=0.01

LUBB [MINB=1, MAXB=m]
LUBB [MINB=3, MAXB=m]
LUBB [MINB=5, MAXB=m]
LUBB [MINB=7, MAXB=m]

(d)

Figure 10: Case-II: Comparison of strategies using varying size batches under non-bursty (Poisson)
arrivals.

result, to get the best performance, we need to use LUBB with smaller values of MINB along with an
appropriate MAXB that should be greater than the optimal batch size in FSB.

In summary, the varying-size batching techniques allow the server to adjust the batch size and operate
around the optimal point in terms of both the average response time and average batch size. For example,
we can simply use LBB with a small value of MINB. Even though LBB provides good performance on
average, it has no upper limit on the maximum batch size. In some case, it might be necessary to have
an upper limit on the maximum batch size (e.g., to limit bandwidth overhead for each document). In that
case, we can use LUBB with small MINB and an appropriate MAXB. As the above simulation results
show that limiting MAXB will not significantly affect the performance as long as MAXB is greater than
the optimal batch size in FSB. In this regard, our analysis in previous section may help to determine
appropriate values for MAXB based on the expected load and system parameters. LUBB then adjust the
actual batch size on the fly and give the best performance.

80

Analyzing Response Time of Batch Signing Korkmaz and Tek

0 5 10 15 20 25 30
1

2

3

4

5

6

7

8

9

10

11

m

R
es

po
ns

e
tim

e
(R

T
)

Case−I: λ=8, t
s
=0.5, a

s
=0.01, t

v
=0.1, and a

v
=0.001

FBS with m
LBB [MINB=m, ∞)
UBB [1, MAXB=m]

(a)

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

m

A
ve

ra
ge

 b
at

ch
 s

iz
e

Case−I: λ=8, t
s
=0.5, a

s
=0.01, t

v
=0.1, and a

v
=0.001

FBS with m
LBB [MINB=m, ∞)
UBB [1, MAXB=m]

(b)

5 10 15 20 25 30
1

2

3

4

5

6

7

8

9

10

11

m

R
es

po
ns

e
tim

e
(R

T
)

Case−I: λ=8, t
s
=0.5, a

s
=0.01, t

v
=0.1, and a

v
=0.001

LUBB [MINB=1, MAXB=m]
LUBB [MINB=2, MAXB=m]
LUBB [MINB=3, MAXB=m]
LUBB [MINB=4, MAXB=m]
LUBB [MINB=5, MAXB=m]
LUBB [MINB=6, MAXB=m]
LUBB [MINB=7, MAXB=m]

(c)

5 10 15 20 25 30
4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

m

A
ve

ra
ge

 b
at

ch
 s

iz
e

Case−I: λ=8, t
s
=0.5, a

s
=0.01, t

v
=0.1, and a

v
=0.001

LUBB [MINB=1, MAXB=m]
LUBB [MINB=3, MAXB=m]
LUBB [MINB=5, MAXB=m]
LUBB [MINB=7, MAXB=m]

(d)

Figure 11: Case-I: Comparison of strategies using varying size batches under bursty (MMPP) arrivals.

4 Impact of Arrival Rate Increase

As discussed and analyzed in previous sections, batch signing is necessary when arrival rate (λ) is greater
than the service rate (µ). We are now interested in how much increase in arrival rate can be tolerated by
the batch signing.

Suppose the arrival rate increases from λ to λnew = aλ , a > 1. Clearly, we can use our previous
analysis with λnew and determine the new optimal batch size that minimizes the new average response
time (RT), which naturally increases as a increases. Here we are specifically interested in how much
increase the signing system can tolerate. The answer depends on wether we want to have (i) a stable
system with arbitrary (but finite) response time, or (ii) a stable system with some upper bound on response
time. For the first design option, we need to determine the maximum value of a while making sure that
the system is still stable (e.g., average response delay might be large but it will be finite).

From the discussions in previous sections, we know that the condition for a stable system is

λbatch =
aλ
m

< µbatch =
1

s(m)
.

81

Analyzing Response Time of Batch Signing Korkmaz and Tek

0 5 10 15 20 25 30 35 40
7

8

9

10

11

12

13

14

15

16

17

m

R
es

po
ns

e
tim

e
(R

T
)

Case−II: λ=5, t
s
=1.5, a

s
=0.05, t

v
=0.8, and a

v
=0.01

FBS with m
LBB [MINB=m, ∞)
UBB [1, MAXB=m]

(a)

0 5 10 15 20 25 30 35 40
10

15

20

25

30

35

40

45

50

m

A
ve

ra
ge

 b
at

ch
 s

iz
e

Case−II: λ=5, t
s
=1.5, a

s
=0.05, t

v
=0.8, and a

v
=0.01

FBS with m
LBB [MINB=m, ∞)
UBB [1, MAXB=m]

(b)

15 20 25 30 35 40
7

8

9

10

11

12

13

14

15

16

17

m

R
es

po
ns

e
tim

e
(R

T
)

Case−II: λ=5, t
s
=1.5, a

s
=0.05, t

v
=0.8, and a

v
=0.01

LUBB [MINB=1, MAXB=m]
LUBB [MINB=2, MAXB=m]
LUBB [MINB=3, MAXB=m]
LUBB [MINB=4, MAXB=m]
LUBB [MINB=5, MAXB=m]
LUBB [MINB=6, MAXB=m]
LUBB [MINB=7, MAXB=m]

(c)

15 20 25 30 35 40
13.4

13.6

13.8

14

14.2

14.4

14.6

14.8

15

15.2

15.4

m

A
ve

ra
ge

 b
at

ch
 s

iz
e

Case−II: λ=5, t
s
=1.5, a

s
=0.05, t

v
=0.8, and a

v
=0.01

LUBB [MINB=1, MAXB=m]
LUBB [MINB=3, MAXB=m]
LUBB [MINB=5, MAXB=m]
LUBB [MINB=7, MAXB=m]

(d)

Figure 12: Case-II: Comparison of strategies using varying size batches under bursty (MMPP) arrivals.

From which, we can determine that
a <

m
λ ts +2λasm

.

As m goes to ∞, we can determine the upper bound on a by taking the limit as follows:

a < lim
m→∞

m
λ ts +2λasm

.

Using the L’Hospital rule, we have

a <
1

2λas
.

For the two cases that we considered in Figure 7, the upper bounds on a will be 6.25 and 2, respectively.
As long as the new arrival rate is less than 6.25 times the original arrival rate in Case-I and 2 times in
Case-II, then the batch signing system will be stable by selecting an appropriate batch size by using our
analysis in previous sections. For example, Figure 13 shows the response time behavior of the batch
signing system and the optimal batch size under different values of a for the Case-I and Case-II we
considered before.

82

Analyzing Response Time of Batch Signing Korkmaz and Tek

0 50 100 150 200 250
0

5

10

15

20

25

Batch size (m)

R
es

po
ns

e
tim

e
R

T
(m

)

Case−I:Fixed batch size, λ=8, t
s
=0.5, a

s
=0.01, t

v
=0.1, and a

v
=0.001

a <6.25

a=1
a=2.5
a=4
a=5.5

0 50 100 150
0

10

20

30

40

50

60

70

Batch size (m)

R
es

po
ns

e
tim

e
R

T
(m

)

Case−II:Fixed batch size, λ=5, t
s
=1.5, a

s
=0.05, t

v
=0.8, and a

v
=0.01

a <2

a=1
a=1.25
a=1.5
a=1.75

Figure 13: Performance of batch signing when arrival rate increases.

For the second design option (i.e., a stable system with some upper bound on response time), we
need to (i) replace λ with λnew = aλ in our previous RT (m) formula and (ii) determine the maximum
value of a and the value of m∗ such that RT (m∗) is less than the given upper bound denoted by MAXrt on
the response time. This will require us to first symbolically solve RT ′(m) = 0 and obtain m∗ as a function
of a, and then find maximum a that satisfies RT (m∗) < MAXrt. As we discussed before, since there is
no closed form solution for RT ′(m) = 0, it will be difficult to compute an analytical upper bound on a
for a given MAXrt. However, we can numerically determine the upper bound on a by using the binary
search in the range [1, 1

2λas
].

5 Impact of Service Rate Degradation

Suppose that the server experiences some performance degradation and thus spends snew = γs(m) unit
of time to process signing requests, where γ > 1. Clearly, we can use our previous analysis with snew

instead of s(m) and determine the new optimal batch size that minimizes the average response time (RT),
which naturally increases as γ increases.

In Figure 14 we illustrate how much performance degradation at the server can be tolerated by in-
creasing the batch size for the same two cases we studied before. Specifically, we consider 20% and 40%
degradation and thus set γ to 1.2 and γ to 1.4, respectively. From Figure 14, it is easy to see that when γ
increases, we need to increase the batch size so that the system will be in stable condition. Depending on
the value of γ , the optimal batch size can be analytically determined by simply modifying the formulas
we provided before.

6 Conclusions

In this paper we analyzed the performance characteristics of batch signing. We first described how
to analytically determine the optimal batch size to minimize response time under non-bursty (Poisson)
arrivals. We then verified our analytical results via simulations. We also considered bursty arrivals in
our simulations. In general, we observed that using very large or small batch sizes increase the average
response time and cause instabilities under both non-bursty and bursty arrivals. So we need to carefully
select the batch size based on the system parameters and load. However, since the load may not be known
in advance, it will be really a challenge to pick an optimal fixed batch size.

83

Analyzing Response Time of Batch Signing Korkmaz and Tek

5 10 15
1

2

3

4

5

6

7

8

9

10

Batch size (m)

R
es

po
ns

e
tim

e
R

T
(m

)

Case−I:Fixed batch size, λ=8, t
s
=0.5, a

s
=0.01, t

v
=0.1, and a

v
=0.001

Original
γ=1.2
γ=1.4

15 20 25 30 35 40 45 50 55
5

10

15

20

25

30

35

40

45

Batch size (m)

R
es

po
ns

e
tim

e
R

T
(m

)

Case−II:Fixed batch size, λ=5, t
s
=1.5, a

s
=0.05, t

v
=0.8, and a

v
=0.01

Original
γ=1.2
γ=1.4

Figure 14: Performance of batch signing under performance degradation at the server.

Accordingly, we considered varying-size batch signing strategies that can dynamically adjust the
batch size. Fortunately, our results showed that varying-size batch signing strategies can adjust the batch
size on the fly and provide the best performance. Specifically, we recommend to use LBB with a small
value of MINB. Even though LBB provides good performance on average, it has no upper limit on the
maximum batch size. If needed, we can limit the maximum batch size by using LUBB with a small
MINB and an appropriate MAXB. We need to make sure that MAXB for LUBB is set to a value that is
at least greater than the optimal fixed batch size found using our analysis. So the analytical results help
us to determine certain parameters of varying-size batch signing strategies based on the expected system
parameters and load.

Finally, we also analyzed how much increase in arrival rate or degradation in service rate can be
tolerated by a batch signing system. This analysis would be useful when provisioning a batch signing
systems with the desired level of robustness under various parameters, loads and attacks.

Acknowledgment

I would like to thank Shouhuai Xu for the discussions and comments on the problem formulation.

References
[1] Arnold O. Allen. Probability, Statistics, and Queueing Theory with Computer Science Applications (2nd

Edition). Academic Press, 1990.
[2] Mikael Andersson, Jianhua Cao, Maria Kihl, and Christian Nyberg. Performance modeling of an Apache

web server with bursty arrival traffic. In Proc. of the 2003 International Conference on Internet Computing
(IC’03), Las Vegas, Nevada, USA, volume 2, pages 558–514. CSREA Press, June 2003.

[3] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for message authentication. In
Proc. of the 16th Annual International Cryptology Conference (CRYPTO’96), Santa Barbara, California,
USA , LNCS, volume 1109, pages 1–15. Springer-Verlag, August 1996.

[4] I.N. Bronshtein, K.A. Semendyayev, G. Musiol, and H Muehlig. Handbook of Mathematics (4th Edition).
Springer-Verlag, 2004.

[5] William C. Cheng, Cheng fu Chou, and Leana Golubchik. Performance of batch-based digital signatures. In
Proc. of the 10th International Workshop on Modeling, Analysis, and Simulation of Computer and Telecom-
munication Systems (MASCOTS’02), Fort Worth, Texas, USA, pages 291–299. IEEE, October 2002.

84

Analyzing Response Time of Batch Signing Korkmaz and Tek

[6] Charles Kaufman, Radia Perlman, and Michael Speciner. Network Security, Private Communication in a
Public World (2nd Edition). Prentice Hall, 2002.

[7] Paul J. Kuehn. Approximate analysis of general queueing networks by decomposition. IEEE Transactions
on Communications, 27(1):113–126, January 1979.

[8] Inc. Mesquite Software. CSIM 19 Simulation Engine (c version). http://www-
users.cselabs.umn.edu/classes/Fall-2009/csci5104/CSIM/UsersGuide-CVersion.pdf, 2004.

[9] Athanasios Papoulis. Probability, random variables, stochastic processes (3rd Edition). McGraw-Hill, 1991.
[10] Christopher J. Pavlovski and Colin Boyd. Efficient batch signature generation using tree structures. In Proc.

of International Workshop on Cryptographic Techniques and E-Commerce (CrypTEC’99), City University of
Hong Kong, Hong Kong, pages 70–77, July 1999.

[11] William Stallings. Cryptography and Network Security (3rd Edition). Prentice Hall, 2003.
[12] Wikipedia. Digital signature. http://en.wikipedia.org/wiki/Digital_signature, 2008.
[13] Taek-Young Youn, Young-Ho Park, Taekyoung Kwon, Soonhak Kwon, and Jongin Lim. Efficient flexible

batch signing techniques for imbalanced communication applications. IEICE transactions on Information
and Systems, E91-D(5):1481–1484, May 2008.

Turgay Korkmaz received the B.Sc. degree with the first ranking from Computer
Science and Engineering at Hacettepe University, Ankara, Turkey, in 1994, and two
M.Sc. degrees from Computer Engineering at Bilkent University, Ankara, and Com-
puter and Information Science at Syracuse University, Syracuse, NY, in 1996 and
1997, respectively. In Dec 2001, Dr. Korkmaz received his PhD degree from Elec.
and Computer Eng. at University of Arizona, under the supervision of Dr. Marwan
Krunz. In January 2002, he joined the University of Texas at San Antonio as an As-

sistant Professor of Computer Science Department. Dr. Korkmaz received his tenure in September 2008,
and he is currently an Associate Professor of Computer Science Department. Dr. Korkmaz works in the
area of computer networks and network security and Internet related technologies.

Suleyman Tek received the B.Sc. degree with cum laude in Mathematics in 2001
from Department of Mathematics, Dokuz Eylul University, Izmir, Turkey. He re-
ceived the M.S. and PhD degree in Mathematics under the supervision of Dr. Metin
Gurses in 2003 and 2007, respectively, from Department of Mathematics, Bilkent Uni-
versity, Ankara, Turkey. Dr. Tek worked on a project funded by US Department of
Defense and University of Arkansas at Little Rock (UALR) as a posdoctoral research
Associate between August 2007 and September 2008. He worked as an Adjunct fac-

ulty at UALR between September 2008 and August 2009. He joined the University of the Incarnate
Word, San Antonio, TX in August 2009 and currently serving as an Assistant Professor of Mathematics.
Dr. Tek’s research area are differential geometry of integrable partial differential equations, Solution
surfaces, geometry of biomembranes, mathematical modeling of biological systems, cryptography.

85

