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ABSTRACT

We consider a model describing the behavior of a two-sided
interface allowing for both elasticity and microslip of the
joint. A reduced-order approximation of this system is de-
veloped based on a decomposition of the original model into
an elastic chain and a dissipative component equivalent to
a series-series Iwan chain. The Iwan chain is then solved
using a quasi-static complementarity formulation while the
order of the elastic chain is reduced using modal analysis.
The computational efficiency of the resulting reduced-order
model is significantly increased, while the overall response
of the interface to realistic forcing conditions is maintained.

1 INTRODUCTION

The importance of predictive simulation tools is rapidly in-
creasing as computational analysis is replacing experimen-
tal verification when the appropriate tests are impractical or
prohibitively expensive. To develop truly predictive simu-
lations one must overcome both numerical error (discretiza-
tion errors in space and time) and error arising from mod-
eling assumptions, such as missing physics and uncertain
boundary conditions.

In particular, the behavior of mechanical joints and in-
terfaces is often a particularly troubling collection of the
“missing physics”. The development of tribological models
capable of representing the contact between adjacent mem-
bers is an active area of research and has led to significant
advances in our understanding of frictional contact. How-
ever, the incorporation of such descriptions into large-scale
structural dynamics models is nonetheless problematic due
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to issues of scale. The time- and length-scales associated
with dynamics of the mechanical joints are typically several
orders of magnitude smaller that the scales associated with
the larger structural simulation.

The nonlinearities and dissipation associated with the
interface are often associated with microslip, associated
with partial slipping of the contact interface, and con-
trasted with macroslip, whereby the whole interface under-
goes relative displacement. This localized microslip often
contributes to a significant fraction of the overall measured
damping in a complex structure and is not well represented
over a wide range of operating conditions by linear models.
Thus truly predictive models for structural dynamics will
require an accurate description of the behavior at and near
the interface, and in particular the dissipation induced by
microslip.

The most straightforward approach to represent mi-
croslip in a larger structural model is to resolve directly
the interface in a finite element model [1]. Unfortunately,
the small length scales required to capture the mechanics of
microslip lead to a problem for which the time required to
generate a computational solution is prohibitively long [2].
One common resolution to these computational restrictions
is to incorporate the observed dissipation and elasticity into
a linear joint model with effective mass, damping and stiff-
ness parameters, which must then be estimated to match
experimentally observed results. However, as mentioned
above, the identified parameters are specific to the oper-
ating conditions (load levels, boundary conditions, etc.) of
the experimental test. The joint model cannot be extrapo-
lated to markedly different operating conditions—the joint
model is no longer predictive.
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Figure 1: Discrete model.
The role of friction and microslip has been incorpo-
rated into several nonlinear reduced order models for the
joint based on descriptions of the slip interface in the joint.
Menq et al., develop a continuum model representing the
microslip that arises in frictional dampers [3; 4]. Quinn
and Segalman consider a similar model and show that by
varying the spatial distribution of the frictional intensity
the predicted dissipation is representative of experimentally
observed scalings [5]. Discrete models of the interface are
often based on combinations of spring-slider elements, as
considered by Iwan [6; 7]. Segalman has developed a four
parameter Iwan model that is capable of reproducing the
qualitative properties of the joint dynamics [8]. Meanwhile,
Song et al., have developed an adjusted Iwan beam element
(AIBE) based on a parallel-series Iwan model that can be
incorporated naturally into an existing finite element frame-
work [9; 10]. With the proper identification of the model
parameters, the AIBE can be used to capture experimen-
tally observed profiles for the response of jointed structures.

2 TWO-SIDED INTERFACE MODEL

To begin consider a single series of Iwan elements, made up
of n interfaces and 2 (n − 1) masses as shown in Figure 1.
In this model each element is assumed to be identical, with
a mass m, and a stiffness k respectively. The forces fi and
gi, i = 1, . . . , n − 1 represent the shear loading applied to
the masses in the ith component, while f0 and g0 (fn and
gn) describe the forces acting on the left (right) edge of the
interface. In addition, each interfaces is described through
the frictional force σi. For this system the equations of
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motion can be written as

m ẍi + 2 k xi − k(ui + ui+1) = fi, Upper masses

m ÿi + 2 k yi − k(vi + vi+1) = gi, Lower masses

σ1 + k(x1 − u1) + f0 = 0, 1-st Slider

−σ1 + k(y1 − v1) + g0 = 0,

σi + k(xi−1 − 2 ui + xi) = 0, i-th Slider

−σi + k(yi−1 − 2 vi + yi) = 0,

σn + k(xn−1 − un) + fn = 0, n-th Slider

−σn + k(yn−1 − vn) + gn = 0,

This is essentially a two-sided interface problem, in which
deformation can arise on either side of the frictional inter-
face, while the force arising from the interface depends on
the relative velocity across the interface. From these equa-
tions, the following coordinates can be identified

wi =
xi + yi

2
, zi =

xi − yi

2
,

pi =
ui + vi

2
, qi =

ui − vi

2
,

where (wi, zi) and (pi, qi) represent the average and rel-
ative displacements across the masses and sliders respec-
tively. With these, the equations describing the evolution
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Figure 2: Elastic component.

of wi decouple from those on zi to yield

m ẅi + 2 k wi − k (pi + pi+1) =
fi + gi

2
,

2 k (w1 − p1) + (f0 + g0) = 0,

(wi−1 − 2 pi + wi) = 0,

2 k (wn−1 − pn) + (fn + gn) = 0,

m z̈i + 2 k zi − k (qi + qi+1) =
fi − gi

2
,

2σ1 + 2 k (z1 − q1) + (f0 − g0) = 0,

σi + k (zi−1 − 2 qi + zi) = 0,

2σn + 2 k (zn−1 − qn) + (fn − gn) = 0.

In the above equations on wi and pi, the interface forces σi

are absent and the response of this set is independent of the
interface. Solving for pi yields

p1 = w1 +
f0 + g0

2 k
,

pi =
wi−1 + wi

2
,

pn = wn−1 +
fn + gn

2 k
.

These can then be returned to the equations for ẅi to yield

m ẅ1 +
k

2
(w1 − w2) =

(

f0 + g0

2

)

+

(

f1 + g1

2

)

,

m ẅi +
k

2
(−wi−1 + 2 wi − wi+1) =

(

fi + gi

2

)

i = 2, . . . , n − 2

m ẅn−1 +
k

2
(−wn−2 + wn−1) =

(

fn + gn

2

)

+

(

fn−1 + gn−1

2

)

.

Therefore these equations are equivalent to those describing
the response of an elastic chain, as represented in Figure 2.
3
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Figure 3: Dissipative component.

The response described by wi is conservative, so that
the dissipation in the system arises solely from the equations
on zi, for which the equations of motion can be written as

m z̈i + k ((zi − qi) + (zi − qi+1)) =
fi − gi

2
, (1)

with

σ1 = −

(

f0 − g0

2

)

− k (z1 − q1),

σi = −k ((zi−1 − qi) + (zi − qi))

i = 2, . . . , n − 1,

σn = −

(

fn − gn

2

)

− k (zn−1 − qn).

Therefore, these equations represent the dissipative struc-
ture shown in Figure 3, a series-series Iwan system [5]. The
decoupling of the governing equations does not rely on the
form of the dissipative model used for σi. In addition, these
forces need be neither uniform nor constant in time.

For this component, the dissipative power can be de-
termined as

Pd(t) =
n

∑

i=1

σi(t) · q̇i(t),

so that the work done by the dissipative component, and
therefore the total interface model, becomes

−D(t) =

∫ t

0

n
∑

i=1

σi(τ) · q̇i(τ) dτ.

Finally, the displacement across the interface can be de-
scribed from these decoupled components as

∆1 = un − v1 ∼ (wn−1 − w1) + (qn + q1),

∆2 = vn − u1 ∼ (wn−1 − w1) − (qn + q1).

In [5] a spatially non-uniform frictional intensity is consid-
ered and is shown to yield measures for the dissipation that
is consistent with experimental data.
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We see from the above analysis that the behavior of a
two-sided interface model can be represented as an elastic
component, combined in an appropriate manner with a dis-
sipative chain, which is represented as a series-series Iwan
network of Jenkins elements. However, such an approach
still suffers from the same restrictions on the computational
timesteps that plagued the original fine discretization of the
finite element model. Specifically, for 2 (n − 1) elements in
the original element, the equivalent longitudinal stiffness of
the overall structure is

Keq =
k

n − 1
,

where k is the stiffness of each individual spring. In ad-
dition, if the total mass of the interface is Meq then each
individual element has mass m = Meq/(2 (n − 1)). There-
fore if the lowest characteristic frequency of the interface
scales as ωc =

√

Keq/Meq, then the largest characteristic
frequency scales as

ωmax =

√

2 k

m
= 2 (n − 1)

√

Keq

Meq

= 2 (n − 1)ωc.

Thus if ωc describes the characteristic frequency of the inter-
face and the computational timescale of a larger structural
model, the computational timescale with the inclusion of
this joint model must be increased by a factor of n.

To serve as a basis for capturing the contribution of
the interface on the overall response, computationally effi-
cient methods must be developed for the solution of this
interface representation. The computational effort required
to efficiently represent the elastic component in the above
interface model can be significantly reduced with the ap-
plication of a straightforward modal decomposition, retain-
ing only the lowest order modes that are commensurate
with the timescale of the larger structural model. However,
one must still reduce the computational effort directed to-
ward the dissipative one-sided interface model described by
Eqs. (1). One such approach is described below.

3 COMPLEMENTARITY FORMULATION FOR THE
DISSIPATIVE CHAIN

In the series-series Iwan chain, the dissipation can be ac-
curately captured by neglecting the mass in each Iwan el-
ement, again provided that the timescale of the external
loading is sufficiently long—effectively solving for the re-
sponse of the system quasistatically. Therefore, a finer mesh
of dissipative Iwan elements can be used to describe par-
tial slip states without the computational penalty of pro-
hibitively small time steps required for numerical stability.
4
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Figure 4: Massless dissipative component.

With m = 0 the displacement of zi is

zi =
fi − gi

4 k
+

qi + qi+1

2
,

so that the equations of motion for the massless dissipative
chain can be written as

k (q1 − q2) = (f0 − g0) +

(

f1 − g1

2

)

+ 2σ1,

k (−qi−1 + 2 qi − qi+1) =
(

fi−1 − gi−1

2

)

+

(

fi − gi

2

)

+ 2σi

i = 2, . . . , n − 1,

k (−qn−1 + qn) = (fn − gn) +

(

fn−1 − gn−1

2

)

+ 2σn,

and are representative of the dissipative structure in Fig-
ure 4, a massless series-series Iwan model. The above equa-
tions can be written in a compact matrix form as

[K] · {q} = {R}, (2)

and solved quasistatically at each time step. A complemen-
tarity approach was implemented to solve the matrix equa-
tions. An initial assumption array on the slip state of each
slider is created apriori to each time step. The slider is as-
sumed to be in a state of stiction, slipping right, or slipping
left. Based on the initial assumption, the displacements of
the slider coordinates and displacements and velocities of
the elastic coordinates are calculated for that time step. A
solution array is then formulated based on the state of each
slider after the time step. If the solution and assumption
arrays agree the time step is then advanced, else the as-
sumption array is updated according to the solution array
and the time step is repeated. This process continues un-
til convergence. However, if the iteration fails to converge,
the magnitude of the time step is reduced and the process
repeats.

In what follows we assume that the interface is subject
only to forces applied at the edges of the interface, of the
Copyright © 2007 by ASME
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Figure 5: Numerical simulations of the discrete dissipative
component (n = 40, ω = π/15). The open circles represent
original Iwan with mass while the filled triangles describe
the complementarity formulation. Finally, the solid line is
the continuum prediction D = 8/3 (F0)

3, based on [5].

form

f0(t) = 0, fn(t) = F0 sin(ω t),

g0(t) = −F0 sin(ω t), gn(t) = 0.

The dissipative friction forces at the interface are repre-
sented with Coulomb friction. When the interface is in a
state of slip, σi = −µi Ni sgn(u̇1 − v̇1), where µi and Ni

are the coefficient of friction and the normal load acting on
the ith interface. In a state of sticking, the interfacial force
σi satisfies the inequality |σi| ≤ µi Ni and this constraint
must be satisfied for the dissipative network, regardless of
the numerical scheme employed to solve the equations.

From the discrete dissipative system given by Eqs. (1),
the dissipation per forcing cycle is illustrated in Figure 5 for
n = 40 as the forcing amplitude F0 varies. Here the equiv-
alent stiffness of the interface is chosen to be Keq = 1, as is
the total mass Meq = 1. The excitation frequency ω = π/15
is chosen well below the characteristic frequency of the in-
terface ωc = 1. Nonetheless, the computational timescale
is limited by the characteristic frequency ωmax = 2 (n − 1)
imposed by the discretization, although we expect the inter-
face to respond almost quasi-statically to the applied load.
The large open circles describe the numerical simulations of
5
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Figure 6: CPU time required for solution of the Iwan dissi-
pative chain as n varies (F0 = 0.30, ω = π/15). The open
circles indicate the original differential formulation while
the triangles denote the CPU time required for the comple-
mentarity approach.

the original model (with mass) using the built-in numeri-
cal solver ode45 within MATLAB. The smaller filled trian-
gles, which are almost coincident with the original model,
represent the dissipation arising from the complementarity
formulation of the dissipative chain. Finally, for compari-
son, the prediction from the quasi-static continuum limit,
described by [5], is shown as the solid line and can be ex-
pressed as

Dcontinuum =
8

3
(F0)

3.

Thus the dissipation of the Iwan chain is well represented
by the complementarity approach, in which the mass is ne-
glected. However, the computational effort required for the
later approach is significant reduced, compared to the for-
mulation of the dissipative chain with mass. Figure 6 shows
the computational time required to simulate 3 complete
forcing cycles with ω = π/15 and for a forcing amplitude of
F0 = 0.30, which is equivalent to 30% of the load required
to initiate macroslip. The computational time required for
the complementarity approach is at least an order of magni-
tude less than that required for the differential formulation.
Note that all simulations in this paper were carried out on
a Dell Latitude D610 with a 1.60 GHz Intel(R) Pentium(R)
M processor.
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4 REDUCED-ORDER ELASTIC INTERFACE MODEL

The elastic and dissipative chains, when reduced in the
manner described above, can be combined to formulate a
computationally efficient model for the two-sided interface.
The elastic chain is subjected to a modal reduction, retain-
ing only the lowest M linear modes for the elastic chain,
denoted as φi, i = 1, . . . ,M , so that the response of this
component is then given as

wi(t) =

M
∑

j=1

Aj(t) [φj ]i

Therefore the elastic component is approximated by a
reduced-order model of the form

M̂ Ä + K̂ A = f̂ ,

with

[M̂ ]jk = φT
j Mφk, [K̂]jk = φT

j Kφk, [f̂ ]j = φT
j f ,

while the dissipative component is incorporated with the
complementarity formulation described above.

For n = 40, so that there exist 40 slip locations across
the interface, the total steady-state response across the two-
sided interface model, ∆1, is shown in Figure 7. Specifi-
cally, the response for the original differential formulation
is shown in Figure 7a while the response of the reduced-
order model is depicted in Figure 7b. In each panel the
contribution from each component is shown, in addition to
the total response across the interface. The time interval
shown corresponds to a single forcing cycle after the decay
of the transient response.

Comparing the difference between the two formula-
tions, the error in the total displacement between the differ-
ential and reduced-order formulation is shown in Figure 8
as the model size n increases. In the reduced-order for-
mulation M = 10 modes have been retained in the elas-
tic component. As the resolution of the interface increases
the reduced-order model approaches the differential formu-
lation. As seen in Figure 9, as n increases the error in dissi-
pation D between the differential and reduced-order formu-
lation decreases. Finally, the computational time required
for the numerical solution of these two formulations is il-
lustrated in Figure 10. The computational time required
for the original differential formulation appears to grow at
a much faster rate than that of the reduced-order model
and for n = 100 requires two orders of magnitude longer to
simulate. In addition to the computational efficiency of the
complementarity formulation, the modal analysis applied
to the elastic chain is significantly more efficient than the
simulation of the original n-degree-of-freedom elastic chain.
6
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