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Abstract
Cells are the basic unit of life and they have remarkable abilities to respond individually as well as in concert to
internal and external stimuli in a specific manner. Studying complex tissues and whole organs requires understanding
of cell heterogeneity and responses to stimuli at the single-cell level. In this review, we discuss the potential of
single-cell gene expression profiling, focusing on data analysis and biological interpretation. We exemplify several
aspects of the added value of single-cell analysis by comparing the same experimental data at both single-cell
and cell population level. Data normalization and handling of missing data are two important steps in data analysis
that are performed differently at single-cell level compared with cell population level. Furthermore, we discuss
how single-cell gene expression data can be viewed and how subpopulations of cells can be identified and
characterized.
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INTRODUCTION
The great value in studying cell diversity and biolo-

gical processes at single-cell level has been recognized

for long time, but the lack of sensitive and specific

techniques to measure few molecules has been a

major obstacle. During the past decade, refinement

of established methods and also development of new

technologies have opened up new possibilities to ana-

lyze single cells and even single molecules in highly

reproducible manners. Today, most analytes includ-

ing DNA, RNA and protein, as well as other biolo-

gical parameters, such as cell morphology and action

potential, can be measured with high precision at the

single-cell level. Microscopy, fluorescence-activated

cell sorting, real-time quantitative polymerase chain

reaction (qPCR), mass spectroscopy, microarrays and

next-generation sequencing are some commonly

applied techniques to study individual cells. In gen-

eral, one class of analytes is analyzed at a time with one

of the methods. Recently, we developed a strategy to

analyze DNAs, RNAs and proteins in the same

single-cell using qPCR, opening up for multi-analyte

correlation analysis in single cells [1]. For overview

and comparison of different techniques, see recent

reviews [2–5].

Early single-cell work focused on understanding

the seemingly stochastic variations in mRNA and

protein levels observed among individual cells.

The variability was explained by transcriptional and

translational bursts [6–8] and mathematical models,

including the master equation, were developed to

describe underlying biological processes [4,6].

However, other types of kinetics have been reported

[9]. Mathematical modeling of transcriptional and

translational kinetic at single-cell level is discussed

elsewhere [4,6,9,10].

Currently, characterization of cell heterogeneity

in mixed as well as in seemingly homogenous cell
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populations is the focus area of single-cell studies.

Established cell types as well as previously unknown

subpopulations have been identified and character-

ized in detail at single-cell level using qPCR [11–19].

Analysis at single-cell level eliminates many of the

factors that confound gene expression profiling at cell

population level. Correlation of transcript levels

within individual cells has proven to be a most

powerful identifier of cell types and distinct subpo-

pulations of cells (Figure 1A and B) [11–13].

Another application of single-cell analysis is to

define and characterize rare cell types such as stem

cells and circulating tumor cells [20–22]. One chal-

lenge when studying rare cells is that a large number

of cells must be screened and tested to find those

cells that are relevant. Flow cytometry can handle

large numbers of cells, but most other single-cell

techniques do not offer the required throughput.

An alternative approach is to enrich for the targeted

cells before analysis, taking advantages of distinctive

physical or biological properties of the rare cells

[21,22]. Further development of technologies

such as high-throughput droplet PCR opens for

new possibilities for high-throughput screening of

rare cells [23].

The workflow of single-cell analysis requires deli-

cate sample preparation, development of sensitive

assays and often sophisticated data analysis. With

time, as experience is accumulating, improved and

simplified protocols for single-cell analysis will

become available. In this review, we discuss import-

ant aspects of data pre-processing and how single-cell

gene expression data can add value to our under-

standing of cell diversity and expression pathways

controlling biological processes. To emphasize key

aspects of single-cell gene expression profiling, we

here analyze an experimental data set at both

single-cell and cell population level by comparing

the results.

SINGLE-CELLVERSUS CELL
POPULATIONANALYSIS
To illustrate different aspects of single-cell gene

expression profiling, we re-analyzed a previously

published data set at both single-cell and cell popu-

lation level [24]. The original data set consisted of the

expression profiles for 41 genes measured in 303

individual astrocytes at four time points: 0, 3, 7

and 14 days after induced brain ischemia in mice,

with day 0 being control [24]. Here, we focus our

analysis on a smaller number of genes selected based

on their expression features rather than biological

relevance. The single-cell gene expression features

we report for the selected genes are not new; they

have been observed before [1,11–19].

Cell population data analysis follows the

Minimum Information for Publication of

Quantitative Real-Time PCR Experiments guide-

lines [25], while single-cell data analysis is performed

as described [5,24]. The workflows for the two data

pre-processing schemes are shown in Figure 2

[13,24]. Two steps differ fundamentally: missing

data and normalization. It should be noted that the

order of the data pre-processing steps in Figure 2 can

be partly swapped, since some data processing is

independent of the order. Furthermore, some steps

will be canceled if the required information for that

particular analysis is missing.

DATA PRE-PROCESSING:
MISSING DATA
Missing data are common in scientific measure-

ments and a classical problem in statistical analysis.

The underlying cause of the missing data deter-

mines how they should be handled for downstream

analysis. There are two fundamentally different

reasons to miss data in qPCR: (i) the qPCR failed

due to a technical error and (ii) the biological

sample contained fewer target molecules than the

workflow with all dilution steps, losses and imper-

fections could detect (limit of detection). Missing

data due to technical failure should be replaced

using information from (preferably) technical repli-

cates or (less preferably) from similar samples using

imputation [24]. However, missing values due

to too few target molecules should be replaced

by zeros in linear scale and by a cutoff value in

logarithmic scale. Technical failures are handled

early in the data pre-processing scheme, while

transcript levels below limit of detection are

Figure 1: Biomarker analysis at single-cell level.
Single-cell analysis can be used to define genes with cor-
related expressions (A) or uncorrelated expressions
(B) in specific cell types.
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processed later in the workflow (Figure 2). How

can one tell whether missing data are due to tech-

nical failures or expression levels below the limit of

detection?

The transcriptome of typical mammalian cells

consists of about 300 000 mRNA molecules repre-

sented by some 10 000 expressed genes [26]. Some

genes are highly expressed (>100 transcripts per

cell), but most genes have a mean expression of

less than one molecule per cell. In the bacteria

Mycoplasma pneumoniae, the mean mRNA count

was determined to be as low as 0.04 molecules

per cell [27]. The observed variability in expression

level also scales to the average number of transcripts

for respective gene [24]. If samples are analyzed in

replicates, technical failures are usually readily

recognized by inspecting the replicate measure-

ments. However, single-cell profiling is usually per-

formed without technical replicates to maximize the

number of cells analyzed. In single-cell qPCR, ex-

tensively validated protocols and highly optimized

assays are used, which reduces the risk for technical

failures. A pragmatic approach to handle missing

data in single-cell gene expression profiling is to

assume that all missing data are due to too few

molecules. In conclusion, high frequency of missing

data is expected for most genes at single-cell level

due to low mean expression levels and fluctuations

over time (Figure 3).

Figure 4 shows the binary (transcript detected/not

detected) expression profiles for all the genes and

time points at single-cell level for the experimental

astrocyte data set. The 10 selected genes had overall

intermediate to high expression levels, still large

amounts of missing data are observed.

DATA PRE-PROCESSING:
NORMALIZATION
Comparison of classical samples containing many

cells requires normalization to account for differences

in the amount of material in the analyzed samples

[25]. Several normalization strategies for qPCR data

have been suggested. Most popular is to normalize

with the expression of one or a few (two to five)

Figure 2: Simplified workflows for data pre-processing using qPCR.Handling of missing data and normalization are
performed differently in single-cell and cell population analysis.

Figure 3: Missing data. Single-cell data sets have
manymissing data due to too fewmolecules in themea-
sured sample. Total number of transcripts over time is
shown for high (A) and low (B) abundant genes, re-
spectively (left diagrams). The binary panel (right plot)
shows the frequency of cells with detectable number
(above limit of detection) of transcripts (gray). The
limit of detection for high-performance assays is typic-
ally between one and five molecules.
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reference genes that are constantly expressed in the

compared samples.

To analyze the single-cell data set at cell popula-

tion level, we summed the numbers of each tran-

script in every cell and each time point. Then, the

genes with most constant expression were identified

for normalization of the data using analysis of vari-

ance as described in NormFinder [28]. The three

genes Gria1, Kcna5 and Kcnj2 were found to be the

best choice for normalization. Relative gene expres-

sion was calculated by normalizing to the geometric

average expression of the three validated reference

genes [29]. Figure 5 shows the normalized gene

expression over time for the selected target genes

Aqp9, Eaat1, Gfap, Glul, Pdgfra, Snap and Vim. The

gene expression was arbitrarily set to 1 at day 0 for

all genes (Figure 5). This choice of scaling has no

effect on the downstream statistics, but provides an

intuitive baseline for sample comparison [30]. This

cell population analysis reveals that expression of

Gfap, Pdgfra and Vim is transiently upregulated,

while Eaat1, Glul and Snap is transiently downregu-

lated, and expression of Aqp9 is first downregulated

and then strongly upregulated (Figure 5). Clearly,

the cell population analysis has caught the essence

of the overall biological response induced by the

brain injury.

As mentioned, statistical analysis identified

Gria1, Kcna5 and Kcnj2 as optimal reference

genes at cell population level. From single-cell

analysis, we note that only very few cells host

the majority of these transcripts at each time

point (Figures 4 and 6). Furthermore, the Gria1,
Kcna5 and Kcnj2 transcripts are found in different

cells. Hence, if we would normalize expression of

the target genes to that of the reference genes

Figure 4: Binary single-cell analysis. Single cells with
(gray and black) and without (white) measurable tran-
script levels are indicated.The cells with highest expres-
sion levels that represent 70% of all transcripts of any
given gene at each time point are indicated in black.
nDay0¼ 53, nDay3¼ 92, nDay7¼ 74 and nDay14¼ 82.

Figure 5: Cell population analysis. Relative gene ex-
pression profiles at four time points (days 0, 3, 7 and
14) are shown, with day 0 being the control (i.e.
before brain ischemia). The relative gene expression
level at day 0 was arbitrarily set to 1 for each gene.
Aqp9 expression was zero at day 3, but for presentation
purposes it is set to 0.001.
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Figure 6: Distribution of transcripts among individual cells. Histograms showing relative gene expression levels
(log2-scale) for all genes at days 0, 3, 7 and 14. Day 0 is control (i.e. before brain ischemia). Cells without transcripts
are indicated in gray. The typical gene expression of each gene and time point was calculated as geometric average
by assigning missing data 0.5 transcripts, since calculations of geometric averages cannot include zeros. The relative
mean expression was arbitrarily set to a value of 1 at day 0 for each gene.
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separately in each individual cell, we would intro-

duce very large unphysiological bias. The reason

normalization to reference genes is applicable in

cell population studies is due to the large

number of cells analyzed, which averages out

the large natural variation among individual cells.

However, the averaging also eliminates much of

the differences in expression contributed by sub-

populations. There is also risk that the reference

genes selected have different expression profiles in

existing subpopulations; the Normfinder algorithm

does not sense this.

Traditional cell population analysis is performed

on thousands of cells, sometimes even many more.

The interest to analyze samples containing fewer

cells is, however, rapidly increasing. For example,

fine needle aspirates collected frequently in minimal

invasive diagnostics contain often only a few hun-

dreds of cells for downstream analysis. In our data set,

52–92 cells were analyzed at each time point. One

consequence of analyzing samples with so few cells

is that estimated expression of low expressed genes

is uncertain and results may become biased. For

example, cell population analysis indicates that

Aqp9 is substantially downregulated at day 3,

followed by dramatic upregulation at day 14

(Figure 5). Inspecting the single-cell data we find

that only one cell expressed Aqp9 at day 0 and

none at day 3 (Figures 4 and 6). This vital biological

information is lost in the cell population analysis, and

the conclusion reached relied on expression in only

one cell, corresponding to less than 1% of the cells (1

out of 145 cells expressed Aqp9 during days 0–3).

Single-cell data allow for more detailed and careful

interpretation of the Aqp9 expression data. One way

to improve the accuracy of Aqp9 expression analysis

is to increase the amount of material analyzed.

However, this is possible only to a certain extent.

There is a maximum amount of material that can

be reliably reversed transcribed and qPCR amplified

in a single reaction. Furthermore, standard RNA

extraction protocols purify total RNA or total

mRNA and are not suitable to enrich rare transcripts.

Consequently, quantification of low abundant tran-

scripts will usually have poor precision when study-

ing samples using common population analysis.

In summary, single-cell analysis adds value by iden-

tifying the number of cells that actually express any

given transcript.

The intuitive way to present single-cell gene

expression data is per cell. Importantly, single-cell

data should not be normalized using reference

genes, since no gene has ever been reported to

have constant and stable expression among individual

cells. Instead, very high variability in specific mRNA

levels among cells is seen due to transcriptional kin-

etics (Figure 3) [6,7]. One option could be to per-

form global normalization, i.e. to normalize to the

mean expression of all genes. But this is complicated

since we are not analyzing all the genes with qPCR

and those that are studied are not randomly selected.

The studied genes rather reflect specific biological

processes that are induced or stimulated to change.

Normalization to the mean average of the studied

genes is then likely to introduce bias. Furthermore,

data comparison between studies that use slightly

different markers is also biased, since the ‘global’

mean is not truly global, but is the mean of those

genes that actually are measured. Finally, single-cell

profiling studies have many missing data, and there

is no good way to handle those in global normaliza-

tion. In brief, methods to normalize cell population

data are not suitable for single-cell data. We

have found that the most useful and natural way to

present and report single-cell gene expression data

is per cell.

TRANSCRIPTSARE
LOGNORMALLY DISTRIBUTED
AMONG INDIVIDUALCELLS
Cells that contributed to 70% of the total number of

a particular transcript were in minority at population

level in our experimental data set (indicated as black

in Figure 4). For example, only 6 out of 92 cells

contributed with 70% of all the Gria1 transcripts at

day 3. The reason few cells contribute with majority

of the transcripts for any particular gene is the

highly skewed distribution of transcripts normally

observed among individual cells (Figure 6). Gene

expression data from single cells can usually be

adequately modeled with a lognormal distribution,

although recent advances in theoretically biology

suggest that the underlying distribution is more

complex [4,6]. A consequence of lognormal distri-

bution is that the geometric average reflects the

median cell, rather than the normal arithmetic aver-

age that is obtained by dividing the total number

of transcripts with the number of cells analyzed

(Figure 6). The geometric average can only be deter-

mined from single-cell studies, not from studies of

cell populations.
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TRANSCRIPT DISTRIBUTIONS
ARE INFORMATIVE AT
SINGLE-CELL LEVEL
Figure 6 illustrates some gene expression responses to

the induced brain trauma at single-cell level in our

experimental data set. Aqp9 and Snap are strongly

activated in most cells at day 14 after having hardly

been expressed in any cells at earlier time points.

Gfap and Vim are transiently expressed with a peak

at day 7, when Gfap and Vim expression is also

observed in most cells. Deeper inspection of the

data reveals that Gfap and Vim are expressed in the

same cells, suggesting that their activations are syn-

chronized (Figure 4 and Table 1). The Gfap andVim
expression profiles at single-cell level are in concord-

ance with the cell population analysis. In contrast,

Aqp9 and Snap are expressed in few cells only

during days 0–7 and while single-cell profiling re-

veals the correct picture, the expression analyzed at

population level is stochastic, since the amount of

transcripts in the only or very few expressing cells

present vary.

Heavily skewed and even bimodal distributions of

transcripts among single cells are observed for Eaat1
and Glul and indicate presence of multiple cell

types, or subpopulations of cells that perhaps are

cells in different reversibly interchangeable states

(Figure 6). The distribution of Eaat1 transcripts is bi-

modal at day 0 and at day 14, while cells with high

transcript levels are missing days 3–7. Glul shows simi-

lar expression pattern and its expression also correlates

with Eaat1 expression (Table 1). These data suggest

that one cell subpopulation characterized by high

Eaat1 and Glul expression present initially disappears

at day 3 to reappear later. From our data, we cannot

tell whether expressions of Eaat1 and Glul are

uniformly downregulated in this group of cells

or whether the subpopulation does not exist at days

3–7, since we are not measuring the same cells over

time.

Pdgfra appears upregulated similarly to Gfap and

Vim, when considering only expression levels

(Figures 5 and 6). But, inspecting Figure 4 and

Table 1, we see that Pdgfra is expressed in different

cells than the other genes, in particular in cells that

do not express Glul. This example shows that analyz-

ing population data only gives part of the picture;

analyzing correlations between gene expressions

among the single cells also provides information

about cell subpopulations. This is particularly inter-

esting when cells are exposed to stimuli, and can

reveal regulatory gene expression networks

[13,15,17].

IDENTIFICATIONAND
CHARACTERIZATIONOFDEFINED
SUBPOPULATIONS
Principal component analysis, hierarchical clustering

and self-organizing maps (SOMs) are algorithms that

can be used to classify cells based on their expression

profiles, dividing them into cell states or subpopula-

tions [11–13,15]. However, the subpopulations will

not become meaningful until they can be biologic-

ally interpreted.

We have shown that SOM can be used to divide

genes and/or samples into subpopulations based on

their expression profiles [13,29]. Here, we use SOM

to classify the cells at day 14 into two subpopulations

(Figure 7A). To interpret the biological relevance

of the two subpopulations, we calculated the expres-

sion of all genes in the typical cell of the two

Table 1: Spearman correlation coefficients for all single cells

Gria1 Kcna5 Kcnj2 Aqp9 Eaat1 Gfap Glul Pdgfra Snap Vim

Gria1 1
Kcna5 0.10 1
Kcnj2 0.16 0.37 1
Aqp9 0.14 �0.02 �0.02 1
Eaat1 0.12 0.04 0.01 0.21 1
Gfap 0.13 0.22 0.11 0.05 0.25 1
Glul 0.10 0.15 0.20 0.21 0.53 0.23 1
Pdgfra 0.17 0.19 0.08 0.03 �0.08 0.06 �0.34 1
Snap 0.28 0.10 0.10 0.53 0.10 0.08 0.09 0.16 1
Vim 0.14 0.28 0.15 �0.10 0.12 0.42 0.06 0.33 �0.02 1

Notes: Bold indicates �99% significance. A correlation coefficient of 1 reflects perfect correlation, �1 reflects perfect anti-correlation and 0 is
absence of correlation.
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subpopulations (Figure 7B). Aqp9, Eaat1, Gfap, Glul
and Vim are upregulated and Pdgfr is downregulated

in one subpopulation (gray group) relative to the

other subpopulation (black group). The gene expres-

sion profile we find for the astrocytes in the subpo-

pulation indicated as gray in Figure 7B has expression

features commonly attributed to activated astrocytes.

In Figure 7C, we plot the distributions of Eaat1 tran-

scripts among cells for the two subpopulations

separately. As expected, the bimodal pattern of

Eaat1 seen in Figure 6 is resolved by the classification

into groups by means of SOM. Closer inspection of

Figures 4 and 6 and Table 1 shows that the SOM

clustering picks up the major trend at day 14. If we

instead use SOM to generate three subpopulations,

the third group reveals no new feature relative to the

first two groups. The third group shows characteris-

tics of an intermediate state between the two sub-

populations (Figure 7). These cells may be in

transition between cell states, perhaps astrocytes

becoming activated [13]. In conclusion, we present

a strategy to identify subpopulations of cells using

SOM and show how these subpopulations can be

characterized.

FUTURE PROSPECTS
Techniques are rapidly developing for single-cell

applications, and the importance of single-cell ana-

lysis is realized in many fields of research and diag-

nostics. Most studies of individual cells are still

explorative, but with the improvement of protocols,

robust methods will soon be available that will intro-

duce these methods also into diagnostic and prog-

nostic applications.

Key Points

� Single-cell analysis is an emerging concept in molecular biology
and diagnostics.

� Comparison between cell population and single-cell gene ex-
pression profilinghighlights the advantages of single-cell analysis.

� Handling of missing data and sample normalization are two data
pre-processing steps that areperformed fundamentallydifferent
in single-cell analysis comparedwith cell population analysis.

� Biomarker analysis including correlation studies at single-cell
level opens up new possibilities to understand biological pro-
cesses with refined resolution.

� Single-cell analysis canbeused to identify and characterize novel
subpopulations of cells.
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Figure 7: Classification and characterization of sub-
populations. (A) Two subpopulations of cells (gray and
black) were defined using Kohonen SOM at day 14.
(B) Characterization of the typical cell in each subpopu-
lation. (C) Distributions of Eaat1 transcripts show that
the originally observed bimodality in Eaat1 expression
levels (Figure 6) can be accounted for by the two sub-
populations identified using SOM. Parameters for the
SOM were 2�1 map, 0.1 learning rate, two neighbors
and 10 000 iterations. The observed clustering was
reducible and independent of parameter settings.
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24. Ståhlberg A, Rusnakova V, Forootan A, et al. RT-qPCR
work-flow for single-cell data analysis. Methods 2013;59:
80–8.

25. Bustin SA, Benes V, Garson JA, etal. The MIQE guidelines:
minimum information for publication of quantitative
real-time PCR experiments. Clin Chem 2009;55:611–22.

26. Velculescu VE, Madden SL, Zhang L, et al. Analysis of
human transcriptomes. Nat Genet 1999;23:387–8.
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