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INTRODUCTION
Seed provides food, feed, fibre and most importantly conserve the species in the form of a tiny size to adapt to the 

environment. Seed is the harbinger for agricultural productivity; however, burgeoning population, reduction in land holding size 
due to urbanization and tremendous demand for quality food is an upcoming challenges to be confronted. Under such odds, it is 
inevitable to have quality seeds that enable successful stand establishment and crop improvement. Seed quality comprises of seed 
germination, vigour, genetic purity and health estate of seed [1]. Quality seeds germinate completely at faster rate with vigorous 
seedlings of little sensitivity to climatic changes that enable them to adapt broad range of environmental conditions [2]. Today 
seed companies are mushrooming to cater the demand by improving the crop yield through control of seed vigour. Nevertheless, 
it is need of the hour to develop reliable markers to evaluate the seed performance of quality seed in field conditions. Normally, 
in seed production chain at commercial scale, seed maturity is evaluated visually, which exclusively relies over the expertise of 
the growers. On the other hand, several physiological tests applied suffer lack of preciseness and leads to variability between 
the seed lots. Therefore, it is intriguing that development of markers to understand the seed performance can be achieved by 
understanding the mechanisms involved in the various physiological processes. Biochemical, molecular and proteomics studies 
revealed the potential markers at respective stages which not only facilitate to improve the crop stand through easy pick of high 
quality seeds but also enable to control the seed vigour through seed priming treatments. 

Recent studies have demonstrated some evidence as potential markers at biochemical, molecular levels. Antioxidants, 
integrity of membrane determination by electrolyte leakage, ethylene production during imbitions phase, changes in raffinose 
family oligosachharides and 11 S globulin β- subunit, late embyrogenesis abundant protein and heat shock protein changes 
are reliable indicators of seed germination, performance, maturity and seed priming treatments [3]. Some more markers are 
anticipated due to embrace of new ‘OMICS’ studies of seeds in various stages to understand clearly the basic mechanism in the 
respective stages.

Antioxidants

Seed quality maintenance during seed production is inevitable as reactive oxygen species (ROS) synthesis takes place 
during metabolic process. ROS comprises of superoxide, hydrogen peroxide, hydroxyl radical and singlet oxygen which has adverse 
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ABSTRACT

Seed is a basic input for agriculture productivity and germplasm 
conservation. Seed quality predominantly comprises of germination and vigour 
which are quintessential for successful stand establishment. On the other 
hand, seed industries are thriving to improve the crop yield through control of 
seed vigour. Possibilities of seed vigour could be improved by seed priming and 
post-harvest processing. So far, during seed production at a commercial scale, 
maturity used to monitor visually which necessitates the expertise of growers. It 
is the need of the hour to develop markers that aid in identifying optimum harvest 
time. Markers could be developed by clearly understanding the physiological, 
biochemical, molecular mechanisms involved in seed quality (germination and 
vigour). From the recent studies, several promising markers such as cell cycle 
markers, electrolyte leakage, ethylene production, sugar metabolism, proteins, 
antioxidants and telomeres have been suggested as reliable markers to monitor 
the seed quality process. Such markers not only help to identify the seedling 
stages but also facilitate a better understanding of seed priming treatments.
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effects on lipids, DNA, RNA, and proteins that ultimately leads to cell death. The condition could be more deteriorative if the seed 
biochemical composition is enriched with oil/lipid content. For example, ROS damages the integrity of cell membranes, alters 
the permeability and fluidity through peroxidation of lipids [4]. This exacerbate, particularly, in soybean seeds whose chemical 
composition is endowed with oil content [5]. Recent studies show that antioxidants play an important role in controlling the ROS 
[6]. An intriguing fact has been hypothesized that reduction of ROS concentrations could act as a second messenger in seed 
germination, seed dormancy (maturation and drying), endosperm weakening and more profoundly linked to seed longevity [7,8].

Antioxidants such as tocopherols, phenols, carotenoids, ascorbic acid and thiols are non-enzymatic in nature whereas, 
catalase (CAT), ascorbate peroxidase, superoxide dismutase (SOD), glutathione reductase are the major enzymatic moieties. 
The enzymatic antioxidants mainly execute its function through detoxification mechanisms. For example, superoxide (free 
radical) has been dismutated by SOD to hydrogen peroxide and oxygen. Further, catalase detoxifies the hydrogen peroxide into 
water and oxygen. These enzyme activities are directly correlated with ROS maintenance at non-toxic levels which may serve as 
markers. Bailley et al. [9] has reported that scavenging potential of ROS due to enzymatic activity had been increased during seed 
development in bean [9]. Another study demonstrates that osmo-priming restored the scavenging potential of enzymatic activities 
which is directly correlated to germination rate and antioxidant potential in sunflower seeds [10]. These findings clearly show that 
the antioxidants absorbs/neutralizes the free radicals, singlet and triplet oxygen are quenched and the peroxides are being 
detoxified/decomposed [11].

Membrane Integrity

Unlike recalcitrant seeds, orthodox seeds undergo desiccation tolerance after maturation. Membrane integrity is one of the 
important features to confront the desiccation tolerance to remain seed viability [12]. On set of ageing leads to loss of membrane 
integrity, and the degree of leakage indicates the quality of membranes to solute diffusion and seed vigour. The leakage of solutes 
is indirectly proportional to the seed quality; in other words, more the leakage lesser will be the quality of seeds [3]. However, 
in case of sweet corn, where high sugar contents are present it may not serve as a good indicator. Similarly, the crops with 
high phenolics in seed coat may also not suitable for the membrane integrity test [13]. Nevertheless, international seed testing 
association (ISTA) has recommended the test for large seeded legumes [14]. This indicator is quite helpful to determine the quality 
seed during imbibitions.

Ethylene as Indicator

Ethylene synthesis in higher plants takes place through 1-aminocyclopropane 1-carboxylic acid (ACC) oxidase activity [15]. 
Since the ACC activity depends on membrane integrity, ethylene production is a good indicator of membrane conditions. Less 
synthesis of ethylene due to low conversion of ACC is a sign of membrane damage observed in Araucaria angustifolia embryos 
[16,17]. Similar results were found in other species where seed vigour is correlated with ACC dependent ethylene production [18,19]. 
Therefore, ethylene formation is one of the good sign of membrane conditions and can be assessed during imbibitions.

Raffinose Family Oligosaccharides (RFO)

In addition to the above markers, some molecules such as RFO are of particular interest. RFO accumulates during seed 
maturation and helps to maintain the intracellular contents in glassy state through increase in cytoplasmic viscosity and glass to 
liquid transition temperatures. These modifications help in to restrain ageing effect [20,21]. In addition, soluble sugars accumulation 
is correlated with seed dehydration rates which might be a good indicator for seed drying conditions [22]. For instance, in pea 
positive correlation exists between RFO/sucrose and electrolyte leakage. Furthermore, several research studies suggest that the 
sugar content, precisely oligosaccharides to sucrose ratio, could be a good indicator for seed storability [23-26]. Apart from RFO 
family sugars, heat shock proteins (HSPs), late embryogenesis abundant protein [(LEA), are also important markers for seed 
germination. However, much more research is emancipated in these aspects [27,28].

Cell Cycle Markers

In higher plants, the embryo development needs endosperm nourishment. In angiosperms, the embryo is formed by the fusion 
of one nucleus from male gametophyte and the other from female gametophyte. Thus, the embryo is in 2 n stage representing a 
dploid genome (2n). In seeds, at different developmental stages mitotic/endoreduplication takes place, as a result, physiological 
state of a seed could be easily understood. In embryo, a typical proliferative cell undergoes mitosis where 2 n is duplicated to 4 n 
condition after ‘S’ phase; thereafter, in mitosis where the DNA content is divided into two daughter nuclei (4 n to 2 n) as depicted 
in Figures 1 and 2. In case of non-proliferative cells it undergoes quiescent G0 stage from G1 phase. On other hand, endosperm 
forms by fusion of one nucleus from male gametophyte with two nuclei from the female gametophyte whose ploidy condition is 3 
n. After ‘S’ phase of endosperm cell, the ploidy condition would turn to 6 n (Figure 3).

Unlike embryonic cells, some endosperm cells undergo endoreduplication where repeated rounds of DNA replication occur in 
nuclei without the mitotic stage which leads to formation of endopolyploid cells. This striking feature could be studied through flow 
cytometry to estimate the DNA content with fluorochrome [29]. Moreover, studying the replication of DNA could be advantageous in 
knowing the seed vigour; as hypothesized, that low quality seeds would require longer time for DNA repair and also suffers with 
integrity during imbibitions [30]. Since, active cells could complete its cell cycle within short span; 4n/2n ratio might be a good 
marker for seed germination and quality [31]. In early developmental stages of embryo, cell cycle activity occurs at a faster rate. 
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For instance, in sugarbeet, pepper and soybean the ploidy of 4 n condition is attained at 45%, 30% and 15-20% respectively 
[32-34]. After maturation, cessation of DNA replication occurs with a ploidy state of 2 n and enters probably G0 state. Similarly in 
endosperm, high mitotic activity is observed at higher rate initially followed by increased endoreduplication with concomitant zero 
mitotic index [35].

G1

SG2 Phase

M Phase

Figure 1. General overview of cell cycle in Angiosperms.
M phase: Mitotic phase, G1 phase: Gap-1 phase; S Phase: Synthesis phase; G2 phase: Gap-2 phase.

G1 (2n) 

G2 (4n) S (4n) 

M Phase 
G0 (2n) 

SM phase 

Figure 2. Typical proliferative cell cycle stages in embryo.
In embryo, a typical proliferative cell undergoes mitosis where 2n is duplicated to 4n condition after ‘S’ phase; thereafter, in mitosis where the 
DNA content is divided into two daughter nuclei (4n to 2n). In case of non-proliferative cells (seed maturation stage) it undergoes quiescent G0 
stage from G1 phase.

G1 (3n)

S(6n)G2(6n)

Endoreduplication

Figure 3. Probable route in some endosperm cells for polyploidy condition.
Some endosperm cells undergo endoreduplication where repeated rounds of DNA replication occur in nuclei without the mitotic stage. The 
continuous endoreduplication leads to the formation of endopolyploid cells.
M phase: Mitotic phase, G1 phase: Gap 1 phase; S Phase: Synthesis phase; G2 phase: Gap 2 phase; Endoreduplication occurs with repeated 
cycles with no M Phase.

From the above discussion, it is imperative to deduce a yardstick of seed maturity with the ratio of endosperm to embryo 
nuclei which will provide the insights. Several reports suggested the utility of endosperm to embryo ratio; for example, in sugarbeet, 
it is about 3:2 and 9:1 at 21 day old developing and 36 (mature) day old seeds respectively [33]. In the same way, cucumber seeds 
showed 45% at 21 days after pollination followed by 13% and 8% at harvest and processing stages respectively [36]. These results 
imply that the endosperm and embryo cells at early stages actively divide and maintained the ploidy condition (3:2) in sugarbeet. 
On the other hand, when cell attains maturity, the embryo and endosperm nuclei undergo G0 and endoreduplication process 
respectively leading to reduction in ploidy condition of embryo nuclei in comparison to endosperm nuclei (polyploidy). Hence, 
it is easier to monitor the seed maturity based on the endosperm to embryo nuclei. However, in some cases the decrease in 
endoreduplication activity may not be attained to seed maturity. For instance, in pepper and Arabidopsis during seed development 
no endoreduplication could takes place [34,37]. 
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Therefore, it is intriguing that based on the above discussion, in orthodox seeds, the seed maturity could be monitored 
effectively with the ratio of embryo/endosperm cell number along with DNA contents of corresponding nuclei [25].
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