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Vision combines local feature integration with active
viewing processes, such as eye movements, to perceive
complex visual scenes. However, it is still unclear how
these processes interact and support each other. Here,
we investigated how the dynamics of saccadic eye
movements interact with contour integration, focusing
on situations in which contours are difficult to find or
even absent. We recorded observers’ eye movements
while they searched for a contour embedded in a
background of randomly oriented elements. Task
difficulty was manipulated by varying the contour’s
path angle. An association field model of contour
integration was employed to predict potential saccade
targets by identifying stimulus locations with high
contour salience. We found that the number and
duration of fixations increased with the increasing path
angle of the contour. In addition, fixation duration
increased over the course of a trial, and the time course
of saccade amplitude depended on the percept of
observers. Model fitting revealed that saccades fully
compensate for the reduced saliency of peripheral
contour targets. Importantly, our model predicted
fixation locations to a considerable degree, indicating
that observers fixated collinear elements. These results
show that contour integration actively guides eye
movements and determines their spatial and temporal
parameters.

Introduction

Images that enter our eyes are first processed by
neurons sensitive to only a small region of visual
space and certain features (e.g., orientation, color).
Crucial to our understanding of visual perception is
the process by which the visual system groups these
local neural responses to signal the presence of
spatially coherent structures (for a broad review, see
Wagemans et al., 2012). A powerful tool to achieve a
better understanding of visual grouping is the contour
detection paradigm of Field, Hayes, and Hess (1993).
In this paradigm, a new type of stimulus was
proposed to investigate the grouping of individual
elements into global contours. In a typical contour
detection experiment, observers are asked to detect
the presence of a contour composed of spatially
separate Gabor elements embedded in a background
of similar but randomly oriented elements. The
spatial separation of the distractor elements matches
the separation of the contour elements, and therefore,
the contour can only emerge from the background
due to the collinearly arranged contour elements
forming a smooth path (for a recent review, see Hess,
May, & Dumoulin, 2013).

The ability of human observers to detect a contour
appears best when the contour forms a straight line and
decreases as the degree of curvature of the contour,
defined by the angle between the successive elements,
increases (Field et al., 1993; Watt, Ledgeway, & Dakin,
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2008). To account for this finding, Field et al. proposed
that oriented elements interact with neighboring
elements through a local ‘‘association field.’’ Typically,
an association field indicates how strongly an element
in the image can be collinearly grouped with its
neighboring elements by assigning an association
strength to each element in the field (May & Hess, 2007;
Watt et al., 2008). The association strength of an
element is high when the element is collinearly aligned
with nearby elements and low when the distance,
curvature, and misalignment from cocircularity be-
tween the element and its neighboring elements
increases. This concept has been implemented in neural
interaction models, involving facilitatory connections
between nearly collinear elements and inhibitory
interactions between parallel and orthogonal elements
(Li, 1998; Mundhenk & Itti, 2002; Yen & Finkel, 1998).
Recently, Ernst et al. (2012) developed an association
field model that captures human contour detection
behavior to a previously unprecedented degree. This
model has a well-defined probabilistic interpretation
(Williams & Thornber, 2001) and uses an approach
that reduces contour integration to an optimal infer-
ence problem. More specifically, it computes for each
edge element in a stimulus the probability that this edge
is part of a contour with certain statistical properties,
thereby generating a probability map for contours of
increasing length as processing time proceeds.

Studies making use of the contour detection para-
digm typically limit the presentation time of the
contour stimulus to reduce the influence of eye
movements during the task. However, these short
presentation times come at a cost. For example, Field et
al. (1993) found that observers’ detection performance
became worse when the presentation time of the
contour stimulus was reduced from 1 s to 0.25 s. The
absence of eye movements may play an important role
in this reduction. Given that the contour path did not
always fall in the foveal region of the stimuli,
preventing observers from making eye movements
could have severely constrained contour detection. The
role of eye movements in contour detection is further
supported by findings showing that contour detection
performance is highly dependent on the peripheral
position of the contour (Hess & Dakin, 1997; May &
Hess, 2007; Nugent, Keswani, Woods, & Peli, 2003).
To account for such effects, May and Hess (2007)
proposed a type of association field model in which the
association fields are small in the foveal region of the
stimulus and large in the periphery. Such a model
predicts that elements of highly curved contours
located far from the fixation point are more likely to be
linked with distractor elements due to larger associa-
tion fields in the periphery linking elements over larger
distances. Consequently, contours located in the
periphery are less detectable, especially when they are

curved. Eye movements can considerably support this
contour-integration process, allowing observers to
foveate image elements that may be part of a contour.
More specifically, we hypothesized that observers fixate
regions of the image that are characterized by high
association strengths. Under this assumption, mea-
surements of fixation locations should reveal the
internal association field used by observers during
contour integration, providing a powerful tool to test
models of contour integration that predict a specific
association field. We here describe two experiments
aimed to test this hypothesis by applying the associa-
tion field model of Ernst et al. (2012) to examine
whether the model’s predictions of salient collinear
locations in an image match the fixation locations in a
contour detection task.

Information processing during contour integration
may also be reflected in other spatial and temporal
aspects of eye movements. Fixation duration and
saccade amplitude (i.e., the distance covered by a
saccadic eye movement) have been proposed to indicate
distinct modes of global and local processing during
image viewing (Pannasch, Helmert, Roth, Herbold, &
Walter, 2008; Unema, Pannasch, Joos, & Velichkov-
sky, 2005; Velichkovsky, Joos, Helmert, & Pannasch,
2005). For instance, in a visual-search study, Over,
Hooge, Vlaskamp, and Erkelens (2007) observed an
increase in fixation duration and a decrease in saccade
amplitude with viewing time. They hypothesized that
this time course is the result of a search strategy of the
visual system to gradually move from a global search to
a more local search at finer spatial scales. The strategy
did not depend on whether the exact appearance of the
target and background was known in advance or not,
suggesting that it reflected a general oculomotor
strategy. However, a scene-perception study by Mills,
Hollingworth, Van der Stigchel, Hoffman, and Dodd
(2011) showed that certain task requirements influence
these oculomotor parameters differently, indicating
that they are controlled by independent mechanisms
instead of one intrinsic coarse-to-fine process (Pan-
nasch et al., 2008; Unema et al., 2005). In this study, it
was found that fixation duration gradually increased
toward an optimal level of local processing, and
saccade amplitude remained relatively stable over time.
According to the authors, the size of saccades during a
trial depended mainly on whether it was needed to
acquire visual information across the entire scene. For
instance, saccade amplitude remained high over the
course of a trial in a search task in which the target was
extremely difficult to detect. One possibility is that the
time courses of fixation duration and saccade ampli-
tude, instead of reflecting a built-in coarse-to-fine
mechanism, can be strategically adjusted to the
difficulty of the task. For instance, a study by
Vlaskamp, Over, and Hooge (2005) suggests that
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fixation duration and saccade amplitude are closely
related to the difficulty of finding a target during visual
search. These authors found that fixation duration
increased and saccade amplitude decreased with
increasing target-distractor similarity (i.e., decreased
target saliency), which reflects a more local processing
strategy.

In sum, research on contour integration suggests that
eye movements can substantially support contour
detection, presumably by foveating likely contour
candidates in the image. Moreover, certain saccadic
characteristics, such as fixation duration and saccade
amplitude, seem to be influenced, to a certain degree,
by the saliency of a target during search and by the time
course of image processing. The purpose of this study
was to examine the involvement of eye movements in
the process of contour integration, especially in
situations in which contours are difficult to find. We
investigated how durations of individual fixations and
saccade amplitudes vary as a function of time and
difficulty of the contour-integration task. In addition,
we tested whether an association field model, proposed
recently to explain contour integration (see Ernst et al.,
2012), can predict fixation locations. Our hypothesis
was that subsequent fixations are preferentially directed
toward ‘‘hot spots’’ of association strength predicted by
an association field. Participants were asked to find a
contour hidden in a dense arrangement of oriented
Gabor patches and to perform two tasks while their eye
movements were tracked. These included indicating
whether the contour, which was always presented, was
on the left or right of the visual field or to determine
whether a contour was present in the Gabor field. Task
difficulty was manipulated by varying the path angle of
the contour, which influenced the saliency of the
contour elements.

Methods

Participants

Twenty-one observers, with normal or corrected-to-
normal vision (age range 17–35), participated in each
task of the experiment. Two were authors, and the
others were psychology students at the University of
Leuven. All gave their written informed consent before
participating in the experiment, which was approved by
the local ethics committee.

Apparatus

The stimuli were displayed on a 22-in. CRT monitor
(Iiyama HM204DT A) at a refresh rate of 75 Hz. A

Pentium PC (NVIDIA GeForce 7600 GT graphics card)
controlled the presentation of the stimuli while a second
PC recorded the eye-movement data. Eye movements
were measured using the Eyelink II video-based eye
tracker (SR Research, Osgoode, ON, Canada), which
uses two small cameras mounted to a headband worn by
the participants. The Eyelink II has a reported average
accuracy of less than 0.58, which is below the average
distance of the elements in our display (i.e., 0.78),
allowing the accurate assignment of fixations to the
individual elements in the display. To ensure that
participants remained at a fixed distance from the screen
and to avoid head movements, which could possibly
result in drift in the recorded eye positions due to
headband slippage, a chin rest was used, positioned at 60
cm from the CRT screen. The eye tracker recorded the
horizontal and vertical eye positions for both eyes at a
rate of 250 Hz. When possible, the combined pupil-plus-
corneal-reflection mode was used. For three partici-
pants, this mode resulted in clear distortions in the
recorded eye position because of reflections of the IR
illumination to glasses or contact lenses. For these three
participants, the pupil-only mode was used instead.
Participants’ responses were registered by means of a
computer keyboard.

Stimuli

The target stimulus (590 · 590 pixels; 238) consisted
of Gabor patches that were in cosine phase with
wavelength k (0.208), Gaussian envelope of SD k/2
(0.108), and Michelson contrast of 50% (see also Watt et
al., 2008). An example of a stimulus can be found in
Figure 1, which shows the stimulus sequence during a
trial. Each stimulus with a contour target contained a
single embedded contour placed in a background of
randomly oriented Gabor elements. In the left-right
decision task (LR task), Gabor paths were required to
be at a distance of at least 50 pixels (28) from the center
of the screen so that they were clearly located either in
the left or right half of the Gabor field. The contours in
the contour-present conditions of the present-absent
task (PA task) could appear in any position of the
display. Each contour was defined by a sequence of
seven Gabor patches whose orientations were set to an
underlying contour ‘‘spine’’ (sequences often referred to
as ‘‘snakes’’; see inset of Figure 1). The positions of each
of the Gabors in the path were chosen such that the
mean distance between adjacent elements in the contour
was the same as the mean distance between adjacent
elements in the background. In order to manipulate the
saliency of the contour and therefore task difficulty, the
path angle of the contour was systematically varied
(May & Hess, 2008; Watt et al., 2008). The path angle is
defined as the angle between successive elements in the
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contour. For example, in the case of three elements, the
path angle is defined by the difference in orientation
between the lines formed by linking element 1 to element
2 and element 2 to element 3. Four different levels of
path angle (08, 58, 108, or 208) were used. The sign of the
path angle could vary randomly within the contour.
However, the orientation of the Gabor in a path was
always aligned with the path angle (i.e., no additional
jitter was used). As indicated earlier, the remainder of
the Gabor field was filled with randomly oriented
elements placed at random positions in such a way that
the mean distance between the center of each element
and the center of any other neighboring element was
0.78. Stimuli in the contour-absent condition of the PA
task did not contain a salient contour and consisted only
of randomly placed Gabor elements.

Procedure

The experiment started with instructing the partici-
pants about the two tasks and determining their
dominant eye by asking them to look through a
cylindrical object. In the first task, observers were
instructed to indicate whether the contour was embed-
ded left or right in the stimulus field (LR task). In the
second task, they were asked to indicate whether the
contour was present or not (PA task). In both tasks,
either response was required in equal proportions.

Participants responded by pressing either the letter ‘‘q’’
(‘‘left’’ or ‘‘absent’’) or the letter ‘‘p’’ (‘‘right’’ or
‘‘present’’) on a standard QWERTY keyboard. Before
the experiment and at regular times during the
experiment (after each block of 40 trials, if required), a
calibration procedure for the eye tracker was performed.
Calibration was repeated until all recorded fixations
were aligned on a three by three grid for both eyes and
the recordings of the first and the last fixation were at
close proximity. Each trial started with a fixation dot,
which was presented until the experimenter pressed the
space bar to correct for drifts in the eye movement
recordings due to small movements of the head. A
second, smaller fixation dot followed the drift correc-
tion, which was presented for a random duration
between 1000 and 1500 ms. Participants were then
presented with the stimulus image until they pressed one
of two keys on the computer keyboard to indicate their
response. During stimulus presentation, they were free
to shift their gaze across the display. After each trial,
feedback was provided for 400 ms, indicating whether
the participant’s response was correct or not (see Figure
1 for an example of the stimulus sequence during a trial).
After each 40 trials, participants received a message
indicating how many trials were remaining. For the LR
task, 60 different Gabor fields for each of the four path
angles were used, resulting in 240 stimuli per participant.
For the PA task, 80 random Gabor fields were used in
which no salient contour was present and 20 stimulus
fields were used for each of the four path angles,
resulting in 160 stimuli per participant. All the
participants received the same Gabor fields, so that eye
traces for each of the stimuli could be directly compared
across the participants. The order of the trials was
randomized for each participant.

Eye-movement analysis

The default settings of the Eyelink II eye tracker
were used to detect saccades, based on a velocity
threshold of 308/s and an acceleration threshold of
80008/s2. Although eye movement recordings were
obtained for both eyes, we chose to focus on the
recordings for the dominant eye (as determined with
the cylindrical object–viewing task) in the analysis.
Fixations shorter than 50 ms and longer than 2000 ms,
as well as saccades with amplitudes smaller than 0.18,
were excluded from data analysis. The saccade before
and the saccade after an excluded fixation were merged
to form a new saccade, and the same method was used
for fixations before and after removed saccades. The
first fixation in each trial was discarded because it
results from the preceding fixation dot at the center of
the screen used for drift correction. Across all trials of
this study, average fixation duration was 275 ms (SD¼

Figure 1. Illustration of the stimulus sequence. A fixation symbol

was presented for a randomly selected duration between 1000

and 1500 ms. The target array was then presented until

participants pressed a key to indicate whether a salient contour

was located in the left or right half of the stimulus field (LR task)

or whether it was present or absent (PA task). Feedback was

then provided for 400 ms. The inset shows a close-up of the

contour path consisting of seven collinear elements.
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133) and average saccade amplitude was 5.418 (SD ¼
4.56).

Statistical analyses were performed on the individual
eye movements, which were in total 37,352 in the LR
task and 32,193 in the PA task. Eye movements were
nested within images and within observers for both
tasks. The images were crossed with individuals because
each observer saw the same set of Gabor field stimuli.
Given that our data set has a hierarchical structure,
multilevel models were used in which images and
observers were treated as crossed random factors
(Hoffman & Rovine, 2007; Locker, Hoffman, &
Bovaird, 2007; see Mills et al., 2011 for a similar analysis
on eye-movement data). An important advantage of
multilevel analysis is that it allows for an unbalanced
design as is the case for our data set, in which there are
differences in the timing and number of eye movements
across observers and trials. Models were estimated using
maximum likelihood via the MIXED procedure of SPSS
(syntax used to estimate the models is available from the
authors upon request). Although the methods are
relatively robust against violations of the normality
assumption of the underlying distribution, we applied
base 10 logarithmic transformations to our data to
obtain normal data distributions.

To examine how fixation duration and saccade
amplitude changed over the course of a trial, we tested
a quadratic model of change over time for these two
parameters as exploratory analyses of our data showed
a quadratic change over time in fixation duration and
saccade amplitude. The time for each trial was first
normalized to the interval starting at the time when the
first saccade was initiated in the center of the screen and
ending when the last saccade ended. This interval was
divided into 10 subintervals of equal width, and
fixations were sorted into these subintervals according
to their normalized starting time. Statistical tests were
performed separately for the LR task and the PA task.
We included two between-trial predictors. The first
predictor was the saliency of a contour. Conditions
included the different path angle conditions in both
tasks and the contour-absent condition in the PA task.
The second predictor was the correctness of the given
manual response. In addition, we tested whether these
predictors interacted with the linear and quadratic
effect of time.

Architecture of contour-integration model

We compared our experiments with predictions from
the association field model by Ernst et al. (2012). This
contour-integration model was realized by a two-
dimensional layer of i¼ 1, . . . , N neuronal populations,
which were recurrently connected by synaptic weights
wij. For reducing computational complexity, only

populations i were used whose receptive fields were
centered on the edge elements in a particular stimulus
and which had the same preferred orientations.

In order to integrate neighboring edges, the synaptic
weights were chosen such that a stronger interaction
between nearby element pairs i and j results when these
are arranged in a collinear and cocircular fashion, thus
realizing an association field. The weights were sampled
from a function A(r, a, b) defined as

Aðr; a; bÞ� expð�r=kÞcosh
�

1=r2
acosðb=2� aÞ

þ 4=r2
bcosðb=2Þ

�
: ð1Þ

The radial part of this function decays exponentially
with the length constant k depending on the distance r
between two edge elements. The angular part depends
on the angles a and b, with b referring to the angle
between the orientations of two edge elements and a
denoting the angle of the destination edge i from the
collinear continuation of the origin edge j. ra and rb are
the scaling constants that determine the form of the
association field (panel A of Figure 2). By setting both
parameters to small values, contours with quite straight
curvatures are favored during integration. By setting
the parameters to higher values, contours with larger
curvature can also be integrated but with the penalty of
making the model less robust against noise. Panel B of
Figure 2 shows a typical example of an association field
with the parameters chosen for our simulations. Note
that the association field is not symmetric and extends
in a particular direction. Unidirectionality of the
association field turned out to be beneficial for contour
integration (Ernst et al., 2012), but it requires that each
edge element in a stimulus be represented by two
populations i and i0 with association fields extending in
opposite directions.

To account for reduced saliencies of edge elements i
in peripheral vision (Foley, Varadharajan, Koh, &
Farias, 2007), an additional scaling factor bi for the
afferent input to each population i was introduced. In
the contour detection study of Ernst et al. (2012), it was
found that b has to decrease with distance E from the
fixation spot for the model to be able to successfully
explain human contour integration. The required
functional dependency of b on eccentricity E was found
to be compatible with earlier psychophysical studies
(e.g., Foley et al., 2007) and is quantified by

bðE; l; mÞ ¼ 1þ 2l
E

Emax

� �m

� 1

2

� �
: ð2Þ

Here, l describes how strongly b varies with
eccentricity, and v regulates how steeply b varies with
eccentricity. For v , 1, b is concave down, and for v .
1, b is concave up. Panel C of Figure 2 illustrates an
example for such eccentricity scaling by modulating the
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contrast of background and contour elements located
in the periphery. Although it may be argued that no
scaling for peripheral locations may be required in the
presence of eye movements, we included the b
parameter in the original fit of our data specifically to
test whether observers’ eye movements were indeed
sufficient to make collinear configurations in the
periphery more salient.

Model dynamics

The dynamics of the contour-integration model are
described by a time-continuous differential equation
for the activation pi (t) of population i, which is a
generalization of the time-discrete model used in Ernst
et al. (2012):

s
dpiðtÞ
dt
¼ �piðtÞ þ gðtÞg bi

X
j

wijpjðtÞ
" #

: ð3Þ

In this equation, g[. . .] denotes a rectifying neural
gain function, and g(t) is a normalization factor that is

defined by the sum over the synaptic input term in
rectangular brackets,

gðtÞ ¼
X
i

bi
X
j

wijpjðtÞ: ð4Þ

If contour integration is regarded as a probabilistic
inference problem (Ernst et al., 2012), pi can be
interpreted as the likelihood that a contour passes
through an edge element in a stimulus. pi is computed
iteratively for contours of increasing lengths. For
retaining the analogy to neural networks and neural
processes in visual cortex, however, we will refer to this
variable as the model’s ‘‘activation’’ throughout the
following text.

Fitting procedure

To avoid overfitting, we used one part of the
available experimental data to perform the fit and
tested the model’s predictive power on a different part
of the data. In particular, we used the contour-
detection behavior of all subjects in the LR task to

Figure 2. Parameters and shape of the association field and eccentricity scaling. (A) The geometrical relationship between edge

elements ei and ej is defined by the distance rij between the elements and the angles aij and bij. aij refers to the angle of edge ej from

the collinear continuation of edge ei, and bij is the angle between the orientation of the two edges. The red arrow specifies the

direction ej should have for perfect cocircularity between ei and ej. The association field decreases on a length scale ra with increasing

deviation of the orientation of ej from this direction. The green arrow depicts the case in which the two edge elements would have

the same orientation. The association field decreases on a length scale rb with increasing deviation of the orientation of ej from this

direction. Figure adapted from Ernst et al. (2012). (B) The association field, defined as the product of an angular part and a radial part

(see Methods section), for an element positioned at the origin and with an orientation equal to zero. It is defined by parameter values

fitted to reproduce human contour detection behavior in our LR task. Greyscale values specify the association strength with darker

shades indicating locations that give rise to higher association strengths. (C) The association field model also contains a scaling factor

bi for each edge ei, which determines its visibility. In the image, the degraded visibility of the contour and other elements located in

the periphery would be reflected in the model by relatively low bi values for these elements.
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optimize the parameters of the contour-integration
model and then tested the generalizability of the data fit
by applying a model with the same parameters for
subsequent prediction of saccades in the PA task.

For our fit, we required the model both to reach or
surpass human contour detection performances and to
reproduce excess correlations among human observers.
The term ‘‘excess correlations’’ refers to human
decisions, which are either less frequent or more
frequent than expected from human mean perfor-
mance. One example shall illustrate this idea: Assuming
that performance of human observers in detecting a
contour is 70% correct, we expect, on average, 14
correct decisions for each stimulus when we would have
20 subjects in total. If we find a stimulus with only one
correct and 19 incorrect decisions, meaning that
observers are systematically wrong, we also expect our
model to ‘‘fail’’ on this particular contour. These two
criteria were quantified in two measures Z and C,
respectively. Z takes a value between zero and one and
denotes the percentage of stimulus conditions in which
a model reaches or surpasses mean human perfor-
mance. We required our model to achieve Z¼ 1. C can
also take a value between zero and one and is related to
the integral of a receiver-operator characteristic (ROC)
curve. It quantifies excess correlations between the
correct decisions of two (sets of) observers: If C ¼ 0.5,
identical decisions of the two observers are fully
explained by their mean performances. If the number of
identical decisions of the two observers increases over
this chance level, C becomes larger than 0.5 with a
maximum attainable value of one (for details with
regard to the precise computation of C, we refer the
reader to Ernst et al., 2012). In order to quantify how
well a model reproduces human behavior, we compare
average excess correlations CH ¼ 0.79 among subjects
with average excess correlations CM between model
decisions and subjects, requiring the model to come as
close as possible to the ‘‘benchmark’’ value CH.

Fitting was performed on five parameters, namely ra

and rb (shape of association field), l and v (scaling of
edge saliency with visual field eccentricity), and k
(scaling of coupling strength with edge distance). For
each parameter, a plausible range of values was selected
and divided into equidistant intervals. After initializa-
tion with a uniform-activation distribution, the model
was simulated for a time interval of T¼ 10s for all
possible parameter combinations. The model with Z¼ 1
and the highest value of CM identified by this procedure
was subsequently used to predict saccade targets.

Prediction of fixation locations

The model generates a time series of activities pi(t)
for all populations i. Predictions for saccade targets

were derived by comparing p with a time-varying
threshold H(t)¼ hpi(t)ii þ 0.5r(pi(t)), where h. . .i
denotes the mean and r the standard deviation of the
model activation at a particular point in time. If pi(t) .
H(t), the corresponding edge element i was considered a
potential saccade target. For all stimuli containing a
contour, we also removed all fixations within a radius
RT¼ 3.58 around the center of mass of the target
contour. Removing fixations near the target had two
reasons. First, we wanted to find out if the model could
predict fixations prior to detection of the target
contour. Second, we indirectly used this information
already during parameter fitting because saccade
trajectories end near a contour if it is detected by an
observer.

For assessing how well the model predicts the
remaining fixations, we counted the relative number of
fixation spots tpos(R) (‘‘true positives’’), which were
within a range R of at least one potential saccade target
identified by the model. This procedure was also
performed for the same model prediction compared
with fixations from a different stimulus, thus giving a
relative number of ‘‘false positives’’ fpos(R). By relating
tpos with fpos via the free parameter R, we obtained
ROCs whose integral indicates how well the model can
predict the fixation spots (0.5 is chance level).

The ROCs were first computed for each observer
individually and then averaged by taking the maximum
value achieved over simulation time t for each observer.
This procedure accounts for the possibility that
different subjects might choose saccade targets from
different stages of the contour-integration process:
Although one observer might make saccades only to
contours of at least five elements, a different observer
might judge contours of three already aligned edge
elements as sufficiently ‘‘interesting’’ for performing a
saccade and for conducting a further inspection of its
neighborhood.

Results

Task performance

Mean performance on the contour-integration task
decreased as the path angle of the target contour
increased. For increasing path angles 08, 58, 108, and
208, the average proportion correct across observers
equaled, respectively, 97%, 96%, 90%, and 74% in the
LR task and 92%, 88%, 77%, and 56% in the PA task.
For the condition in which no contour was present in
the display, mean performance was 81% correct. Box
plots of the number of fixations and response times as a
function of path angle for both the LR task and the PA
task are shown in the left and right panels of Figure 3,

Journal of Vision (2013) 13(14):5, 1–19 Van Humbeeck et al. 7

Downloaded from jov.arvojournals.org on 07/01/2019



respectively. Repeated-measures ANOVA revealed a
significant difference between path-angle conditions in
log response times, Greenhouse-Geisser correction,
F(1.74, 34.86)¼ 224.18, p , 0.001 for the LR task and
F(1.71, 34.26) ¼ 89.27, p , 0.001 for the PA task, as
well as log number of fixations, Greenhouse-Geisser
correction, F(2.33, 46.65)¼ 170.58, p , 0.001 for the
LR task and F(1.79, 35.82) ¼ 74.47, p , 0.001 for the
PA task. Pairwise comparisons between path-angle
conditions showed that all differences were significant
after Bonferroni adjustment (requiring p , 0.008 for
the LR task and p , 0.005 for the PA task) except the
difference in log number of fixations between the
smallest path angles in the LR task (p¼ 0.074).

Eye-movement behavior

To account for random variations between trials
(i.e., images) and between observers, the regression
coefficients in our multilevel models predicting fixation
duration and saccade amplitude were treated as
random variables. For the prediction of fixation
duration, significant sources of random variation after
controlling for the predictors’ contour saliency and
correctness were a random intercept and slope for
observers and a random intercept for trials. For the
prediction of saccade amplitude, we included a random
intercept, slope, and quadratic term for observers and a
random intercept for trials.

The left and right panels of Figure 4 show the
change in log fixation duration over the course of a
trial as a function of contour saliency for the LR task
and PA task, respectively. Fixation durations increased
gradually with the rate of change decelerating over
time and slightly decreased toward the end of the trial.
The last fixation in each trial appeared considerably
longer than the preceding fixations due to the overlap

with the observers’ responses, and these fixations were
excluded from further analysis of fixation duration.
For both tasks, multilevel analysis showed a significant
positive linear time effect, F(1, 191.55) ¼ 200.27, p ,

0.001 for the LR task and F(1, 832.71) ¼ 230.82, p ,
0.001 for the PA task, and negative quadratic time
effect, F(1, 32,322.09) ¼ 183.82, p , 0.001 for the LR
task and F(1, 28,586.34)¼ 150.81, p , 0.001 for the PA
task, indicating that the linear effect of time deceler-
ated significantly over the course of the trial.

In addition, there was a main effect of contour
saliency for the LR task, F(3, 2,324.74)¼ 20.20, p ,
0.001, and the PA task, F(4, 6,614.24)¼8.27, p , 0.001.
The effect size of contour saliency in predicting fixation
duration was assessed using pseudo-R2 statistics (Singer
& Willett, 2003), indicating the change in the variance
components after including the effect of contour
saliency in the model. As to be expected, including the
predictor contour saliency caused only a small change
in the random variance of the intercept and linear time
effect for observers as each observer received all path-
angle conditions. However, contour saliency accounted
for 51% and 62% of the random intercept variance for
stimuli in the LR task and the PA task, respectively.
Moreover, contour saliency did not interact with the
linear and quadratic effects of time, meaning that the
effect of contour saliency remained the same over the
course of a trial. There were no significant differences in
log fixation duration between correct and incorrect
trials for the LR task, F(1, 32,589.16)¼ 1.07, p¼ 0.301,
or the PA task, F(1, 28,428.23)¼ 0.35, p¼ 0.553. The
fitted curves in the left and right panels of Figure 4
show the pattern of change in log fixation duration
across time intervals as predicted by a quadratic model
of time that includes a main effect of contour saliency.
In a separate analysis, we combined the data sets of the
LR task and the PA task and found no difference in log

Figure 3. Box plots of number of fixations (left panel) and reaction times (right panel) as a function of the path angle of the contour

(including the condition in which no salient contour is present in the PA task). As the path angle increases, the number of fixations

and reaction times increase. Data from the LR task are shown in red, and data from the PA task are shown in blue.
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fixation duration between the two tasks, F(1, 52.84) ¼
0.62, p ¼ 0.434.

Panel A of Figure 5 shows the effect of viewing time
on log saccade amplitude as a function of contour
saliency for the LR task. The pattern of change in log
saccade amplitude suggests a quadratic pattern of
change with saccade amplitude peaking at around 40%
of the time in the trial and decreasing toward the end of
the trial. Indeed, the dependence of saccade amplitude
on time can be predicted by a quadratic model of
viewing time as shown by the fitted curve in panel A of
Figure 5. Our analyses showed that the linear,
F(1, 24.12)¼ 17.13, p , 0.001, as well as the quadratic
time effect were significant, F(1, 24.25) ¼ 42.25, p ,
0.001. The main effect of contour saliency failed to
reach significance, F(3, 12,268.96)¼ 2.41, p ¼ 0.065.

Panel B of Figure 5 shows the dependence of log
saccade amplitude on viewing time as a function of
contour saliency and correctness of response for the PA
task. Here, log saccade amplitude seems to follow two
trajectories: The blue curves depict the saccade
amplitudes for trials in which no contour was perceived
(i.e., trials in which observers either correctly or
incorrectly indicated the absence of a contour). In these
trials, saccade amplitude gradually increased over the
course of the trial. The red curves show saccade
amplitudes when observers reported finding a contour.
Here, saccade amplitude followed roughly the same
time course as in the LR task. Thus, the time course of
saccade amplitude seemed to depend on the contour
saliency condition (i.e., present or absent conditions) in
which the observers gave a correct or false response.
This is reflected by a nearly significant interaction
between correctness, contour saliency, and the linear
time effect, F(4, 32,058.75)¼ 2.35, p¼ 0.052, and a

highly significant interaction between correctness,
contour saliency, and the quadratic time effect,
F(4, 31,963.95) ¼ 11.90, p , 0.001. As a measure of
effect size, including this interaction between contour
saliency and correctness reduced the random intercept
variance for stimuli by 57%. The bold red and blue
curves in Panel B of Figure 5 show the fits of a
quadratic model of time in which the effect of reporting
a contour interacts with the linear and quadratic effects
of time. When only considering trials in which a
contour was present in the PA task, the distance of
fixation to the contour follows a similar time course to
that of saccade amplitude. Panel C of Figure 5 shows
the mean distance to the contour as a function of
normalized time. For trials in which they correctly
perceived the contour, observers progressively made
fixations closer to the contour whereas they gradually
fixated locations further from the contour for trials in
which they did not perceive the contour. The data sets
of the LR task and the PA task were combined into a
further analysis, and a significant difference in log
saccade amplitude was found between the two tasks,
F(1, 52.06)¼8.01, p¼0.007: Saccade amplitude was, on
average, larger for the LR task than for the PA task.
The difference in saccade amplitude distributions
between the LR task and the PA task is also obvious
from panel D of Figure 5, where it can be seen that long
saccades prevail in the LR task.

Prediction of fixation locations

Before applying the association field model to our
eye movement data, we performed a parameter fit of
the model on the observed contour detection perfor-

Figure 4. Log fixation duration in the LR task (left panel) and the PA task (right panel) as a function of normalized viewing time can be

predicted by a quadratic model of time, including a main effect of contour saliency as indicated by the solid lines. The data fits suggest

that fixation durations increased gradually and slightly decreased toward the end of the trial. Different colors indicate the contour

saliency levels (i.e., the different path-angle conditions and the contour-absent condition of the PA task, see legend). Error bars

represent the standard error of the mean across observers.
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mance as described in the Methods section. An optimal
fit was achieved when elements were assumed to have
the same visibility over the whole display (flat
eccentricity scaling function, l ¼ 0). This result is
consistent with the idea that elements and contours at
the borders of the screen, which would have lower
visibility when observers were not allowed to make eye
movements, become more salient when saccades are
allowed to inspect locations in the periphery. For the
association field parameters, which determine the
coupling matrix wij, we found optimal values of ra ¼
0.15, rb ¼ 0.24, and k¼ 0.38 (left panel of Figure 6).

To determine whether saccades are made to collinear
structures that are salient according to our contour-
integration model, we compared actual fixations with
model predictions. Figure 7 shows such a comparison
for four examples from each of the experimental
conditions. For the purpose of visualization, we
constructed an activity distribution from the discrete
activations pi by using a convolution with a Gaussian
profile (half-width 28 of visual angle). The neural
activity distribution from the association field is shown
as a normalized heat map with red indicating high
activity. Fixations of all subjects are superimposed on

Figure 5. Log saccade amplitude in dependence on normalized time during a trial. Error bars indicate the standard error of the mean

across observers. (A) For the LR task, log saccade amplitude peaks at around 0.40 normalized time and decreases toward the end of

the trial. This can be predicted by a quadratic model of time as indicated by the bold black curve. Different shades of grey indicate

different path angles of the contours. (B) For the PA task, the time course of saccade amplitude depended on the percepts of the

observers (i.e., whether they reported the contour to be present or absent). The blue curves show log saccade amplitudes (all path

angles and contour-absent condition) when no contour was perceived, and the red curves show log saccade amplitudes when

observers reported having perceived a contour. The time course of saccade amplitude can be predicted by a quadratic model of time

in which the effect of perceiving the contour interacts with the linear and quadratic effect of time as indicated by the bold curves.

Different shades of blue and red indicate either different path-angle conditions or the contour-absent condition. (C) Mean distance of

fixation to the contour in dependence on normalized time during a trial for the contour-present conditions in the PA task. Observers

progressively made fixations closer to the contour in case of a correct decision whereas they fixated further from the contour over

the course of a trial in case of a wrong decision. (D) Difference in saccade amplitude distributions between the LR task and the PA task

for trials in which a contour was present.
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these activity maps, shown as black stars. It can be seen
that hot spots of model activity, in general, match well
with dense clusters of fixation spots, but there are also
examples in which participants fixate regions of low
model activity. This impression of the data from these
examples is confirmed by a correlation analysis for all
stimuli in the PA task in which contours are absent
(Figure 8). For this analysis, fixation locations and
model predictions for each stimulus were first con-
volved with a Gaussian profile of half-width 18 of visual
angle. Then, a correlation coefficient over the resulting
two-dimensional distributions was computed. The
distribution of correlation coefficients from this data
set (blue bars in Figure 8) is centered around 0.3 and
well separated from the distribution of coefficients for
surrogate data, for which we compared model predic-
tions to fixations made for a randomly selected,
different stimulus (red bars in Figure 8).

As a more direct quantitative measure of the
predictive power of the model, we computed a ROC
that relates the amount of ‘‘true positives’’ to ‘‘false
positives’’ in dependence on a decision criterion R. In
this case, R is given by the radius around a candidate
edge in a stimulus. A candidate edge is an edge for
which the model predicts an activation that is higher
than a certain threshold (see Methods). If a fixation
spot falls within a radius R around a candidate edge, it
is taken as a ‘‘true positive.’’ If a fixation spot of a
saccade trajectory for a randomly chosen, different

stimulus (with the same contour path angle) falls within
a radius R around a candidate edge, it is taken as a
‘‘false positive.’’ Loosely speaking, the integral over the
ROC then quantifies how well fixation spots are
predicted by the model compared to ‘‘chance’’ predic-
tion performance.

In this analysis, we obtained a value of 0.608 for the
LR task, a value of 0.64 for the PA task when the
contour was present, and a value of 0.583 for the PA
task when the contour was absent. These numbers are
significantly different from the value that would be
obtained by chance (i.e., 0.5 with a threshold of 0.525
for p , 0.05). The ROC analysis therefore shows that
the model’s performance is clearly above chance level,
meaning that activation in an association-field model
predicts fixations in a contour detection task well.
However, not all human saccades can be explained on
the basis of the model. Predictions are worse for stimuli
containing only background elements. For these
stimuli, the high percentage of false positives emerging
in a confined stimulus arrangement with a large
number of fixations is problematic, reducing the ROC
integral considerably. Hence, the reported ROC values
may underestimate the true predictive power of the
model. As a consistency check for our initial model fit,
we performed an independent search to identify
parameter sets maximizing the ROC integral values.
This procedure revealed a similar optimal parameter
range as found by the fit using human performance and

Figure 6. Fitting the model to psychophysical performance and eye-movement data. Left panel: Excess correlations quantified by CM

for different models with association-field parameters ra and rb varied independently. The other parameters were held constant at

their optimal values. The color scale indicates how well the model reproduces human excess correlations. Parameter combinations for

which model performance was inferior to human performance are left white. Right panel: ROC integral for different models with

association-field parameters ra and rb varied independently. The color scale indicates how well the model predicts human-fixation

locations.
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excess correlations as the relevant measures (right panel
of Figure 6).

These analyses can be extended to individual
participants as illustrated in the top left panel of
Figure 9 showing ROC integrals for each of the
individual observers over time. Whereas the model
predicts fixations for certain subjects well, for others
its predictions barely exceed chance level. This
analysis also suggests that the maximum predictive
performance for each observer is reached at different
points in (simulation) time. This is reflected by the
absolute values on the time axis, measured in units of
the model’s time constant s, which can be regarded as
an indicator of how many elements the model has
integrated into a potential contour at these points in
time. For example, a time of 2s means that any
combination of three edge elements in the stimulus has
been integrated by evaluating any set of two links

between it. As observers’ maxima range from about 2s
to 5s, it seems that human saccades are best predicted
by identifying contour configurations of three to six
elements. This is also evident from the bottom left
panel of Figure 9, which shows the average ROC
integral across observers as a function of time. The
right panel of Figure 9 demonstrates that the
individual differences in predictive power were pre-
served across experiments. If fixations of an individual
observer were well predicted in the LR task, they were
also well predicted in the PA task (both for contour-
present and contour-absent conditions). For the
stimuli in which a contour was present, we also found
a negative correlation between ROC integral and
mean number of fixations per observer (slopes�0.0053
and�0.0056 for a linear regression with R2¼ 0.36 and
R2 ¼ 0.30 for the LR task and PA task, respectively,
data not shown).

Figure 7. Heat maps of model activity for a subset of the stimuli in the LR task (top row), the contour-present condition in the PA task

(middle row), and the contour-absent condition in the PA task (bottom row). Fixations of all observers are indicated as black stars.

High activity is colored in red, and low activity is displayed in blue. The black lines indicate the vertical and horizontal meridian of the

display. The black circle encloses the region around the target contour from which fixations were removed before comparing the

fixation locations to model predictions. The plots suggest that fixation spots, in general, tend to cluster at locations of high model

activity although, in some cases, participants fixate regions where model activity is low.
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Discussion

We conducted two contour detection tasks to
investigate how saccadic eye movements and contour
integration combine to support a perceptual decision.
In both tasks, observers were free to move their eyes
across the image to search for the contour. The
difficulty of grouping contour elements into a global

percept of a contour was manipulated by the degree of
curvature (path angle) of the contour while the number
of elements in the contour was kept constant. Main
results common to both tasks were

� Gabor fields containing a relatively salient contour
(i.e., with a small path angle) led to small numbers of
eye movements, which each had short fixation
durations, resulting in fast response times. The
opposite was found for Gabor fields containing a
contour with a large curvature, with which large
numbers of fixations and longer fixation durations as
well as long response times were found.

� For all path angles, fixation durations increased
during the course of a trial whereas the time course of
saccade amplitudes depended on whether or not a
potential contour could be perceived. When subjects
indicated that they could not identify a contour
(independently of whether a contour was present or
absent), saccade amplitudes increased over a trial.
When participants reported perceiving a contour,
saccade amplitudes decreased.

� Many fixations could be predicted on the basis of
saliency maps obtained from an association-field
model of contour integration (Ernst et al., 2012). This
suggests that measurements of fixation locations can
be used to probe the observers’ internal representa-
tion of the association field. Fitted model parameters
on the basis of behavioral responses indicated that
saccades compensate for the decrease in contour
saliency usually observed in peripheral vision.

These results will be discussed in more detail in the
following sections.

Figure 8. Distributions of correlation coefficients indicating how

well our model predicts fixation locations for real (blue) and

surrogate (red) data of the contour-absent condition in the PA

task. It can be seen that the distribution of correlation

coefficients for the real data is well separated from the

distribution of coefficients for the surrogate data.

Figure 9. Left panel: ROC integral, indicating the performance of the optimal model in predicting eye fixations in the PA task in the

contour-absent condition for different observers in dependence on simulation time t. Overall performance of the model and the time

interval in which the model has the highest predictive power differ greatly between subjects. ROC integrals averaged across observers

as a function of simulation time are shown in the lower graph. Right panel: Correlation between the ROC integrals of observers in the

LR task and the contour-present and contour-absent conditions of the PA task.
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Effect of contour saliency

The strongest effects of the saliency of the contour
were found on the number of fixations and the overall
reaction time, which both increased with the path angle
of the contour. The highest reaction times and number
of fixations were observed for the condition in which no
salient contour was present in the PA task. In addition,
we found a significant increase in fixation durations
with decreasing contour saliency in both the LR task
and the PA task. As the observed variations in fixation
duration are much smaller, the reaction time is mainly
determined by, and thus proportional to, the number of
fixations. This finding has also been observed in other
studies on visual search (McCarley et al., 2006;
Zelinsky & Sheinberg, 1995).

The effect of path angle on fixation durations is
supported by previous visual search studies showing
increased fixation durations with decreasing target
saliency (Hooge & Erkelens, 1996; Jacobs, 1986). For
instance, Hooge and Erkelens asked observers to search
for a circle among six letter Cs (i.e., rings containing a
gap) and found longer fixation durations when the
distractor elements had smaller gap sizes, i.e., when the
target was less salient. Notably, the increase of fixation
duration for higher path angles in our study existed
from the beginning of a trial, despite the facts that trials
with different contour path angles were randomized
and observers could not know the saliency of the
contour in a given trial in advance. As the background
itself did not reveal any information about the path
angle of the embedded contour, it is an indication that
ongoing contour-integration processes had already
extracted information about the contour (possibly
computing an initial but still incomplete saliency map)
and that this information was used to directly control
the temporal parameters of the eye movements. As a
consequence, more time is spent on examining edge
configurations in the vicinity of a fixation location
when no clear contour candidates are present in the
initial assessment of a stimulus. Hence, fixation
durations seem to be under the immediate control of
the information available in the stimulus, consistent
with evidence showing that the duration of some
fixations increased when the onset of the stimulus at the
saccadic landing position was delayed (Henderson &
Pierce, 2008; Henderson & Smith, 2009). Contrary to
our finding, Hooge and Erkelens observed that target
saliency did not influence fixation durations when it
changed from trial to trial. According to the authors,
the unpredictability of task difficulty prevented ob-
servers from correctly adjusting their fixation durations
because estimation of time needed at fixation was based
on previous trials. A possible reason for the difference
between our findings and those of Hooge and Erkelens
may be the amount of processing required to solve the

task. Our tasks were relatively complex and involved
the grouping of local elements into contours whereas
the study by Hooge and Erkelens involved a much
simpler search task in which the target only differed
from background elements with respect to one feature
(i.e., a gap). In our study, it might be more important to
adjust fixation durations at the beginning of each trial
so that more processing resources can be allocated to
fixation locations in difficult trials. In fact, Hooge and
Erkelens acknowledged the potential importance of the
first fixation as the time when the difficulty of the
current trial is assessed. It should be noted that fixation
durations were approximately the same for correct and
incorrect trials, indicating that fixation duration did not
depend on whether a correct perceptual decision was
made at the end of the trial. Moreover, we found no
difference in fixation durations between the LR task
and the PA task. This is not surprising because the
contour stimuli used in the two tasks were very similar,
requiring the same amount of processing at the fixation
location. Our stimuli did differ between tasks in spatial
constraints related to the location of the contour, which
influenced the amplitude of saccades (see below).

Dynamics of eye movements

Fixation durations increased in the beginning of the
trial, followed by an interval of more stable durations
and a slight decrease toward the end of the trial. This
pattern of change was found across both tasks and all
path-angle conditions. In parallel, the saccade ampli-
tude gradually decreased in the LR task and the PA
task when a contour was perceived, indicating that
observers switched from a global and coarse-scale to a
more local and fine-scale search strategy, presumably
when observers encountered a likely contour candidate.
This interpretation is supported by the observation that
the mean distance of fixation to the target contour
showed a similar decay over time when this contour
was correctly detected. The time course of saccade
amplitude is in line with a number of studies showing
that information about the gist of the scene can be
processed very quickly after the onset of a stimulus and
can guide initial saccades to regions where the target is
likely to be found so that these regions can be further
explored using smaller saccades (Eckstein, Drescher, &
Shimozaki, 2006; Neider & Zelinsky, 2006; Torralba,
Oliva, Castelhano, & Henderson, 2006). It should be
noted that in the LR task, saccade amplitude first
slightly increased during the first fixations. A possible
reason is that observers initially make saccades to
locations close to the fixation symbol present prior to
stimulus presentation and only move toward more
peripheral locations after a few fixations.
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The decrease of saccade amplitude occurring to-
gether with an increase of fixation duration over time
seems to reflect a general coarse-to-fine search strategy
that has been frequently reported in earlier studies
(Antes, 1974; Castelhano, Mack, & Henderson, 2009;
Over et al., 2007; Pannasch et al., 2008; Scinto,
Pillalamarri, & Karsh, 1986; Unema et al., 2005). The
gradual decrease in saccade amplitudes, however, was
not found when observers reported not perceiving a
contour in the PA task. In these trials, observers
continued to make large saccades throughout the
course of the trial. Thus, a coarse-to-fine search process
only seems to occur when a target candidate is found at
the end of the trial. The coarse-to-fine processing
strategy therefore does not seem to be a default
mechanism of the visual system as has been suggested
by others (Over et al., 2007; Pannasch et al., 2008;
Unema et al., 2005). A possible reason for the
discrepancy between our findings and previous studies
reporting a coarse-to-fine time course of saccade
amplitude during visual search (Castelhano et al., 2009;
Mills et al., 2011; Over et al., 2007; Scinto et al., 1986)
could be that in these earlier studies the search target
was eventually found in the majority of the trials.
Presumably, observers made smaller saccades near the
end of a trial to process the image region in which the
target was found in more detail. In contrast, in a visual
search study in which the search target was rarely
detected, observers made large saccades, which re-
mained relatively constant over the course of the trial
(Mills et al., 2011). It was argued that this result was
due to the fact that the images contained no contextual
information that could guide participants’ search
behavior. Observers might have therefore adopted a
strategy of making large saccades to visit as many
locations as possible because more in-depth processing
of the scene did not help in finding the target location.
In our study, it is likely that for trials in which
observers did not perceive a contour there were no
image regions that attracted their attention for further
scrutiny, resulting in observers using a similar strategy
as in the study by Mills et al. Consistent with this idea,
the small increase in saccade amplitude for trials in
which observers reported not perceiving a contour can
be predicted by a random search model that visits
stimulus locations that have not been investigated
before until the whole visual field has been searched
(simulations not shown). In consequence, the slight
increase in saccade amplitude over time probably does
not reflect an active adaptation of the search strategy
but is rather caused by geometrical constraints. The
notion of a rather random search is also supported by
the lower predictive power (R¼ 0.583) of the model for
contour-absent stimuli than for stimuli in which a
contour is present (R ¼ 0.64).

It is important to emphasize that the dynamics of
saccade amplitudes in the PA task did not depend so
much on the actual stimulus content (contour present
or absent) but rather on the percept of observers
(contour perceived or not perceived). A similar
difference in the dynamics of saccade amplitudes was
not found in the LR task. This is presumably due to the
fact that there was always a contour present in the LR
task, causing observers to be ‘‘forced’’ to find a
contour. As a consequence, they are more likely to
‘‘home in’’ on a potential target even if it is not the
contour that was originally hidden in the stimulus. In
the PA task, on the other hand, observers are
‘‘allowed’’ to make the decision that no contour is
present, resulting in trials in which no detailed
processing of particular image regions takes place and
long saccades prevail. Overall, saccade amplitudes were
larger in the LR task than in the PA task. A possible
reason is the existence of a division zone at the center of
the display in the LR task. Observers do not expect
contours in this zone and therefore seldom make eye
fixations toward it. This mental division of the display
in two hemifields may have caused larger saccade
amplitudes when observers jump between hemifields.

In sum, fixation durations appear to be determined
by the saliency of a present contour from the beginning
of the trial and systematically increase over the course
of the trial, resulting in more detailed processing. In
contrast, the time course of saccade amplitudes
depends on the potential locations of the target contour
and whether or not the contour can be perceived,
irrespective of the saliency of a present contour. These
results imply that fixation duration and saccade
amplitude are not controlled by a common mechanism,
as has been suggested by others (Pannasch et al., 2008;
Unema et al., 2005), but instead that task and stimulus
factors influence these parameters differently. A similar
view has been put forward by Mills et al. (2011),
arguing that the increase of fixation duration reflects a
gradual build-up toward a more complex representa-
tion of the image whereas the pattern of change in
saccade amplitude depends on the utility of visual
information available in the display.

Predictive power of contour-integration model

The contour-integration model was calibrated and
tested on independent data. For determining model
parameters, we used the decisions of observers in the
LR task (deciding whether the contour was in the left
or right hemifield). Based on previous findings showing
that the range of parameter values of the association
field reaching or exceeding mean human performance is
very broad (Ernst et al., 2012; Watt et al., 2008), the
model was required to also reproduce correlations in
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human contour detection behavior rather than only
mean human performance, which resulted in a better
parameter-selection criterion. The predictive power of
the model was then quantified on the eye-tracking data,
and we explicitly excluded eye movements in the
vicinity of the target contour (which are indicative of all
correct decisions made). The model was able to predict
observers’ fixation locations well above chance level in
both the LR task and the PA task. As a consistency
check, we compared model performances in reproduc-
ing behavioral decisions and in predicting eye move-
ments. This analysis confirmed that the parameters
found during model calibration are also optimal for
predicting fixation locations. These results strengthen
the validity of our model as it not only reproduces
human response behavior, but also predicts the salient
image locations at which observers allocate their
attention during contour integration. Hence, our
modeling approach seems to be able to reconstruct the
contour-integration process that guides both perceptual
decisions and eye-movement behavior.

The ROC analysis and visual comparison of fixation
locations with model predictions demonstrated that
many but not all fixations were predicted. The worst
performance was actually found for the PA task when
contours were absent, which we attribute to a more
random search strategy (see above). ROC integral
values range between 0.58 and 0.64, which is in the
same range as previously reported values from other
models predicting fixations during image viewing (i.e.,
from 0.55 to 0.70; e.g., Betz, Kietzmann, Wilming, &
König, 2010; Einhäuser, Spain, & Perona, 2008;
Renninger, Verghese, & Coughlan, 2007). Importantly,
such eye-movement models include additional as-
sumptions concerning the sequence of fixation loca-
tions (e.g., winner-take-all principle, inhibition of
return to previously visited fixation locations). Given
that our model is based on a simple association-field
computation producing one saliency map, performance
is surprisingly good compared to that of more complex
models.

Moreover, the model might appear worse than it
actually is because the comparison to the real data
involves several technical difficulties. First, fixations
often do not go directly to a target but instead first go
into the vicinity of a (putative) contour (about 28–38 of
visual angle). Thus, the comparison radius of model
‘‘hot spots’’ to fixations must be large, causing also the
number of false positives in the surrogate data to
increase. Second, model activity evolves over time and
might predict different fixation locations at different
times in the simulation. The reason is the recurrent
nature of the contour-integration process: Over time,
longer and longer contour candidates are found, and
shorter segments decrease in saliency. Nevertheless,
even in the PA task for stimuli without a contour, the

correlation between model predictions and experimen-
tal data was much higher than chance level. This
observation was confirmed by computing the distribu-
tion of correlations between saliency and fixation maps,
which has a distance of d0 ’ 2 to surrogate data. It is
important to note that our goal was not to predict the
temporal sequence of fixations during a trial as this
would require a more complex model that takes into
account a number of assumptions concerning the
planning and monitoring of subsequent eye movements
(see Itti & Koch, 2001; Torralba et al., 2006; Zelinsky &
Sheinberg, 1997 for examples of computational eye-
movement models). Rather, we aimed to test whether a
model providing a saliency map based on a single
association field is able to predict both contour-
detection performance as well as the locations likely to
be fixated over the entire course of a trial.

Differences between observers

There are strong interindividual differences between
observers both in the experimental data (e.g., number
of fixations made) and in the model’s predictive power.
These differences are consistent across data sets (i.e.,
LR task and PA task). Another prominent finding is a
negative correlation between the mean number of
fixations an observer makes and the predictive power of
the model. A possible explanation is that observers
whose data is not well predicted by the model tend to
make eye movements not toward putative contour
candidates with high saliency but to more ‘‘random’’
locations in the visual field. Interestingly, the mean
number of fixations also correlated with the perfor-
mance of observers (slopes 0.014 and 0.009 for a linear
fit with R2¼ 0.16 and R2¼ 0.07 for the LR task and PA
task, respectively, data not shown). These dependencies
suggest that making more eye movements, including
less salient locations in the visual field as well, is a more
successful strategy to find contour targets. A further
difference between individual observers is the model’s
integration time needed until the best match to their
behavior is reached. This difference might indicate that
observers differ in their criteria for contour candidates,
i.e., they may require different lengths of aligned edge
configurations to be salient and to be used as targets for
a saccade.

Saccades compensate for reduced saliency in
peripheral vision

In our procedure to establish the best parameters for
the contour-integration model, we also allowed for an
optional scaling of edge saliency with eccentricity. The
inclusion of this option was based on several visual
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search studies that have reported that detection
performance of a target declines at higher eccentricities
due to loss of spatial resolution (Carrasco, Evert,
Chang, & Katz, 1995; Carrasco & Frieder, 1997;
Carrasco & Yeshurun, 1998; Geisler & Chou, 1995;
Geisler, Perry, & Najemnik, 2006; Scialfa & Joffe,
1998). In addition, the crowding literature shows that it
is particularly difficult to identify a target in the
periphery when it is surrounded by nearby distractor
stimuli (Bouma, 1970; Levi, 2008). Eye movements help
to explore these peripheral target locations and bring
them to the foveal region, thereby reducing crowding
and allowing for detailed spatial processing of these
locations (Harrison, Mattingley, & Remington, 2013;
Vlaskamp & Hooge, 2006; Wertheim, Hooge, Krikke,
& Johnson, 2006). This latter observation is in
agreement with our finding that contour detection
behavior was best explained when scaling of saliency
with eccentricity was absent, indicating that observers’
eye movements can fully compensate for the reduced
contour saliency in peripheral vision.

Conclusions

A crucial task of everyday vision involves the
grouping of spatially separate elements into more
global structures, such as contours. Eye movements
play an important role in the detection of contours,
allowing observers to fixate elements that belong to
potential contours. The aim of our study was to
examine how spatial and temporal aspects of saccadic
eye movements interact with the process of contour
integration. A relatively simple model of contour
integration, based on an association field with param-
eters that best matched human contour-integration
performance, could successfully predict a considerable
amount of fixation locations before the observers found
the contour. This indicates that the observers’ fixations
are drawn to collinear structures, determined by the
saliency map of the model. Model fitting further
revealed that saccadic eye movements equilibrate the
saliency of peripheral contour candidates across the
visual field. As such, our study provides a more
stringent test of the validity of the model by requiring it
to predict the locations where observers fixate during a
contour-integration task rather than requiring it to
merely reproduce contour detection performance.
Moreover, we find that observers’ eye movements are
adjusted to the difficulty of the contour-integration
task: Temporal and spatial oculomotor parameters,
such as individual fixation durations and saccade
amplitudes, follow a specific time course that is
strategically adjusted to the saliency and the percept of
a contour in a given trial. The latter findings have

important implications for current computational
models of eye movement behavior during visual search.
These models are typically used to predict the positions
of fixations but only incorporate dynamical aspects of
eye movements to a limited extent. Our study shows
that spatial and temporal aspects of eye movements can
be used to advance our understanding of visual-
integration processes by providing rich data sets that
allow for the refinement of computational models of
these processes.

Keywords: contour integration, eye movements, fixa-
tion duration, saccade amplitude, association field,
saliency
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