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ABSTRACT
Four different turbulence models were employed to predict the
flow over a wall-mounted Glauert-Goldschmied body. The

models evaluated include: 1) two-layer , 2) shear stress

transport, 3) low-Reynolds number , 4) Spalart-Allmaras,

and 5) . Calculations were performed for both an uncon-
trolled case, and a controlled-flow case which used steady suc-
tion through a slot located at the 65% chord station. The flow
conditions include a freestream Mach number of approximately
0.1, and a chord Reynolds number of just under 1 million. For
each model, the numerical results over predicted the experimen-
tally determined re-attachment length. An examination of
streamwise velocity profiles at several stations downstream of
the trailing edge revealed considerable variation in the predic-
tions of the five turbulence models.

INTRODUCTION
The NASA Langley Research Center Workshop on CFD Valida-
tion of Synthetic Jets and Turbulent Separation Control was
held March 29-31, 2004 in Williamsburg, VA. The purpose of
the workshop was to assess the current capabilities of different
classes of turbulent flow methodologies to predict flow fields
induced by synthetic jets and separation control geometries.
Three different test cases were examined at the workshop: 1)
synthetic jet into a quiescent air, 2) synthetic jet in a crossflow,
and 3) flow over a “hump” model. Solution methodologies rep-
resented include large-eddy simulations, detached-eddy simula-
tions, and Reynolds-averaged Navier-Stokes (RANS)
simulations.

The results presented herein involve RANS solutions to
Case 3. The model represents a Glauert-Goldschmied body

k ε–

k ω–

v
2

f–
1

s.asmedigitalcollection.asme.org on 07/01/2019 Terms of Us
which is geometrically similar to that employed by Seifert and
Pack [1]. The commercial CFD solver Fluent (Fluent, Inc., Leb-
anon, NH) was used to obtain results for five different turbu-

lence models: 1) two-layer , 2) shear stress transport

(SST), 3) low-Reynolds number , 4) Spalart-Allmaras,

and 5) . Experimental data, with which comparisons have
been made, are available on the workshop web site:
http://cfdval2004.larc.nasa.gov/case3.html.

TURBULENCE MODEL DESCRIPTIONS
A brief description of each model appears below, with an
emphasis on describing methodology that often varies within
each class of model. We note that in all cases, the near wall
mesh within the channel region along the lower wall was suffi-
ciently fine so that wall functions were never implemented.

1) The  model

The  model of Launder and Spalding [2] was employed,
with low-Reynolds number modifications for the near-wall
modeling, which combine a two-layer model with wall func-
tions. In the present work, the near wall mesh was fine enough
to resolve the viscous sublayer; consequently the two-layer
model was used and wall functions were never implemented. In

particular, if  (where  and

) the one-equation model of Wolfstein [3] is

employed. In this region, the equation for  is retained, but the

turbulent viscosity is obtained from  where the

length scale is given as  [4]. The turbu-
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lent viscosity determined above is then smoothly blended with
the high Reynolds number turbulent viscosity, , obtained in

the outer region. The dissipation rate in the near wall region is

also specified algebraically as  where the length

scale, , is computed using the same relation used in the speci-

fication of the turbulent viscosity, although with a different

value of the constant, . A blending function is used to ensure

a smooth transition between  specified algebraically in the

inner region, and  computed via the transport equation in the
outer region. The blending is of the form:

[1]

where,

[2]

2) The  model

A low-Reynolds number version of the Wilcox  model [5]
was employed. In particular, a low-Reynolds number correction

to the turbulent viscosity, , is determined as:

[3]

where , , , ,

and . A low-Reynolds number correction is also

applied to the  production term, , (where 

is the production term of turbulence kinetic energy) as:

[4]

where  and . The asymptotic value of 

at the wall is specified as:

[5]

The value of  is determined from:

[6]

where .

3) Spalart-Allmaras model
The Spalart-Allmaras model [6] solves a transport equation for a
variable that is a modified form of the turbulent kinematic vis-
cosity. For the results presented, the deformation tensor, S,
appearing in the production term follows the original model pro-

µt o,

ε k
3 2⁄

lε⁄=

lε

A

ε

ε

µt λµ t o, 1 λ–( )µt i,+=

λ 1
2
--- 1

Rey Rey
*–( )

A
-----------------------------tanh+=

k ω–

k ω–

µt α*ρk ω⁄=

α* α∞
*

α0
* Ret Rk⁄+

1 Ret Rk⁄+
-------------------------------

 
 
 

=

Ret ρk( ) µω( )⁄= Rk 6= α0
* βi 3⁄= α∞

* 1=

βi 0.072=

ω Gω αωGk k⁄= Gk

α
α∞

α*
-------

α0 Ret Rω⁄+

1 Ret Rω⁄+
--------------------------------

 
 =

α∞ 0.52= Rω 2.95= ω

ωw ρ u*( )
2
ω+ µ⁄=

ω+

ω+ min 2500
6

β∞
* y

+( )
2

--------------------,=

β∞
* 0.09=
2  

aded From: https://proceedings.asmedigitalcollection.asme.org on 07/01/2019 Terms of Use
posed by Spalart and Allmaras, which is based on the magnitude

of the vorticity , where  is the mean rate-of-

rotation tensor. Fluent also incorporates a modified definition of
S which includes measures of both rotation and strain tensors in
its definition; however, this modification was not used.

4) Shear stress transport model
The results presented employed a low-Reynolds number version
of the shear stress transport model [7]. In particular, the turbu-
lent viscosity was determined as:

[7]

where  is as defined for the  model and

. In addition, the turbulent Prandtl numbers are

defined as:

[8]

[9]

where  and  are blending functions. In addition,  and

 are constant inner and outer turbulent Prandtl numbers,

respectively. (Similarly for  and .)

5) The  model
The  model, which is not as commonly used as other tur-
bulence models, was developed from a simplified second-
moment closure approach, and involves the solution of three
transport equations for the turbulence quantities , , and ,
and an elliptic equation for near wall and non-local effects [8].
The model extends the standard  model by incorporating
near-wall turbulence anisotropy while retaining a linear eddy
viscosity approximation. The  term is taken as the velocity
scale for the evaluation of the turbulent viscosity; it is propor-
tional to  far from the wall, but in the near-wall region it repre-
sents the velocity fluctuation normal to the surface. Alternative
formulations of the  model, which address deficiencies
identified in the earlier models, have recently been developed.
For instance, the Cokljat et al. [9] formulation, which is imple-
mented in Fluent, utilizes homogeneous boundary conditions on
the elliptic function, , to improve robustness.

SOLUTION METHODOLOGY
As stated previously, the results were computed using the com-
mercial CFD solver Fluent (version 6.18). Fluent employs a
pressure-based finite volume solution procedure to solve the
governing equations on unstructured grids. Pressure-velocity
coupling was accomplished using the SIMPLEC procedure.
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Second-order central differencing was used for the viscous
terms in the transport equations. Interpolation to cell faces for
the convection terms was performed using a third-order QUICK
scheme. In all cases, a steady, two-dimensional formulation was
employed. Solutions obtained using a segregated solver were
considered converged when residuals for each of the equations
(based on an L2 norm) were reduced by a minimum of five
orders of magnitude. Additional iterations were then performed
to confirm iterative convergence.

GEOMETRY and BOUNDARY CONDITIONS
The width of the experimental model was sufficiently large that
the experimental results are nominally two-dimensional. An
outline of the corresponding computational domain is shown in
Fig. 1. Further details of the model geometry are available on
the aforementioned web site.

Relevant free-stream flow conditions are given as

 and . For the flow-control

case, the chamber suction rate was specified as 
(per meter width). For the no-flow-control case, zero mass flow
was specified at the inlet to the suction chamber. However, the
passage to the main channel was left open. The inlet u-velocity
boundary condition was specified using the experimental profile
available on the workshop web site. The v-velocity was set to
zero. Turbulence quantities were derived from the approximate
inlet turbulence intensity (I) of 0.09% (given on web site) and a
turbulence length scale (l) which was defined as 

(where  is the boundary layer thickness at the inlet). In par-

ticular, the inlet turbulence kinetic energy was set to

 where  is the mean flow velocity. The dissipa-

tion rate was computed as . For the Spalart-

Allmaras model, the inlet modified viscosity was specified

using a length scale and turbulence intensity as .

When implementing the  model, the inlet specific dissipa-

tion rate was computed from . In all cases,

zero normal derivative boundary conditions were used at the
outflow plane. No-slip conditions were implemented on both
the upper and lower walls. The model-specific approaches to
implementing wall boundary conditions were described in the
section, Turbulence Model Descriptions. (We note that slip-wall
conditions were also used on the upper wall, with little change
in the resulting solutions. However, the results presented are for
the no-slip conditions.)

Solutions were computed on two different grids. The
coarser grid consisted of 38,720 quadrilateral cells; the finer
grid consisted of 85,760 cells. Grid points were clustered toward

the wall so that in all cases  for the lower wall adjacent
cells. This was achieved by specifying the distance of the first
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grid point above the lower wall as  (where c is
the chord length). The grid spacing along the upper wall was

defined such that , so that wall functions were used. For
both flow-control and no-flow-control cases, the suction cham-
ber was included in the model and contained 2,169 tetrahedral
cells. No grid refinement was performed within the suction
chamber. The grids (either fine or coarse) within the channel
and chamber were identical for both the no-flow-control and
flow-control cases.

RESULTS
We show in Figs. 2 and 3 contours of streamlines in the area of
the separation downstream of the hump, computed using the
two-layer  model. The results provide a global view of the
flow patterns in the separated region, and the extent to which the
flow control decreases the extent of the separation zone. In par-
ticular, the initial point of separation for the flow-control case
moves downstream only a small distance relative to the no-
flow-control results. However, the length of the recirculation
zone is considerably reduced. These results are consistent with
experimental observations.

This behavior is further quantified by examining reattach-
ment points for each model as shown in Table 1. The experi-
mentally determined reattachment points, determined using an

oil film technique, are given as  and

 for the no-flow-control and flow-control
cases, respectively. Consequently, all models over predicted the
length of the separation region for both the no-flow-control and
flow-control cases. In particular, the results indicate that the

 model performed best, predicting the no-flow-control case
to within 3% (chord length) of the experimentally determined
value and the flow-control case to within 7% of the experimen-

tal value. The worst performing model, the  model, was in
error by approximately 19% for the no-flow-control case, and
approximately 30% for the flow-control case.

Shown in Figs. 4 and 5 are line plots of pressure coefficient

vs.  for no-flow-control and flow-control cases, respec-
tively. Experimental data downloaded from the workshop web
site are also included on the figures. For the no-flow-control
case, each model over predicts the experimentally measured
pressure rise over the aft section of the hump geometry (i.e.,
downstream of the suction slot bounded by

). Most models performed in a similar

manner; the exceptions being the  model which predicted a

larger pressure recovery, and the  model which predicted a
smaller pressure recovery. Similar results were found for the
flow-control case, with the  model predicting a larger pres-
sure rise than was predicted by the other models. In general, pre-
dictions were in much better agreement with experimental data
in the regions upstream of the suction slot.

y 0.000018c=

y+ 50≈

k ε–

x c⁄ 1.11 0.003±=

x c⁄ 0.94 0.005±=

k ε–

v
2

f–

x c⁄

0.654 x c⁄ 0.658≤ ≤
k ε–

v
2

f–

k ε–
                                                            Copyright © 2004 by ASME 

e: http://www.asme.org/about-asme/terms-of-use



Downloa
Shown in Figs. 6 and 7 are friction coefficients along the
lower wall for each of the five turbulence models. In each case,
the  model predicted higher levels of the skin friction
coefficient than was predicted by the other four models. Consid-

erable variation in  is also observed in the region of the hump

just upstream of the suction slot.
We show in Figs.  mean streamwise velocity profiles

at  and 1.3, for both no-flow-control and flow-con-
trol cases. Experimental data points downloaded from the work-
shop web site are also included on each of the figures. The
results at  for the no-flow-control case (shown in

Fig. 8) reveal that the  and  models do the best job of
predicting the experimental profile over the majority of bound-
ary-layer thickness. In the near-wall region, the  model
slightly under predicts the magnitude of the streamwise veloc-
ity, while the other models slightly over predict its magnitude.

The results for the case with flow control at  are
shown in Fig. 9, and reveal a degradation in the predictive capa-
bility of each model, relative to the no-flow-control case. In par-
ticular, the models predict reversed flow where, in fact, the
experimental data reveals that this location is downstream of the
reattachment location. Similar results are shown in Figs. 8 and 9
for no-flow-control and flow-control cases, respectively, at

. For the no-flow-control case, the  and 
models clearly perform the best. For all models, the numerical
solutions predict reasonably well the thickness of the boundary

layer. For the flow-control case, the  and  models
somewhat under predict the velocity in the near-wall region.
However, the Spalart-Allmaras and shear stress transport mod-
els considerably under predict the near-wall velocity.

We present in Figs.  both numerical and (work-
shop) experimental results for the normalized Reynolds shear

stress, , at locations  and 1.3. The Spalart-
Allmaras model performs somewhat better than the other mod-
els, particularly at locations within the boundary-layer below
the location of maximum shear stress. For all cases, the 
model significantly over predicts the maximum levels of shear

stress. In addition, the stress levels for the  model do not
recover to zero near the edge of the boundary layer. This diffi-
culty is likely related to the well-known sensitivity of the 
model to free-stream turbulence levels.

CONCLUSIONS
Four different turbulence models were employed to predict the
flow over a wall-mounted Glauert-Goldschmied body. The spe-
cific geometry was a model of the wall-mounted hump which
was included as one of the test cases for the NASA Langley
Research Center Workshop on CFD Validation of Synthetic Jets
and Turbulent Separation Control. The calculations were per-
formed for both an uncontrolled case, and a controlled-flow
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case which used steady suction through a slot. For each model,
the numerical results over predicted the experimentally deter-
mined reattachment length. For the no-flow-control case, differ-
ences between experimental and numerical results in the
predicted re-attachment point ranged from a low of approxi-
mately 3% of the chord length for the standard  model to a

high of 19% for the  model. However, the  model
was one of the least effective models in predicting the surface
pressure coefficient. Overall, we conclude that the  and

 models performed better than either the Spalart-Allmaras,

shear stress transport, or  models. However, considerable
room for improvement in the predictive capability of turbulence
models for this separated flow certainly exists.
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Figure 1. Outline of computational geometry with suction
chamber.

Table 1: Reattachment points in terms of .

Model
No Flow 
Control

Flow Control

1.144 1.008

1.180 1.023

Spalart-Allmaras 1.262 1.130

Shear Stress Transport 1.309 1.117

1.319 1.219

Experiment 1.11 0.94
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Figure 2. Streamlines in the area of the hump. No flow control.
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Figure 3. Streamlines in the area of the hump, with flow control.

Figure 4. Pressure coefficients without flow control.
                                                          Copyright © 2004 by ASME 

: http://www.asme.org/about-asme/terms-of-use



Downl
Figure 5. Pressure coefficients with flow control.
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Figure 6. Friction coefficient without flow control.
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Figure 7. Friction coefficient with flow control.

Figure 8. Contours of mean streamwise velocity at 
without flow control.
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Figure 9. Contours of mean streamwise velocity at 
with flow control.
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Figure 10. Contours of mean streamwise velocity at 
without flow control.
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Figure 11. Contours of mean streamwise velocity at
 with flow control.x c⁄ 1.3=

Figure 12. Reynolds shear stress at  without flow
control.
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Figure 13. Reynolds shear stress at  with flow con-
trol.
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Figure 14. Reynolds shear stress at  without flow
control.
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Figure 15. Reynolds shear stress at  with flow con-
trol.
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