
Package examples for networkDynamic: Dynamic

Extensions for Network Objects (Version 0.2-2)

Ayn Leslie-Cook, Zack Almquist, Pavel N. Krivitsky,
Skye Bender-deMoll, David R. Hunter

Martina Morris, Carter T. Butts

March 7, 2012

THIS IS A DRAFT. Not all authors have approved, and in some situations
the package gives incorrect results.

Contents

1 Introduction 2

2 How to start and end relationships easily 2
2.1 Activating edges . 2
2.2 Extracting a network . 3

3 Birth, Death, Reincarnation and other ways for vertices to en-
ter and leave networks 4
3.1 Activating vertices . 4
3.2 Deactivating elements . 6

4 ‘Spells’: the magic under the hood 6

5 Differences between Discrete and Continuous data 8
5.1 You might be discrete if... 8
5.2 You might be continuous if... 8

6 Show me how it was: extracting static views of dynamic net-
works 10
6.1 Testing for activity . 10
6.2 Listing active elements . 10
6.3 Differences between ‘any’ and ‘all’ aggregation rules 11

7 Dynamic attributes: the next frontier 11

8 Other Coming Attractions 12

1

1 Introduction

The networkDynamic package provides support for a simple family of dynamic
extensions to the network (Butts, 2008) class; these are currently accomplished
via the standard network attribute functionality (and hence the resulting ob-
jects are still compatible with all conventional routines), but greatly facilitate
the practical storage and utilization of dynamic network data. The dynamic ex-
tensions are motivated in part by the need to have a consistent data format for
exchanging data, storing the inputs and outputs to relational event models, sta-
tistical estimation and simulation tools such as ergm (Hunter et al., 2008b)and
stergm, and dynamic visualizations.

The key features of the package provide basic utilities for working with net-
works in which:

� Vertices have ‘activity’ or ‘existence’ status that changes over time (they
enter or leave the network)

� Edges which appear and disappear over time

� Arbitrary attribute values attached to vertices and edges that change over
time

� Meta-level attributes of the network which change over time

� Both continuous and discrete time models are supported, and it is possible
to effectively blend multiple temporal representations in the same object

In addition, the package is primarily oriented towards handling the dynamic
network data inputs and outputs to network statistical estimation and sim-
ulation tools like statnet and stergm. This document will provide a quick
overview and use demonstrations for some of the key features. We assume that
the reader is already familiar with the use and features of the network package.

Note: Although networkDynamic shares some of the goals (and authors) of
the experimental and quite confusable dynamicNetwork package (Bender-deMoll
et al., 2008), they are are incompatible.

2 How to start and end relationships easily

A very quick condensed example of starting and ending edges to show why it is
useful and some of the alternate syntax options.

2.1 Activating edges

The standard assumption in the network package and most sociomatrix rep-
resentations of networks is that an edge between two vertices is either present
or absent. However, many of the phenomena that we wish to describe with
networks are dynamic rather than static processes, having a set of edges which
change over time. In some situations the edge connecting a dyad may break

2

and reform multiple times as a relationship is ended and re-established. The
networkDynamic package adds the concept of ‘activation spells’ for each element
of a network object. Edges are considered to be present in a network when they
are active, and treated as absent during periods of inactivity. After a relation-
ship has been defined using the normal syntax or network conversion utilities, it
can be explicitly activated for a specific time period using the activate.edges

methods.

> library(networkDynamic) # load the dynamic extensions

> triangle <- network.initialize(3) # create a toy network

> add.edge(triangle,1,2) # add an edge between vertices 1 and 2

> add.edge(triangle,2,3) # add a more edges

> add.edge(triangle,3,1)

> activate.edges(triangle,at=1) # turn on all edges at time 1 only

> activate.edges(triangle,onset=2, terminus=3,

+ e=get.edgeIDs(triangle,v=1,alter=2))

> activate.edges(triangle,onset=4, length=2,

+ e=get.edgeIDs(triangle,v=2,alter=3))

The onset and terminus parameters giving the starting and ending point
for the activation period (more on this and the at syntax later). Notice that the
method refers to the relationship using the e argument to specify the ids of the
edges to activate. To be safe, we are looking up the ids using the get.edgeIDs

method with the v and alter arguments indicating the ids of the vertices in-
volved in the edge. After the activity spells have been defined for a network, it
is possible to extract views of the network at arbitrary points in time using the
network.extract function in order to calculate traditional graph statistics.

2.2 Extracting a network

> degree<-function(x){as.vector(rowSums(as.matrix(x))

+ +colSums(as.matrix(x)))} # handmade degree function

> degree(triangle) # degree of each vertex, ignoring time

[1] 2 2 2

> degree(network.extract(triangle,at=0))

[1] 0 0 0

> degree(network.extract(triangle,at=1)) # just look at t=1

[1] 2 2 2

> degree(network.extract(triangle,at=2))

[1] 1 1 0

3

> degree(network.extract(triangle,at=5))

[1] 0 1 1

> degree(network.extract(triangle,at=10))

[1] 0 0 0

At time 1, the vertex degrees match what would be expected for the ‘timeless’
network, but for the other time points the degrees are quite different. When the
network was sampled outside of the defined time range (at 0 and 10) it returned
degrees of 0, suggesting that no edges are present at all. It may be helpful to
plot the networks to help understand what is going on. Figure 1 (page 5) shows
the result of the standard plot command (plot.network.default) for the triangle,
as well as plots of the network at specific time points.

> par(mfrow=c(2,2)) #show multiple plots

> plot(triangle,main='ignoring dynamics',displaylabels=T)

> plot(network.extract(

+ triangle,onset=1,terminus=2),main='at time 1',displaylabels=T)

> plot(network.extract(

+ triangle,onset=2,terminus=3),main='at time 2',displaylabels=T)

> plot(network.extract(

+ triangle,onset=5,terminus=6),main='at time 5',displaylabels=T)

3 Birth, Death, Reincarnation and other ways
for vertices to enter and leave networks

3.1 Activating vertices

Many network models need the ability to specify activity spells for vertices in
order to account for changes in the population due to ‘vital dynamics’ (births
and deaths) or other types of entrances and exists from the sample popula-
tion. In networkDynamc activity spells for a vertex can be specified using the
activate.vertices methods. Like edges, vertices can have multiple spells of
activity. If we build on the triangle example:

> activate.vertices(triangle,onset=1,terminus=5,v=1)

> activate.vertices(triangle,onset=1,terminus=10,v=2)

> activate.vertices(triangle,onset=4,terminus=10,v=3)

> network.size(network.extract(triangle,at=1)) # how big is it?

[1] 2

> network.size(network.extract(triangle,at=4))

[1] 3

4

ignoring dynamics

1

2

3

at time 1

1

2

3

at time 2

1

2

3

at time 5

1

2

3

Figure 1: Network plot of our trivial triangle network

5

> network.size(network.extract(triangle,at=5))

[1] 2

Using the network.size function on extracted networks shows us that speci-
fying the activity ranges has effectively changed the sizes (and corresponding
vertex indices, more on that later) of the network. Notice also that we’ve cre-
ated contradictions in the definition of this hand-made network, for example
stating that vertex 3 isn’t active until time 4 when earlier we said that there
were ties between all nodes at time 1. The package does not prohibit these kinds
of paradoxes, but it does provide a utility to check for them.

> network.dynamic.check(triangle)

Problems detected with edge activity matrices.

$problem.vertexIDs

integer(0)

$problem.edgeIDs

[1] 2 3

3.2 Deactivating elements

In this case, we can resolve the contradictions by explicitly deactivating the
edges involving vertex 3:

> deactivate.edges(triangle,onset=1,terminus=4,

+ e=get.edgeIDs(triangle,v=3,neighborhood="combined"))

> network.dynamic.check(triangle)

$problem.vertexIDs

integer(0)

$problem.edgeIDs

integer(0)

The deactivation methods for vertices,deactivate.vertices, works the same
way, but it accepts a v= parameter to indicate which vertices should be modified
instead of the e= parameter.

4 ‘Spells’: the magic under the hood

In which we provide a brief glimpse into the underlying data structures.
There are many possible ways of representing change in an edgeset over time.

Several of the most commonly used are:

� A series of networks or network matrices representing the state of the
network at sequential time points

6

� An initial network and a list of edge toggles representing changes to the
network at specific time points

� A collection of ‘spell’ intervals giving the onset and termination times of
each element in the network

This package uses the spell representation, and stores the spells as perfectly
normal but specially named active attributes on the network. These attributes
are a 2-column spell matrix in which the first column gives the onset, the second
the terminus, and each row defines an additional activity spell for the network
element. For more information, ?activity.attribute. As an example, to peek
at the spells defined for the vertices:

> get.vertex.attribute(triangle,'active',unlist=F) # vertex spells

[[1]]

[,1] [,2]

[1,] 1 5

[[2]]

[,1] [,2]

[1,] 1 10

[[3]]

[,1] [,2]

[1,] 4 10

> get.edge.attribute(triangle$mel,'active',unlist=F) # edge spells

[[1]]

[,1] [,2]

[1,] 1 1

[2,] 2 3

[[2]]

[,1] [,2]

[1,] 4 6

[[3]]

[,1] [,2]

[1,] Inf Inf

Notice that the first edge has a 2-spell matrix where the first spell extends
from time 1 to time 1 (a zero-duration or instantaneous spell), and the second
from time 2 to time 3 (a ‘unit length‘ spell. More on this below). The third
edge has the interesting special spell c(Inf,Inf) defined to mean ‘never active‘
which was produced when we deleted the activity associated with the 3rd edge.

7

Within this package, spells are assumed to be ‘right-open’ intervals, meaning
that the spell includes its lower bound but not its upper bound. For example,
the spell [2,3) covers the range between t>=2 and t<3. Another way of thinking
of it is that terminus=‘until’, the spell ranges from 2 until 3, but does not include
3.

Although it would certainly be possible to directly modify the spells stored
in the active attributes, it is much safer to use the various activate. and
deactivate methods to ensure that the spell matrix remains in a correctly de-
fined state. The goal of this package is to make it so that it rarely necessary
to work with spells, or even worry very much about the underlying data struc-
tures. It should be possible to use the provided utilities to convert between the
various representations of dynamic networks. However, even if the details of
data structure can be ignored, it is still important to be very clear about the
underlying temporal model of the network you are working with.

5 Differences between Discrete and Continuous
data

Its 2 am on Tuesday. Do you know what your temporal model is? Does 2am
mean 2:00 am, or from 2:00 to 2:59:59? And other existential questions. The
differences between at and onset, terminus syntax.

There are two different approaches to representing time when measuring
something.

5.1 You might be discrete if...

The ‘discrete’ model thinks of time as equal chunks, ticks, discrete steps, or
panels. To measure something we count up the value of interest for that chunk.
Time is a series of integers. We can refer to the 1st step, the 365th step, but
there is no concept of ordering of events within steps and we can’t have fractional
steps. A discrete time simulation can never move its clock forward by half-a-
tick. As long as the steps can be assumed to be the same duration, there is no
need to worry about what the duration actually is. This model is very common
in the traditional social networks world. Egocentric survey data may aggregated
into a set of weekly network ‘panels’, each of which is though of as a discrete
time step in the evolution of the network. We ignore the exact timing of what
minute each survey was completed, so that we can compare the week-to-week
dynamics.

5.2 You might be continuous if...

In a ‘continuous’ model, measurements are thought of as taking place and an
instantaneous point in time (as precisely as can be reasonably measured). Events
can have specific durations, but they will almost never be integers. Instead of
being present in week 1 and absent in week 2 a relationship starts on Tuesday

8

at 7:45pm and ends on Friday at 10:01am. Continuous time models are useful
when the the ordering of events is important. It still may be useful to represent
observations in panels, but we must assume that the state of the network could
have changed between our observation at noon on Friday of week 1 and noon
on Friday of week 2.

Although underlying data model for the networkDynamic package is contin-
uous time, discrete time models can easily be represented. But it is important to
be clear about what model you are using when interpreting measurements. For
example, the activate.vertex methods can be called using an onset=t and
terminus=t+1 style, or an at=t style (which converts internally to onset=t ,
terminus=t). Here are several ways of representing the similar time information
for an edge lasting two time steps which give different results:

> disc <- network.initialize(2)

> disc[1,2]<-1

> activate.edges(disc,onset=4,terminus=6) # terminus = t+1

> is.active(disc,at=4,e=1)

[1] TRUE

> is.active(disc,at=5,e=1)

[1] TRUE

> is.active(disc,at=6,e=1)

[1] FALSE

> cont <- network.initialize(2)

> cont[1,2]<-1

> activate.edges(cont,onset=4,terminus=5)

> is.active(cont,at=4,e=1)

[1] TRUE

> is.active(cont,at=5,e=1)

[1] FALSE

> cont <- network.initialize(2)

> cont[1,2]<-1

> activate.edges(cont,onset=3.0,terminus=5.0001)

> is.active(cont,at=4,e=1)

[1] TRUE

> is.active(cont,at=5,e=1)

[1] TRUE

9

> point <- network.initialize(2) # continuous waves

> point[1,2]<-1

> activate.edges(point,at=4)

> activate.edges(point,at=5)

> is.active(point,at=4,e=1)

[1] TRUE

> is.active(point,at=4.5,e=1) # this doesn't makes sense

[1] FALSE

> is.active(point,at=5,e=1)

[1] TRUE

6 Show me how it was: extracting static views
of dynamic networks

Working with spells correctly can be complex, so the package provides utility
methods for dynamic versions of common network operations. View the help
page at ?network.extensions for full details and arguments.

6.1 Testing for activity

As is probably already apparent, the activity range of a vertex, set of vertices,
edge, or set of edges can be tested using the is.active method.

> is.active(triangle, onset=1, length=1,v=2:3)

[1] TRUE FALSE

> is.active(triangle, onset=1, length=1,e=get.edgeIDs(triangle,v=1))

[1] TRUE

6.2 Listing active elements

Depending on the end use, a more convenient way to express these queries might
by to use utility functions to retrieve the ids of the network elements of interest
that are active for that time range.

> get.edgeIDs.active(triangle, onset=2, length=1,v=1)

[1] 1

> get.neighborhood.active(triangle, onset=2, length=1,v=1)

10

[1] 2

> is.adjacent.active(triangle,vi=1,vj=2,onset=2,length=1)

[1] TRUE

These methods of course accept the same additional arguments as their network
counterparts.

6.3 Differences between ‘any’ and ‘all’ aggregation rules

In addition to the point-based (at syntax) or unit interval (length=1) activ-
ity tests and extraction operations used in most examples so far, the methods
also support the idea of a ‘query spell’ specified using the same onset and ter-
minus syntax. So it is also possible (assuming it makes sense for the network
being studied) to use length=27.52 or onset=0, terminus=256 Querying with
a time range does raise an issue: how should we handle situations where edges
or vertices have spells that begin or end part way through the query spell? Al-
though other potential rules have been proposed, the methods currently include
a rule argument that can take the values of any (the default) or all. The for-
mer returns elements if they are active for any part of the query spell, and the
later only returns elements if they are active for the entire range of the query
spell.

> query <- network.initialize(2)

> query[1,2] <-1

> activate.edges(query, onset=1, terminus=2)

> is.active(query,onset=1,terminus=2,e=1)

[1] TRUE

> is.active(query,onset=1,terminus=3,rule='all',e=1)

[1] FALSE

> is.active(query,onset=1,terminus=3,rule='any',e=1)

[1] TRUE

7 Dynamic attributes: the next frontier

Clearly an essential feature of dynamic networks is the ability to express time-
varying attributes for networks, vertices (changing properties) and edges (chang-
ing weights). The authors of this package have completed a specification and
draft implementation of dynamic attributes, and will include dynamic attribute
features and utility methods in an upcoming release of networkDynamic.

11

8 Other Coming Attractions

ndtv: Network Dynamic Temporal Visualization package – like TV for your
networks. The ndtv package creates network animations of dynamic networks
stored in the networkDynamic format. Provides the tools developed in (Bender-
deMoll et al., 2008) but with R methods for building, controling, and rendering
out animations.

References

Bender-deMoll, S., Morris, M. and Moody, J. (2008) Prototype Packages for
Managing and Animating Longitudinal Network Data: dynamicnetwork and
rSoNIA Journal of Statistical Software 24:7.

Newcomb T. (1961) The acquaintance process New York: Holt, Reinhard and
Winston.

Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008b). ergm:
A Package to Fit, Simulate and Diagnose Exponential-Family Models for Net-
works. Journal of Statistical Software, 24(3). http://www.jstatsoft.org/
v24/i03/.

Butts CT (2008). network: A Package for Managing Relational Data in R. Jour-
nal of Statistical Software, 24(2). http://www.jstatsoft.org/v24/i02/.

12

http://www.jstatsoft.org/v24/i03/
http://www.jstatsoft.org/v24/i03/
http://www.jstatsoft.org/v24/i02/

	Introduction
	How to start and end relationships easily
	Activating edges
	Extracting a network

	Birth, Death, Reincarnation and other ways for vertices to enter and leave networks
	Activating vertices
	Deactivating elements

	`Spells': the magic under the hood
	Differences between Discrete and Continuous data
	You might be discrete if...
	You might be continuous if...

	Show me how it was: extracting static views of dynamic networks
	Testing for activity
	Listing active elements
	Differences between `any' and `all' aggregation rules

	Dynamic attributes: the next frontier
	Other Coming Attractions

