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Abstract—In this paper, a new framework for target tracking
in a wireless sensor network using particle filters is proposed.
Under this framework, the imperfect nature of the wireless
communication channels between sensors and the fusion center
along with some physical layer design parameters of the network
are incorporated in the tracking algorithm based on particle
filters. We call this approach “channel-aware particle filtering.”
Channel-aware particle filtering schemes are derived for different
wireless channel models and receiver architectures. Furthermore,
we derive the posterior Cramér—Rao lower bounds (PCRLBs) for
our proposed channel-aware particle filters. Simulation results
are presented to demonstrate that the tracking performance of the
channel-aware particle filters can reach their theoretical perfor-
mance bounds even with relatively small number of sensors and
they have superior performance compared to channel-unaware
particle filters.

Index Terms—Channel-aware signal processing, particle filters,
posterior Cramér-Rao lower bound, wireless communication
channels, wireless sensor networks (WSNs).

I. INTRODUCTION

WIRELESS sensor network (WSN) employs low-cost

densely deployed sensors that have very limited re-
sources, such as energy and communication bandwidth. They
also have limited sensing and communication ranges. There-
fore, the issues that are related to these limitations need to be
investigated before using WSNs in a specific application.

In this paper, we focus on target tracking using low-cost and
low-power wireless sensors that are densely deployed in an area
of interest. These sensors process their raw observations, quan-
tize them, and send their quantized measurements to a central
processing node, which is called the fusion center, through noisy
and fading wireless channels. The fusion center then processes
these received measurements to perform the tracking task. A
generic system framework is illustrated in Fig. 1.

In this framework, there are unavoidable constraints that
should not be neglected and need to be analyzed. First of all,
wireless communication channels between sensors and the
fusion center are not ideal. Second, sensors have inherent
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Fig. 1. Generic system model. s; is the raw sensor measurement of the ¢th
sensor, mn; is the quantized sensor measurement, and s, is the channel-cor-
rupted sensor measurement received by the fusion center from the ¢th sensor,
where¢ = 1,..., N.

limitations imposed by the current technology in terms of
sensing range, computational capability and energy. Although
some work has been done in the past to solve target localization
and tracking problems with wireless sensors [1]-[8], to the
best of our knowledge, existing tracking algorithms do not
address both of these limitations at the same time. In [1]-[3],
the signals received by the fusion center are modeled as analog
measurements corrupted by white Gaussian noise (WGN). This
scheme is not practical for many wireless sensor networks since
communication within the network has to be kept limited to
conserve available resources, such as energy and bandwidth. In
[4]-[6], particle filtering algorithms for target tracking using
quantized data in WSNs have been proposed, however wireless
channel imperfections have not been considered as part of the
tracking problem. In [7] and [8], target localization methods
have been developed based on quantized sensor data again
assuming perfect communication channels between sensors
and the fusion center. In our recent work [9], we introduced
a channel-aware approach for the problem of target localiza-
tion using WSNs. The issue of communication constraints
in the context of distributed detection has been investigated
in [10]-[16]. However, except for our previous work in [17],
communication constraints in the context of tracking have not
been analyzed explicitly in the literature. In a target tracking
scenario where a large number of wireless sensors are deployed
in a particular area, we can not always guarantee a line-of-sight
between sensors and the fusion center. Therefore, wireless
communication is carried out via long-range communication
schemes rather than bluetooth or infrared, resulting in lower
fidelity. Furthermore, in order to use the available resources ef-
ficiently, each sensor has to transmit a low-power signal at a low
data rate to communicate with the fusion center. This motivates
the development of efficient tracking algorithms incorporating
the imperfect nature of communication channels as well as
based on the constraints of limited resources in a WSN. In fact,
we show in this paper that, for a given power requirement and a
given number of sensors, channel-aware data processing at the
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fusion center can significantly mitigate the degradation in the
tracking performance resulting from non-ideal communication
channels without adding any communication overhead to the
system.

Tracking a moving target using a WSN [1]-[5] is a typical
nonlinear sequential estimation problem. With the recent ad-
vances in computation power, application of Monte Carlo based
statistical signal processing, i.e., particle filtering, for sequential
estimation of unknown states of a nonlinear dynamical system
has become quite popular and practical. Based on the fact that
sequential Monte Carlo methods enable us to incorporate any
statistical information we have about the specific system directly
in the tracking algorithm, we propose a new target tracking ap-
proach based on sequential Monte Carlo signal processing, more
specifically particle filtering, incorporating the constraints re-
lated to WSNs. To be more specific, as an extension to our
previous work in [17], where each channel link between sen-
sors and the fusion center was modeled as a binary symmetric
channel (BSC), here we create a more general framework where
we develop different tracking approaches using particle filters
and compute their corresponding posterior Cramér—Rao lower
bounds (PCRLBs) incorporating various physical layer parame-
ters, namely realistic wireless fading channel statistics as well as
different reception and decoding strategies. Note that although
our tracking approach is more general than the one that deals
only with channel imperfections, we refer to our approach as
“channel-aware” since it incorporates channel statistics whereas
the classical approach which assumes perfect channels will be
referred to as “channel-unaware” throughout this paper.

The organization of this paper is as follows. We formulate
the problem of target tracking using quantized data in a WSN
in Section II. In Section III, we give a brief introduction to
Bayesian sequential estimation and provide the motivation be-
hind using particle filtering for our tracking problem. We in-
troduce our channel-aware approach and derive three different
channel-aware particle filtering algorithms in Section IV. The
first tracking algorithm is developed for a hard-decoding link
design. It incorporates the bit error probabilities of the channel
which is modeled as a binary channel (BC) (note that although
BSC is a very general model, it is only a special case of BC).
The second and the third tracking algorithms are specifically
developed for soft-decoding link designs assuming Rayleigh
fading channels with phase coherent and phase noncoherent
reception, respectively. In Section V, we present the method-
ology for PCRLB computation and derive the PCRLBs for our
channel-aware particle filters. In Section VI, simulation results
are presented to assess the performance of our developed par-
ticle filtering algorithms. We also evaluate the impact of phys-
ical layer on tracking performance by comparing the perfor-
mance of our algorithms with each other under identical condi-
tions. Finally, concluding remarks are presented in Section VII.

II. PROBLEM FORMULATION

As mentioned in the previous section, the problem we seek
to solve is tracking a moving target in a wireless sensor net-
work environment where densely deployed homogeneous and
low-cost wireless sensors are employed, and the channels are

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 5, MAY 2009

nonideal. All the sensors report to a fusion center which sequen-
tially estimates the target state, i.e., the position and the velocity
of the target, based on received local sensor data. We assume that
the sensors are stationary and the fusion center has perfect infor-
mation about the locations of sensors. Note that the deployment
scheme of sensors is not an issue since our approach is capable
of handling any kind of deployment, e.g., random, in a grid or
in some other deterministic manner, conditioned on the fact that
location information for each sensor is available at the fusion
center.

A. Target Dynamic Model

We consider a single target moving in a two-dimensional
Cartesian coordinate plane. Target dynamics is defined by the
4-dimensional state vector

e =[x mr e un]” (1)

where &, and 7, denote the coordinates of the target in the
horizontal and the vertical directions with the corresponding ve-
locities & and 7, respectively, at time k. The superscript T’
denotes the transpose operation. Target motion is defined by the
following white noise acceleration model [18]:

%y =F X1 + 0y 2)
where
1 0 7T 0
~ 01 0 T
F= 0 0 1 0 &)
0 0 0 1

and vy, is the process noise which is assumed to be white, zero-

mean and Gaussian with the following covariance matrix
g T2

3 . 2 2
. o T o =
_ 3 2 4
Q q TTZ 0 T 0 @
o L o T

2
where T" and q denote the time interval between adjacent sensor
measurements and the process noise parameter, respectively. It
is assumed that the fusion center has perfect information about
the target state-space model (2) as well as the process noise
statistics.

B. Measurement Model

The target is assumed to be any source that follows the power
attenuation model provided below. At any given time k, the
signal power received at the ¢th sensor is the following:

n
Py = Py dg
(dix)"
where Py, denotes the target signal power at a reference distance
of dy from the target at time k, n is the signal decay exponent,
and d;, is the distance between the target and the +th sensor:

dire = /(& — &) + (0 — mure) 2. (6)

In (6), (&;, ;) and (&, 1er ) are the coordinates of the ith sensor
and the target at time k, respectively. The received signal at each
sensor is given by

(&)

Sik = ik + Wik @)

Authorized licensed use limited to: Syracuse University Library. Downloaded on April 16, 2009 at 18:03 from IEEE Xplore. Restrictions apply.



OZDEMIR et al.: TRACKING IN WIRELESS SENSOR NETWORKS USING PARTICLE FILTERING

where a;;, = +/Pj is the true measurement, and w;y, is the
noise term modeled as zero mean additive white Gaussian
noise (AWGN), i.e., wjr ~ N(0,02), which represents the
cumulative effects of sensor background noise and the mod-
eling error of signal parameters. Although Py is stationary, it
is often not constant and subject to small variations. Therefore,
the dynamics of P}, can be modeled as

Py = Pi—1+ b ®)

where [ is the zero mean AWGN, i.e., B ~ N (0, 0/2,). Since
Py, is modeled as a dynamic process, the original state vector Xy,
given in (1) can be augmented with Py to form the augmented
state vector

Then the augmented state dynamic model can be expressed as
xr = F xp_1 + vy, where v, ~ A (0,Q) and

23] o-[2 )
0 F 0 Q

The general assumptions we make about our measurement
model are as follows. Without loss of generality, the reference
distance d and the signal decay exponent n are assumed to be
unity and 2, respectively. The fusion center is assumed to have
all the information about the noise statistics. Note that the signal
decay exponent n and the sensor noise statistics can be empir-
ically determined off-line for the system under consideration.
We also assume that sensor noises w;; as well as the wireless
links between the sensors and the fusion center are independent
across sensors. Although it is not required for our approach to
work, the sensors are assumed to have identical noise variances
for simplicity.

It was previously mentioned in Section I that the received
signal s;, at each sensor is locally quantized before being sent
to the fusion center. The main reason for quantization is to de-
crease the amount of communication so that the energy con-
sumption is reduced. The quantized observation model at sensor
1 is given by

(10)

0, Yio < Sik < Vil
1, Vi1 < Sik < Vi2
. . (11)

L—-1, 7ir-1) <Ssik <vL

where m;; is the quantized measurement of the sth sensor
and 7,0, - - ., are the predetermined thresholds for a K =
log, L bit quantizer. Note that ;0 = —oo and v,z = o0.
Based on (11), the transmitted observations from sensors to
the fusion center can be denoted in vector form as M; =
[mix Mok mni]T, where N is the total number of
sensors deployed in the area of interest. If one neglects the
effects of unreliable wireless channels between sensors and
the fusion center, then the fusion center could be assumed to
receive an exact replica of M, in order to perform the assigned
task, which is target tracking in this paper. However, this as-
sumption is not always valid for a WSN because of the reasons
explained in Section I, i.e., the channels between wireless
sensors and the fusion center are unreliable. Let Y, denote

1989

the observation vector at the fusion center after transmission
through the imperfect channels

Yy = [ax  map k)" (12)
where ;5 s are the quantized sensor measurements corrupted
by the imperfect wireless channels. Multiplicative fading due to
multipath effects and additive channel noise are the main fac-
tors that cause corruption which will be discussed in more de-
tail in Section IV. Based on the information contained in Yy,
the fusion center needs to sequentially estimate the target state
x1.. Note that the measurement model is highly nonlinear due to
quantization at the local sensors and corruptions from the wire-
less channels.

III. NONLINEAR NON-GAUSSIAN BAYESIAN SEQUENTIAL
ESTIMATION USING PARTICLE FILTERING

Bayesian sequential estimation, also known as Bayesian fil-
tering, is the most commonly used framework for tracking appli-
cations. In Bayesian filtering, the tracking algorithm recursively
calculates the belief in the state x; based on the observations
Y from time 1 to time %, namely the posterior distribution (or
the filtering distribution) p(xx | Y1.x), where Y., = {Y,,i =
1,...,k}. In order to recursively calculate the posterior distri-
bution, we need to have three distributions [21], namely the ini-
tial state distribution p(xg) at time 0, the state transition model
p(xx|xk—1) which represents the state dynamics and the like-
lihood function p(Yg|xx) which depends on the observation
model.

It is known that Kalman filter provides an optimal solution to
the Bayesian sequential problem for linear/Gaussian systems.
In the case of nonlinear/Gaussian systems, extended Kalman
filter (EKF) can be used to provide a suboptimal solution by
linearizing the nonlinear state dynamics and/or measurement
equations locally. However, it has been shown [5] that, even
for linear/Gaussian systems, when the sensor measurements are
quantized, EKF fails to provide an acceptable performance es-
pecially when the number of quantization levels is small. For
our tracking problem, in addition to the nonlinear mapping from
the target state to the sensor observations (7), the final measure-
ment model at the fusion center consists of both quantized and
channel-corrupted sensor observations (12) resulting in a highly
nonlinear and non-Gaussian system. Therefore, we propose to
employ a particle filter to solve our Bayesian sequential esti-
mation problem. It is known that particle filtering provides an
approximate solution to the classical Bayesian sequential es-
timation problem by approximating the posterior distribution
p(xx| Y1) using a set of weighted samples, also called parti-
cles, {x\7) w i %) denotes the weight of the par-
ticle xg ) attime k and M is the total number of particles [21]. In
this paper, we employ sequential importance resampling (SIR)
particle filtering algorithm [21] to solve our nonlinear Bayesian
sequential estimation problem. Although the SIR particle filter
can be inefficient and sensitive to outliers [21] depending on
the specific problem, we will show in Section VI that its perfor-
mance is quite satisfactory for our tracking problem, or in other
words its performance is very close to its theoretical bound,

where w
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namely the PCRLB. The advantage of the SIR particle filter is
that it is very easy to implement and computationally more effi-
cient compared to other variants of particle filters. Here, we do
not discuss the details of the algorithm for the sake of brevity and
refer the interested reader to [21] and [22]. The initial set of par-
ticles is drawn from a prior distribution 7 (x¢) which is assumed
to represent p(Xg ). The state-space distribution p(xy|xx—1) that
is needed for the prediction stage is derived by using (2). There-
fore, the only remaining distribution that has to be calculated for
the sequential estimation problem is the observation likelihood
function p(Yk|x§€J )) which depends on both the sensor mea-
surement model and the characteristics of physical layer of the
WSN including the statistical properties of the wireless chan-
nels between sensors and the fusion center. The calculation of
p(Yk|x§€] )) is investigated under various physical-layer archi-
tectures in Section IV.

IV. PARTICLE FILTERING WITH PHYSICAL-LAYER
CONSIDERATIONS

The system designer has to make a choice about how to de-
sign the physical (link) layer, i.e., the communication archi-
tecture, of a WSN and different design choices result in dif-
ferent performances for a specific application. The functions of
the physical layer that need to be designed include modulation
schemes, data encryption techniques, transceiver architectures
and decoding schemes at the receiver. In this paper, we con-
sider only two physical layer functions, where a design choice
is made. The first one is the decoding scheme at the fusion center
and there are only two choices. The link layer can be designed
such that the fusion center either makes a hard decision for
each bit (or data symbol) before performing the tracking task
or uses received measurements directly to track the target. The
former and the latter link layer designs are called hard-decoding
link and soft-decoding link, respectively. For a hard-decoding
link, if the communication channel statistics and the parame-
ters of the network physical layer are known, the probability
of making a wrong decision can be calculated and the corre-
sponding channel can be modeled as a binary-channel (BC).
However, for a soft-decoding link, both the knowledge of the
channel statistics and the physical layer parameters need to be
incorporated directly in the tracking algorithm since no hard de-
cision is made beforehand. In this paper, we analyze the system
assuming BCs for hard-decoding links and Rayleigh flat fading
channels for soft-decoding links as in [13], between sensors and
the fusion center. As for the second link layer function to be
designed, we consider the receiver architecture at the fusion
center. We assume two reception techniques which are phase
coherent and phase noncoherent reception. Note that the former
reception technique requires phase information of the received
signal whereas the latter does not. As a summary, we develop
three different target tracking algorithms based on particle fil-
ters and derive their performance bounds (PCRLBs) for three
different physical-layer designs, namely, the BC (hard-decoding
link with either coherent or noncoherent reception), Rayleigh
fading channel (soft-decoding link) with coherent reception, and
Rayleigh fading channel (soft-decoding link) with noncoherent
reception.
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Fig. 2. Binary channel.

Throughout this section, we omit the time index k£ in our
derivations unless otherwise required. For a given time step, we
can use the sensor observation model in (7) with the Gaussian
noise assumption and the quantization model in (11), to de-
rive p(m;|x), the probability of a quantized sensor measurement
taking a specific value conditioned on the target state:

p (milx)

13)

Yi(L—1)—%i iL— @ —
%)—Q(%), m;=L—1

where Q( -) is the complementary distribution function of the
standard Gaussian distribution defined as

oo 1 B
)= e
A= [ —=
Note that a; in (13) implicitly includes (5) and (6), so it should
be noted that the sensor observation model p(m;|x) is a function
of the target’s signal power and the target’s position, i.e., the first
three elements of the augmented target state vector x in (9).

2

ISl

dt. (14)

A. Hard-Decoding Binary Channel

Fig. 2 depicts a general binary channel model with bit error
probabilities p and q. Note that the received observation sta-
tistics at the fusion center is dependent on the channel statis-
tics, i.e., on p and q. Here, we assume, for simplicity, that each
channel between the sensors and the fusion center has identical
bit error probabilities and channel links are independent of each
other. However, note that our methodology will still work for
more general BC models, i.e., even if different channels have
different bit error probabilities.

Using the channel model in Fig. 2, the probability of a re-
ceived sensor observation m; taking a specific value m, given
the target state, can be written as

L1
p(rivi = mlx) = Y p(rii = m|m;)p(m;|x).

m;=0

5)

Note that (15) uses the fact that x, m; and m,; form a Markov
chain, i.e., p(m;|m;,x) = p(m;|m;). Channel statistics is rep-
resented by the first term in the summation, i.e., p(7m; = m|m;),
in (15). For example, given a target state x, if L. = 2 is used to
send the measurements through a BC, the probability of a re-
ceived observation from sensor ¢ being equal to 1 is p(m; =
1]x) = p(m; = 1|x)(1 — q) + p(m; = 0|x)p. Since sensor
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noises and wireless links are assumed to be independent, the
likelihood function at the fusion center can be written as

—

p(Yx) = | | p(riilx)

q
Il
o

Agz\

L-1
[Z p(mi|mi)p(mi|x)] . 316)

1=1 Lm;=0

Recall from Section III that the likelihood function derived in
(16) was the only remaining distribution required for the SIR
particle filtering algorithm to work. At a given time step k, it
is straightforward from (16) to calculate the likelihood function
for each particle xg )

N [L-1
(i) =] [Z p(rins|ma)p (mi|x§3>)] ,
i=1 Lm;=0

j=1,...,M. (17)
Using (17), the particle filtering algorithm can now be applied
to track the target.

B. Soft-Decoding in Rayleigh Fading Channel With
Coherent Reception

Let h;el? denote the complex gain of the discrete-time
Rayleigh fading channel between the ¢th sensor and the fusion
center. It is assumed that the channel gain h;e’? is stationary
and ergodic, and it remains constant during a symbol trans-
mission time. Note that h; and ¢; are the fading envelope and
the phase of the channel, respectively. Here, we simplify the
analysis by assuming binary signaling (L = 2) and replace
{0,1} by {—1,1} in (11), so that the effect of the fading
channel reduces to a real scalar multiplication for phase co-
herent reception [13]. This is illustrated by using the received
signal model for sensor %:

7 = hie?®im; +v; (18)
where v; is a zero-mean complex Gaussian noise with inde-
pendent real and imaginary parts having identical variance o2,
i.e., v; ~ CN(0,202). The notation C\ represents complex
Gaussian distribution. Without loss of generality, we assume
that the channels have unit power, i.e., hie?% ~ CN (0,1),
therefore E[h?] = 1. The received measurement 7i2; with the
knowledge of the channel phase at the receiver can be expressed
as

1; = Re {#;e77%} = hym; + Re {v;e %} (19)

Note that the noise term in (19) is real WGN with variance o?,,
i.e., Re{v;e 7%} ~ N(0,02), based on the fact that v; follows
a circularly symmetric complex Gaussian distribution. With the
unit power Rayleigh fading channel assumption, the probability
density function (pdf) of h; is given as

p(hi) = the_h57

h; > 0. (20)

1991

Then, it is straightforward to obtain the conditional pdf
p(mi|m;), ie., the pdf of the transmitted signal m; given
sensor observation 7m;:

p(riglmy) = / pliilhe mip(ha)dhi.  @1)
JO

Following the above assumptions and the same procedure, the
conditional pdf p(7i;|m;) has been derived in [13] and given as
follows:
(ilme) = —— 275t
mi|m;) = ——————e 2%
P V2r (14 202)

(am;)?
X {1 +mV2ramie 2 Q(—am;m;) (22)
where & = 1/(0,1/1 + 202). Then, it is easy to obtain
pimilx) = > plrii|mi)p(mix) (23)

mie{fl,l}

where the terms in the summation are given in (22) and (13),
respectively.

Following the same procedure as in the previous subsection
with the assumption of independence between wireless links
(Section II-B), the likelihood function for each particle, x,(cj ),
to be used in the SIR particle filtering algorithm can be derived

as follows:
p (Yk|X§cj)>

N
= H Z p(milm;)p (mi|X;(Cj)> , j=1,...,M.
i=1[m;e{-1,1}

(24)

C. Soft-Decoding in Rayleigh Fading Channel With
Noncoherent Reception

In this subsection, we analyze our final link layer design sce-
nario where we employ the same wireless channel conditions
and binary signaling as in Section IV-B. The only difference
between the scenario in this subsection and that in the previous
one is the particular reception scheme employed at the fusion
center. Here, we assume that energy detection (ED) strategy is
adopted at the fusion center, which is a phase noncoherent re-
ception scheme and makes it possible to use sensor censoring
[12], i.e., ON/OFF signaling at the sensors, where they remain
silent for m; = 0. Note that sensor censoring enables WSN to
save energy thereby increase the network lifetime. Let r; denote
the received signal from sensor ¢ before ED at the fusion center.

mi:()

m; =1 @5)

. = /Ui7 .
= hqjejd)i + Ui,
where v; ~ CN(0,202), and h;e’® ~ CN(0,1) (unit power
Rayleigh fading channel). After ED, the observation model at
the fusion center for the ith sensor is given as m; = |r;|2.
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Note that the notation | - | indicates the magnitude of a complex
number. Then, it is straightforward to obtain the conditional pdf

my

p(ﬁli|mi = 0) = 20_12)6 20y
" Lt ve-rt

Similar to the previous section, the conditional pdf p(;|x) can
be written as

1

plriilx) = Y plmilmi)p(m;|x).

mi:0

27)

The same analysis as in the previous two subsections can be
applied here to find the likelihood function for each particle,

) (i)

= ﬂ [21: p(rni|mi)p (milx;j))] . j=1,...,M.

1=1 Lm;=0
(28)

V. POSTERIOR CRAMER-RAO LOWER BOUNDS

In this section, we derive the tracking performance bounds,
namely the Posterior Cramér—Rao lower bounds (PCRLBs),
for the three different physical-layer models discussed in
Section IV.

Let x4('Y1.,) be an estimator of the state vector xy, at time k,
given all the available measurements Y 1., up to time k. Then,
the mean square error (MSE) matrix of the estimation error
at time k, By, is bounded below by the posterior Cramér—Rao
lower bound (PCRLB) J; ' [22]

Bi=FE {[%1(Y1x) —xi][Xi(Yia) = x)" } > T (29)
where .J; is the Fisher information matrix (FIM). In [23],
Tichavsky et al. provide a recursive approach to calculate the
sequential FIM Jy:

1
Jir1 = Di? = D (Je + DY) Dy? (30)

where
Dyt = E{—-A%log p(xkt]x)} 31
Dy? = E{=A% log p(xpq1|xk) } (32)

X T
D'=E {—Ax:;l log p(xk+1lxk)} = (D))" (33)
D = E{-A%1 log p(xkia|x)}
+ E{-A%10 og p(Yig1lxks1) }

= p2e 4 PR, (34)

The operator A in (31)—(34) is defined as A = vq,vg, where
V is the gradient operator expressed as

T
vx:[i,..?i} . (35)
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Note that 7 in (35) denotes the dimension of x. It is important
to note that all the above expectations (31)—(34) are taken with
respect to the joint probability distribution p(Xo.x+1, Y1:k+1)-
The initial FIM .J, can be calculated from the a priori pdf p(xo)

Jo=F {—Aig log p(xo)} . (36)
For our linear target dynamic model (2) and nonlinear

measurement model explained in Section II-B, the recursion
(31)—(34) become

D' =FTQ'F (37)
Di? = (D" = -FTQ™! (38)
DP =Q 7'+ D" (39)

Note that the calculation of Diz’b requires the exact knowledge
of the observation likelihood function p(Y41|Xk+1) and for
most of the real world scenarios including our problem in this
paper, DiQ’b does not have a closed-form solution. However,
similar to the nonlinear filtering problem, Monte Carlo tech-
niques can again be applied here to solve this problem [22].

Based on the fact that xj, X1 and Y1 form a Markov
chain, the joint pdf for the expectation can be rewritten as
follows:

P(X0:k+1, Y1:k41) = P(X0:k, Y1:k)

DXt 1|Xk)-P(Yrt1|Xe11)-  (40)

Using this property along with the target dynamic and measure-
ment models described in Section II, it is straightforward to de-
rive Dzz’b as

D" = By {AF} (41)
where A¥ € R® x R® and its elements are defined as
Ak = —Ep(xpe1 1x1)p(Yir 1 [xi41) {A::E
X log p(Yeq1|Xeq1)} . (42)

The outer integrations in (42) can be approximately evaluated
by converting them into summations using Monte Carlo inte-
gration methodology. In order to do this, we first generate a
set of samples xf_zl ~ P(Xk+1|Xk true) With identical weights

w,(ﬁl = M~', where j = 1,..., M. Then, the above expecta-
tions can be approximated as follows:
LM
ko~ _ = ) Xkt1
A~ 2 EP(YK'+1|XECJ4).1) {A%11 log p(Yit[xr41) } -

(43)

The final expectations with respect to p(xy) in (41) can be ob-
tained by averaging the above approximations (in (43)) over a
number of Monte Carlo trials, i.e., over a number of sample
tracks.

The PCRLBs for our tracking problem under three different
physical layer models are obtained and stated in the following
theorems.
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Theorem 1: Given a hard-decoding binary channel, the
PCRLB of a Bayesian sequential estimator, X;(Y1.x), is given
by

By, = E{[%1(Y1.x) — x¢)[Zn(Y1) — xx)7} > J1

in which Jj, is the recursive FIM. The recursion of .J;, follows
(30)-(39), where A* is as follows:

P ( Q Lk|X§f)) VTmp (mik|xl(cj))

P (mlk |X(J))
() )
)

where the term p(7h;,|x;’”) is given in (15). Omitting the time
index k for clarity, the expressions for the other terms in (44)
are

NL1V

L—1
Vap(ilx) = > pliilmi)Vyp(milx) — (45)
mi=0
in which
Op(mi =1x) _ d; " da
oP 2 27r0“,\/F
8p(mi = Z|X) _ na;d (fz ft))\il
0&; 2\/27raw
dp(m; = 1]x) _ naid; (n; — me)Aat
o 2V 2oy,
op(m; = l|x) _ op(m; .: I|x) —0 46)
3& 8771‘
and
_ (“fu—‘ai)z _ (”/7'(l+1)"‘7)2
)\il = |e 203, —e€ 203, . (47)
Proof: See Appendix A. [ |

The PCRLBs for target location coordinates &, and 7 are
the (1, 1) and the (2, 2) elements of the inverse FIM J, respec-
tively, i.e.,

MSE(étk) > [Jk_l]u Jk_1]22'

Theorem 2: Given a soft-decoding Rayleigh fading channel
with coherent reception, the PCRLB of a Bayesian sequen-
tial estimator, X;(Y1.1), is given by By, = E{[%xx(Y1.1) —
xXp)[Xe (Y1) — xi]F} > Jk_l, in which .J; is the recursive

, MSE(i) > | (48)

1993

FIM. The recursion of .J;, follows (30)—(39), where A* is given
by (49), shown at the bottom of the page. The expressions for
partial derivative terms, omitting the time index k, in (49) are

Vap(iilx) = 3

m,e{-1,1}

p(mi|m;)Vxp(m;|x) (50

where the conditional pdf p(m;|m;) and the partial derivative
terms are given in (22) and (46), respectively.
Proof: See Appendix B. ]

We should mention that closed forms for the integrals in
(49) do not exist. Therefore, numerical integration methods are
needed for evaluating these integrals.

Theorem 3: Given a soft-decoding Rayleigh fading channel
with noncoherent reception, the PCRLB of a Bayesian sequen-
tial estimator, Xx(Y1.x), is given by By, = E{[xx(Y1.x) —
xp][Xe(Y1e) — x|} > J. 1, in which Jy, is the recursive
FIM. The recursion of .J;, follows (30)—(39), where AF is given
as (51), shown at the bottom of the page. The expressions for
partial derivative terms in (51) are

1

Z p(mi|m;)Vip(m;|x)

m; =0

Vxp(milx) = (52)

where the conditional pdf p(m;|m;) and the partial derivative
terms are given in (26) and (46), respectively.
Proof: See Appendix C. [ |
Similar to the coherent reception case, closed forms for the
integrals in (51) do not exist. Therefore, numerical integration
methods are needed for evaluating these integrals.

VI. SIMULATION RESULTS

In this section, we evaluate the tracking performance of
our channel-aware particle filtering approach developed in
Sections III-1V, for three different link layer designs. Sensors
are assumed to be grid deployed in a 200 m x 200 m area.
The number of sensors per unit area is adopted as the metric
for sensor density and it is denoted by p. For simplicity,
each sensor is assumed to employ identical thresholds for
quantization, hence the sensor index ¢ is omitted in ~;;. We
also assume that sensor background noise has unit power,
i, 02 = 1. For the target dynamic model, the following
scenario is selected where all units are in meters, seconds
and meters per second corresponding to distance, time and
velocity measurements, respectively. The initial state distri-
bution of the target p(zp) is assumed to be Gaussian with

M N ®V ()P mlk|xk )Vz(j)p (fniklxg))
L dm,. (49)
szlt 1 4 (mik|x§j)) ik
M N oo V. )P ax) VT p (Y
g )]
i=11i=

P (mtk|X,(f))
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Fig. 3. Example of the tracking framework. (BER p = 0.05,p = 9 x 10—*
m72<,71 =17)

mean g, = [25000 —80 —80 2 2]" and covariance
3., = diag[30002 102 10% .52 .5%]. The standard devi-
ation of the process noise for the target signal power dynamic
model is 03 = 500. The target motion follows a near constant
velocity model with a process noise parameter, ¢ = 0.04.
Measurements are assumed to be taken at regular intervals of
Is,i.e., Ty = 1, and the observation length is 60 s. The number
of particles used for all the particle filters is 1000.

First, in Section VI-A, we assess the tracking performance of
our channel-aware particle filtering algorithm assuming hard-
decoding links and imperfect channel conditions, namely BCs,
and perform a comparison with the existing channel-unaware
particle filtering algorithm. For simplicity, we further assume
that probability of making a wrong decision for each bit is iden-
tical, i.e., bit-error-rate (BER) = p = ¢, forming a BSC model.
Second, in Section VI-B, we evaluate the tracking performance
of our channel-aware particle filters assuming soft-decoding
links (coherent and noncoherent) and demonstrate the per-
formance gains by employing the soft-decoding receiver
architecture. Note that without obtaining channel state informa-
tion (CSI), it is impossible to employ channel-unaware tracking
algorithms using a soft-decoding scheme, which is another
advantage gained by incorporating channel statistics directly in
the tracking algorithm. Finally, in Section VI-C, we investigate
the effects of link-layer designs on tracking performance.

A. Binary Symmetric Channel

Based on the fact that p = ¢ for a BSC, we will omit the
symbol ¢ and use symbol p alone to indicate the bit-error prob-
ability throughout this subsection. In order to visually assess the
performance improvement by employing channel-aware pro-
cessing for tracking, we give an example track in Fig. 3, where
we compare our channel-aware particle filtering approach with
its channel-unaware counterpart. Both filters use binary data re-
ceived from 36 sensors (p = 9 x 10~* m~2), which are grid-de-
ployed in the region as shown in Fig. 3. The channels are mod-
eled as BSCs with BERs equal to 0.05. Since binary data is

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 5, MAY 2009

— — — Channel-unaware PCRLB w/ perfect channels|

—— Channel-unaware PF w/ perfect channels
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Fig. 4. RMSEs of channel-aware and channel-unaware PFs using binary data
compared to their theoretical PCRLB in meters. (BER p = 0.01 for imperfect
channel cases, p = 9 x 107* m=2,v;, = 1.7))

used, there is only one threshold, 7;, and it is set to 1.7 for
the 1-bit quantization [7]. As can be seen from the figure, the
channel-aware PF is able to keep the track very close to the
true target trajectory whereas the channel-unaware PF loses the
track.

Fig. 4 is a more clear demonstration of both the motivation be-
hind our channel-aware particle filtering approach and the sig-
nificant performance gain achieved by this approach. First, we
demonstrate two different scenarios in which we investigate the
performance of the channel-unaware PF. In the first scenario,
all the channels are modeled as perfect whereas in the second
scenario the channels are modeled as BSCs with BERs equal
to 0.01. In Fig. 4, the performance of the channel-unaware PF
estimator using binary data for these two different scenarios is
shown as a function of time. PCRLB for the channel-unaware PF
(channel-unaware PCRLB) is also provided as a performance
measure. Note that the main performance criterion is the root
mean square error (RMSE) of the target position estimates de-

fined by &, 2 \/(ftk — étk)z + (Nex — Tk )2. Although target
signal power Py is a nuisance parameter, the RMSEs of Py, es-
timates are also shown in Fig. 4. PCRLB and RMSE values
are computed based on 100 Monte Carlo trials. As is clearly
seen in Fig. 4, the channel-unaware PF has significant perfor-
mance degradation for the scenario when channels are not per-
fect. As a second demonstration in Fig. 4, the performance of
the channel-aware PF using binary data is compared with its
theoretical PCRLB as a function of time. All the parameters are
kept the same as those used in the channel unaware scenarios.
It is clearly seen that the performance degradation due to im-
perfect channels becomes almost negligible when the channel-
aware PF is employed. It is also obvious that the performance
of channel-aware PF is also quite close its PCRLB and it signif-
icantly outperforms the channel-unaware PF when channels are
imperfect. Furthermore, the channel-aware PCRLB provides a
much tighter performance bound for the target tracking problem
with imperfect channels.
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Fig. 5. RMSEs of channel-aware PFs using binary data compared to their
PCRLB:s for different sensor densities (p) - (p = 0.0642, v, = 1.7).

TABLE I
NUMBER OF LOST TRACKS IN 100 MONTE CARLO TRIALS
p=0.01 p=0.0642
Channel-aware PF (p = 9 x 10~ %) 0 1

Channel-unaware PF (p = 9 x 10~%) 3 30
Channel-aware PF (p = 1.2 x 1073) 0 0
Channel-unaware PF (p = 1.2 x 107%) 4 43

In Fig. 5, we consider a more realistic scenario, where each
channel between the sensors and the fusion center is modeled as
a coherent hard-decoding Rayleigh fading link with an average
channel signal-to-noise ratio (SNR) of 5 dB. It is shown in [24]
that for antipodal signaling (BPSK), where m; = +A, a hard-
decoding link forms a binary symmetric channel (BSC) and
the error probability P. for the corresponding fading channel

is given by
1 /| SNR
Po==|1—/——
-2 1+ SNR

where SNR = ﬁ—;p and Ny/2 is the power spectral density
(PSD) of the additive noise. The expression in (53) can be used
to calculate the BER as a function of SNR for each link from
sensor ¢ to the fusion center, where ¢ = 1, ..., IN. For our sce-
nario where SNR = 5 dB and h2 = 1, the corresponding BER
p = 0.0642. Fig. 5 shows the corresponding RMSE and PCRLB
values based on 100 Monte Carlo trials for different sensor den-
sities. It is clearly seen from Fig. 5 that as the sensor density
increases, the performance of the channel-aware PF improves
and converges to its PCRLB for almost all time instants. Even
when the sensor density is relatively small, the performance of
the channel-aware PF is quite close to its PCRLB.

Next, we define a lost track when the estimation error of
the target position estimate is both greater than 10 m and is
increasing in ten consecutive time steps. Based on this defi-
nition, Table I shows the number of lost tracks corresponding
to channel-aware and channel-unaware particle filters for 100
Monte Carlo trials for BERs p = 0.01 and p = 0.0642. Itis clear
from Table I that the channel-unaware PF results in significant

(53)
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Fig. 6. RMSEs of channel-aware and channel-unaware PFs using binary data
with respect to different bit error probabilities. (p = 9 X 107 m=2,~; =
1.7, K = 60.)

number of lost tracks when the channel gets worse whereas the
channel-aware PF is very robust to channel imperfections. It is
also interesting to note that the performance of the channel-un-
aware PF gets poorer when the sensor density increases. It is
due to the fact that when the number of sensors increases, the
received observation vector at the fusion center at each time step
contains more errors for a given BER.

Finally, the performances of channel-aware and channel-un-
aware PFs are compared with respect to different bit error prob-
abilities, p in Fig. 6. Both filters use binary data to track the
target and the sensor density p is set to 9 x 10~% m—2. The per-
formance criterion in this case is the total RMSE of the target
position estimates, €.t given by

1 K
Etot = ? E €k
k=1

where K is the predefined final time of the track. We also set
up a benchmark case where all the channels are modeled as
perfect. As can be seen in the figure, the performance of the
channel-unaware PF degrades significantly as the channel gets
worse, i.e., as p increases. However, the performance of the
channel-aware PF is quite robust to imperfections of the wire-
less channels since channel statistics have been included in the
estimation process. Furthermore, the comparison with respect
to the benchmark case shows that by employing channel-aware
processing, we can reduce the degradation in the tracking per-
formance due to channel imperfections such that it is almost
negligible for p < 0.01.

(54)

B. Rayleigh Fading Channel

In this subsection, we assess the performances of our
channel-aware particle filters developed for Rayleigh fading
soft-decoding links. Channels are modeled as unit power
Rayleigh fading channels, i.e., h2 = 1, and the average channel
SNR is set to 5 dB. Fig. 7 shows the tracking performance of
the channel-aware PFs for two different reception techniques
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Fig. 7. RMSEs of channel-aware PFs for Rayleigh fading channel with
coherent and noncoherent receptions compared to their PCRLB for different
sensor densities (p). (Channel SNR = 5 dB, v, = 1.7.)

employed at the fusion center, namely phase coherent recep-
tion and phase noncoherent reception. Similar to the previous
section, both RMSE and PCRLB values are computed based on
100 Monte Carlo trials. Antipodal signaling with unit ampli-
tude (m; = £1) is adopted for the coherent reception scenario
whereas the noncoherent reception scenario employs ON/OFF
signaling (m; = 0 or 1). Similar to our results for the BSC
scenario, it is clear from Fig. 7 that the performances of the
channel-aware particle filters for Rayleigh fading soft-decoding
links are very close to their PCRLBs using relatively small
number of sensors. Moreover, as it is already expected, for the
same channel SNR and the same sensor density, the coherent
receiver outperforms the noncoherent receiver in terms of target
tracking since the former incorporates phase information of the
received signal. However, the trade-off is the need for the exact
knowledge of the phase of the channel resulting in extra energy
consumption and the complexity of the receiver.

C. Comparison of Link Layer Designs

In this subsection, we evaluate the effects of different link
layer designs on tracking performance under identical channel
conditions. The goal of this evaluation is to give some insight
to the designer about the role of the physical layer on tracking
performance so that the designer can make decisions as to
how to modify an existing tracking system or how to design
a new tracking system using a WSN for a given performance
requirement. The link layer designs we evaluate are 1) Rayleigh
fading coherent soft-decoding link with channel-aware pro-
cessing, 2) Rayleigh fading noncoherent soft-decoding link
with channel-aware processing, 3) Rayleigh fading coherent
hard-decoding link with channel-aware processing, 4) Rayleigh
fading coherent hard-decoding link with channel-unaware
processing, 5) Rayleigh fading noncoherent hard-decoding
link with channel-aware processing, and 6) Rayleigh fading
noncoherent hard-decoding link with channel-unaware pro-
cessing. For all scenarios, binary signaling is employed and the
sensor density is set to 1.2 x 1072 m~2. Note that as long as
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the channel statistics are known, any hard-decoding link can
be modeled as a BC by deriving its corresponding bit error
probabilities as a function of average channel SNR. Then, the
particle filtering algorithm developed in Section IV-A can be
used to evaluate the performance. Therefore, given a particular
communication channel, in order to perform a comparison
between hard-decoding links and soft-decoding links, the cor-
responding bit error probabilities need to be derived to be used
in the particle filtering algorithm for the hard-decoding link,
i.e., the corresponding BC link. Recall from Section VI-A that
a coherent hard-decoding link with antipodal signaling forms a
BSC with an error probability P. given in (53), which can be
used to calculate the BER as a function of SNR for Rayleigh
fading coherent hard-decoding links. In addition, for a Rayleigh
fading noncoherent hard-decoding link with ON/OFF signaling,
we have derived the corresponding P. which is stated in the
following lemma.

Proposition 1: For ON/OFF signaling scheme, where either
m; = 0 or m; = B is transmitted, the error probability is given
by

P.

N = N =

[P(decide Blm; = 0) + P(decide 0|m; = B)]

2SNR
(2SNR + 1) 5%

2SNR

(55)

where

2SNR+1

1 > 2SNR (56)

2SNR +1

! )m(sn

P(decide Blm; = 0) = <

P (decide Olm; = B) =1 — <QSNR 1
and SNR = 272,

We skip the Proof of Proposition 1 in this paper for the sake of
brevity. Note that noncoherent reception for a Rayleigh fading
hard-decoding link results in a binary nonsymmetric channel
model with error probabilities provided by (56) and (57).

The performances of particle filters for six different link layer
designs are shown in Fig. 8. Each RMSE value is computed
based on 100 Monte Carlo trials. It is clear from the figure
that channel-unaware PFs are consistently outperformed by the
channel-aware PFs no matter which reception scheme is used at
the receiver. Note also that noncoherent hard-decoding link with
channel-unaware approach requires a much higher SNR value to
reach its asymptotic performance compared to other link layer
designs. This result indicates that if the employed receiver is
noncoherent, channel-aware processing is crucial for good per-
formance even when the channel SNR is relatively high. Among
channel-aware particle filters, the tracking performances of co-
herent receivers are better than those of the noncoherent re-
ceivers as expected. If a design choice has to be made between
coherent and noncoherent receivers, the choice can be made to
optimize the overall performance of the system depending on
the channel conditions, available resources and tolerable RMS
errors for a specific tracking application, based on the fact that
coherent receivers are more expensive to build and operate. Fur-
thermore, soft-decoding schemes always perform better than the
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Fig. 8. RMSE:s of channel-aware and channel-unaware PFs using binary data
with respect to different average channel SNRs. (p = 1.2 x 1072 m~2, v, =
1.7) for hard-decoding links.)

corresponding hard-decoding schemes, which would not be pos-
sible without a channel-aware approach. Incorporating channel-
aware data processing directly in the tracking algorithm en-
ables us to utilize soft-decoding link designs resulting in im-
proved performance without adding any communication cost to
the system.

VII. SUMMARY AND DISCUSSION

In this paper, we studied the problem of target tracking using
a resource constrained WSN with nonideal wireless channels.
We have developed a new target tracking approach using Monte
Carlo based statistical signal processing, which we refer to as
channel-aware particle filtering. Our new approach uses quan-
tized sensor data and incorporates wireless channel information
as well as decoding scheme characteristics at the receiver. Three
different types of channel-aware particle filters have been devel-
oped for three different link layer designs, namely hard-decoding
links modeled as BCs, Rayleigh fading coherent soft-decoding
links and Rayleigh fading noncoherent soft-decoding links.
In addition, we have introduced a methodology to compute
the PCRLB by using Monte Carlo methods for the developed
channel-aware particle filters and showed that the tracking per-
formance of the filters converges to their PCRLBs even with a
relatively small number of sensors. We have also evaluated the
effects of different link layer designs on tracking performance.
This type of evaluation is useful at the design stage and can
be utilized to design parameters and functions of the physical
layer in order to optimize performance. Simulation results have
shown that the performance of channel-aware particle filtering
is strictly better than that of channel-unaware particle filtering.
Furthermore, channel-aware data processing makes it possible to
employ soft-decoding at the fusion center resulting in improved
performance over corresponding hard-decoding links with no
additional communication cost to the system. We have shown in
this paper that the performance of a tracking application can be
optimized by considering the WSN system as a whole so that a
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system-wide optimization can be performed. We have specif-
ically demonstrated that the tracking algorithm at the fusion
center and the physical layer of the network can be designed
jointly for an improved overall system performance.

The optimal design of local sensor thresholds has not been
studied in this paper. Thresholds can also be considered as de-
sign parameters for improved tracking performance. Note also
that the performances of channel-aware particle filters are de-
pendent on how accurate the channel models are. A robustness
analysis needs to be carried out to see how the channel model
mismatches affect the overall system performance. In addition,
the channel aware framework that we have developed in this
paper can be extended to include more complicated scenarios
such as environments with multiple targets, clutters, out-of-se-
quence sensor measurements and dense sensor situations that
require sensor selection approaches.

APPENDIX A
PROOF OF THEOREM 1

As shown in (43), the outer expectations in the elements of
DzZ’b can be approximated as summations using a set of parti-
cles. However, the inner expectation still remains to be evalu-
ated. We first start with the (1,1) element of Dz“

1,1 M Z

p(Yirilx{)))
010 p (Y Ixf7), )
% 0)? (58)
IP
Omitting the time index %, and using (16), we have
N -
Olnp(Y 1 Jp(m,
np(Y) gL dplimib 59
oP — p(milx) 0P
9 Inp(Y[x) i 1 Ap(ri|x)1*
op? B et p?(m;|x) oP
1 9%p(m
1 Ol )
p(milx) — oP?

Now, the expectation is calculated with respect to p(m;|x)):

_E[%}

i - 20| e [a“?}‘i"‘)]z

i=1

0?p(m;|x)
+——=
p(m;|x) OP?
_ Z Z mz|x  PPplinalx)
Lt - (mz|x op2
1=1m,;=0
(61)
The second term in (61) is
N L1 g (i) L-1
D0 —ap Z o5z | 2 Pimilx)| =0 (62)
1=1 m;=0 m;=0
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since Z

to

__0 p(m;|x) = 1. Therefore, the expectation reduces

oP? oP
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APPENDIX C
PROOF OF THEOREM 3

We first derive the (1,1) element of Dzz"b. Following the same

2 N L-1 ~ 2
—E [M} = Z Z 1 [ap (m1|x)} . (63) procedures as in Appendices A-B, we have

p(mm;|x)

It is easy to see that the partial derivative term in (63) is

op(milx) _ X~ 9p(milx)
—op = mz;()p(mAmz)T. (64)

Then the following can be derived in a straightforward manner

Ip(m; = l|x)
JdP
0 Yit — G4 Vi(l+1) — @i
o opP |:Q ( Ow ) Q ( Ow
~ —(rig—ai)? ~(rig1)—ai)?
___4 e T (65)

- 2v/ 2’/‘[‘0‘w\/ﬁ

Following a similar procedure, it is easy to derive other ele-
ments of Dzz’b. The derivation is skipped here for the sake of
brevity.

APPENDIX B
PROOF OF THEOREM 2

We first derive the (1,1) element of D22 b . By using (24), we
have the same expressions as in (59) and (6()). Following a sim-
ilar procedure as in Appendix A, we have

S T

m1|x)
Ap(ri|x)]*  %plmalx)\ -
x[ o ] ops | di. (66)

Note that (66) utilizes the fact that received observation m;
is a real number and can take any value in (—o0, c0) for the
coherent soft-decoding scheme. Similar to the derivation in
Appendix A, the second term in (66) vanishes. Therefore, the
final expectation is of the form

92 In p( Y|x 1 [op(ialx)]”
-5 [ - Z/ o | o
(67)

where the first term, p(7;|x) has been provided by (23) and the
second term is given as

i) 5 i),

apP aP (68)

miE{—l,l}

Note that 9dp(m;|x)/OP in (68) has been derived in
Appendix A.

Other elements of Dzz’b can be derived easily following a
similar procedure. The derivation is skipped here for the sake of
brevity.

92 In p( Y|x 1 [opGinilx)]®
- | - Z/ g | o) @
(69)

where the fact that m; = |r;|? € [0,00) has been used. Simi-
larly, the expressions for the terms in the integration are already
derived in Section IV-C and Appendix A, and other terms of
Dzz’b can be derived following the same procedure. The deriva-
tion is skipped here for the sake of brevity.
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