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Estimates for norms of resolvents and an application to the per-
turbation of spectra

By Oscar F. Bandtlow of London

(Received July 11, 2002; accepted May 4, 2003)

Abstract. Let A belong to the Schatten-von Neumann ideal Sp for 0 < p < ∞. We give an
upper bound for the operator norm of the resolvent (zI − A)−1 of A in terms of the departure from
normality of A and the distance of z to the spectrum of A. As an application we provide an upper
bound for the Hausdorff distance of the spectra of two operators belonging to Sp.

1. Introduction

Resolvent estimates for linear operators on Hilbert spaces have a comparatively long
history dating back to the early days of functional analysis. The first such estimate
appeared in a celebrated paper of Carleman from 1921 [Car]. There he showed that
for any Hilbert-Schmidt operator A on a Hilbert space H the resolvent (zI − A)−1

satisfies the following inequality

(1.1)
∥∥det2(I − z−1A)(zI −A)−1

∥∥ ≤ 1
|z|

exp

(
1
2
‖A‖22
|z|2

+
1
2

)
.

Here, ‖.‖ denotes the operator norm on H, ‖.‖2 the Hilbert-Schmidt norm, and
det2(I − z−1A) the regularised determinant of order 2 given by

det2(I − z−1A) =
∞∏

k=1

(
1− λk

z

)
exp

(
λk

z

)
,

where λk denotes the k-th eigenvalue of A (repeated according to multiplicities). Later,
this result has been generalized to include operators belonging to the Schatten-von
Neumann ideals Sp, 0 < p < ∞ (see, for example, [DS2, Sim]) and to the Banach
space setting (see, for example, [Bur]).
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Estimates of this type have a number of important applications in spectral theory,
ranging from the problem of establishing the completeness of eigenvectors and root
vectors of operators to problems in perturbation theory (see, for example, [DS2, GK,
Kat]).

A particular feature of resolvent estimates of the form (1.1) is that complete knowl-
edge of the spectrum of A is required. In other words, in order to find an upper
bound for

∥∥(zI −A)−1
∥∥ all the eigenvalues λk of A need to be known. In a number

of applications, however, it is desirable to have an upper bound which only involves
knowledge of the distance d(z, σ(A)) of z to σ(A), the spectrum of A. Estimates of
this type have been obtained by Gil’ in a series of papers begun in 1979 (see [Gil] and
references therein) and by Dechevski and Persson [DP1] in the mid-nineties.

The results of Gil’ yield an upper bound for
∥∥(zI −A)−1

∥∥ with A belonging to
the Schatten-von Neumann ideals Sp for p an even integer in terms of a power series
involving d(z, σ(A)) and a quantity measuring the departure from normality of A. An
interesting feature of his bound is that, for A normal, it reduces to the usual estimate∥∥(zI −A)−1

∥∥ ≤ 1
d(z, σ(A))

.

His proof relies on an adaptation of finite-dimensional arguments which can be traced
to work of Henrici from the early sixties [Hen].

The estimate of Dechevski and Persson, obtained by different methods, does not rely
on a power series and is valid for A ∈ Sp for any 0 < p < ∞:

(1.2)
∥∥(zI −A)−1

∥∥ ≤ 1
d(z, σ(A))

exp

(
cp

‖A‖p
p

d(z, σ(A))p
+ bp

)
,

where cp and bp are positive constants depending on p only. Unfortunately, as noted
in the Mathematical Reviews, their proof of (1.2) applies only to operators for which
the generalized eigenspaces are mutually orthogonal (see [MR, 95f:47008]).

In this article we shall focus on deriving resolvent estimates which combine features
of that of Gil’ and that of Dechevski and Persson. Our method of proof follows
Henrici and Gil’, while our upper bounds are expressible in closed form similar to
those of Dechevski and Persson, which turn out to be a special case of ours. As an
application of our estimate we show that it can be used to derive an upper bound for
the Hausdorff distance of the spectra of two operators belonging to Sp (0 < p < ∞).

2. The Schatten-von Neumann ideals

Let H be a separable Hilbert space with scalar product (., .). We use L(H) to denote
the Banach algebra of bounded linear operators on H equipped with the uniform
operator norm ‖.‖. The spectrum and the resolvent set of A ∈ L(H) will be denoted
by σ(A) and %(A), respectively. An operator A ∈ L(H) is said to be quasi-nilpotent
if σ(A) = {0}.

We use S∞ for the closed two-sided ideal of compact operators in L(H). If A ∈ S∞,
then {λk(A)} denotes the sequence of eigenvalues of A, each eigenvalue being repeated
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according to its multiplicity. We also assume that {λk(A)} is ordered by magnitude,
so that |λ1(A)| ≥ |λ2(A)| ≥ · · · .

For 0 < p < ∞, the quasi-normed operator ideal Sp, known as the Schatten-von
Neumann ideal, is defined in the usual way by

Sp :=

A ∈ S∞

∣∣∣∣∣∣∣ ‖A‖p :=

( ∞∑
k=1

sk(A)p

)1/p

< ∞

 ,

where sk(A) denotes the k-th singular number of A. Note that by convention ‖.‖∞ :=
‖.‖. More information about singular numbers and the Schatten-von Neumann ideals
can be found in [Pie, GK, DS2, Rin].

The following theorem, a specialization of Carleman-type resolvent estimates to
quasi-nilpotent operators, is crucial to our analysis.

Theorem 2.1. Let 0 < p < ∞. Then there are positive constants ap and bp such
that for every quasi-nilpotent A ∈ Sp∥∥(I −A)−1

∥∥ ≤ exp(ap ‖A‖p
p + bp).

Proof. See [Rin, Theorem 3.4.6]. See also [DS2, Corollary XI.9.25], where the result
is erroneously stated with bp = 0 (see Remark (ii) below), and [Sim, Corollary 7.7],
where an elegant proof for p ∈ N is given. The method in [Sim] also works for general
p and yields better constants ap and bp than the procedure in [Rin] (see Remark (iii)
below). 2

Remark 2.2.

(i) For certain values of p the constants ap and bp are known

(a) a1 = 1, b1 = 0; (see [Sim]);

(b) a2 = 1
2 , b2 = 1

2 ; this is Carleman’s original inequality (see [Car] or [DS2,
Corollary XI.6.28]);

(ii) bp 6= 0 for p > 1. To see this let A ∈ L(C2) be defined by

Ax = ε(x, e1)e2,

where ε ∈ R and {e1, e2} is an orthonormal basis for C2. A short calculation
shows that ‖A‖p = |ε|, while

∥∥(I −A)−1
∥∥2

=
1
2

(
2 + |ε|2 + |ε|

√
|ε|2 + 4

)
≥ 1 + |ε| > exp(2K |ε|p) = exp(2K ‖A‖p

p)

for any p > 1, any K > 0, and |ε| > 0 small.
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(iii) For 0 < p ≤ 1 it is possible to choose (see [DS2, Theorem XI.9.26])

ap = sup
z∈C

|z|−p log |(1 + z)| and bp = 0.

Closer inspection of Simon’s method reveals that for p > 1 it is possible to choose
ap to be any real number strictly larger than Γp, where

Γp := sup
z∈C

|z|−p log
∣∣(1 + z) exp(

dpe−1∑
k=1

(−z)k

k
)
∣∣,

and dpe := inf
{

n ∈ N
∣∣∣ n ≥ p

}
. The value of bp in turn depends on ap.

A simple consequence of the theorem above is the following estimate for the growth
of the resolvent of a quasi-nilpotent A ∈ Sp.

Corollary 2.3. Let A ∈ Sp be quasi-nilpotent. Then∥∥(zI −A)−1
∥∥ ≤ 1

|z|
exp(ap

‖A‖p
p

|z|p
+ bp).

Proof. Follows from (zI −A)−1 = z−1(I − z−1A)−1. 2

3. The Schur decomposition

One possibility of obtaining growth estimates of the resolvent of an operator A is
to consider A as a perturbation of a normal operator D having the same spectrum as
A by a quasi-nilpotent N . In the finite-dimensional case such a perturbation is easily
seen to exist by an argument going back to Henrici [Hen]: if A is any matrix then, by
a classical result due to Schur, A is unitarily equivalent to an upper-triangular matrix
Ã,

A = UÃU∗ (U unitary).

Writing

Ã = D̃ + Ñ ,

where D denotes the diagonal matrix whose main diagonal coincides with that of Ã,
it is not difficult to see that

A = D + N,

where D := U∗D̃U , N := U∗ÑU , is the desired perturbation with D normal, N
quasi-nilpotent, and σ(D) = σ(A).

It turns out that with a bit of care this argument also works in the infinite-dimensional
setting. Before we proceed we require the following version of Schur’s result.

Theorem 3.1. Let A : H → H belong to S∞. Let EA denote the closed span (in
H) of all eigenvectors and generalized eigenvectors of A corresponding to non-zero
eigenvalues of A. Then
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(i) ( ‘Schur’s Lemma’) EA has an orthonormal basis {b1, b2, . . .} such that

Abi =
k∑

j=1

aijbj , akk = λk(A) (∀k ∈ N);

(ii) with respect to the orthogonal sum H = EA ⊕E⊥
A the operator A can be written

as a 2× 2 matrix with S∞ entries

[
A11 A12

0 A22

]
: EA ⊕ E⊥

A → EA ⊕ E⊥
A ,

such that

(a) A11 and A have the same non-zero eigenvalues;

(b) A22 is quasi-nilpotent.

Proof. See [GGK, Lemmata II.3.3 and II.3.4]. 2

We are now ready to extend Henrici’s idea to the infinite-dimensional setting.

Theorem 3.2. Let A ∈ S∞. Then A can be written as a sum

A = D + N,

such that

(i) D ∈ S∞, N ∈ S∞;

(ii) D is normal, λk(D) = λk(A) (k ∈ N), and σ(D) = σ(A);

(iii) N is quasi-nilpotent;

(iv) if f is a function analytic on σ(D) (σ(D∗)) and f(D) (f(D∗)) is given by
Dunford’s analytic functional calculus [DS1, VII.3], then Nf(D) and f(D)N
(Nf(D∗) and f(D∗)N) are quasi-nilpotent;

Proof. (i–iii) Using the notation of the previous theorem define D11 : EA → EA by

D11x =
∞∑

k=1

(Abk, bk)(x, bk)bk.

It is easily verified that D11 is compact, normal, and has the same non-zero eigenvalues
(counting multiplicities) as A. Next define N11 : EA → EA by N11 := A11−D11. Then
N11 is compact. Now define

D :=
[

D11 0
0 0

]

N :=
[

N11 A12

0 A22

]
.
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It is easily verified that D and N satisfy (i) and (ii). Property (iii) follows from (iv)
by choosing f ≡ 1.

(iv) We shall only prove that f(D∗)N is quasi-nilpotent. The other cases are similar.
In order to do so it suffices to show that (zI − D∗)−1N is quasi-nilpotent for z ∈
%(D∗). The general case then follows from the observation that the Dunford integral
converges in the uniform operator topology and the fact that the limit of a sequence
of compact quasi-nilpotent operators converging in the uniform operator topology is
quasi-nilpotent (see [GGK, Corollary II.2.4]). Fix z ∈ %(D∗). Before proving that
(zI −D∗)−1N is quasi-nilpotent we shall show that T := (zIEA

−D∗
11)

−1N11 is quasi-
nilpotent. To see this let Pn be the orthogonal projection onto

∨n
i=1 {bi}. Then

Pn → IEA
in the strong operator topology. Since T is compact, it follows that

(3.1) PnTPn → T in the uniform operator topology

(see, for example, [ALL, Theorem 4.1]). Now observe that each PnTPn = Pn(zIEA
−

D∗
11)

−1N11Pn has a strictly upper triangular representation w.r.t. the basis {bi} and
is thus nilpotent. This together with (3.1) implies that (zIEA

−D∗
11)

−1N11 is quasi-
nilpotent. In order to complete the proof we only need to show that (z −D∗)−1N is
quasi-nilpotent. This, however, follows from

(z −D∗)−1N =
[

(zIEA
−D∗

11)
−1N11 (zIEA

−D∗
11)

−1A12

0 z−1A22

]
,

and a short calculation using the fact that both (zIEA
−D∗

11)
−1N11 and z−1A22 are

quasi-nilpotent.
2

Remark 3.3.

(i) A similar decomposition holds in a more general context, where A is merely
assumed to be a Riesz operator, that is, an operator whose essential spectral
radius vanishes (see [Dow, Chapter 3]). In this case (i)–(iii) of the theorem
above remain valid with the modification that N need no longer belong to S∞
(see [Dow, Theorem 3.33]).

(ii) Assertions (i–iii) are also proved in [Gil, Theorem 2.2.1].

This result motivates the following definition.

Definition 3.4. Let 0 < p ≤ ∞ and A ∈ Sp. A decomposition

A = D + N

with D and N enjoying properties (i–iv) of the previous theorem is called a Schur
decomposition of A. The operators D and N will be referred to as the normal and the
quasi-nilpotent part of the Schur decomposition of A, respectively.
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Remark 3.5.

(i) The decomposition is not unique. Witness the following example:

A :=

 2 2 2
0 0 2
0 0 0

 =

 2 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

=:D1

+

 0 2 2
0 0 2
0 0 0


︸ ︷︷ ︸

=:N1

=

 1 1 0
1 1 0
0 0 0


︸ ︷︷ ︸

=:D2

+

 1 1 2
−1 −1 2

0 0 0


︸ ︷︷ ︸

=:N2

.

It is easily verified that D1 and D2 are normal and that N1 and N2 are nilpotent.
Furthermore σ(A) = σ(D1) = σ(D2) = {2, 0}.
This example also illustrates the fact that, while the normal parts corresponding
to different Schur decompositions are necessarily unitarily equivalent, the quasi-
nilpotent parts need not be unitarily equivalent in general. To see this observe
that, for example, ‖N1‖44 = 112 6= 80 = ‖N2‖44.

(ii) It is a simple consequence of Weyl’s inequality (see, for example, [DS2, Corollary
XI.9.7]) that if A ∈ Sp for some 0 < p ≤ ∞ and A = D + N is a Schur
decomposition with normal part D and quasi-nilpotent part N , then

‖D‖p ≤ ‖A‖p .

In particular, D ∈ Sp and N ∈ Sp.

For later use we define the following quantities originally introduced by Henrici [Hen].

Definition 3.6. Let 0 < p ≤ ∞ and A ∈ Sp. Then

νp(A) := inf
{
‖N‖p

∣∣∣ N is a quasi-nilpotent part of A
}

is called the (p-)departure from normality of A.

The term ‘departure from normality’ is justified since νp(A) = 0 if and only if A is
normal.

For general p, the p-departure from normality is difficult to calculate in practice.
For p = 2, however, we have the following formula originally due to Henrici (see [Hen])
in the finite-dimensional setting and to Gil’ in the infinite-dimensional case.

Proposition 3.7. Let A ∈ S2. Then

ν2(A) =
√
‖A‖22 −

∑
k

|λk(A)|2.
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Proof. See [Gil, Lemma 2.4.6]. 2

Simple but somewhat crude upper bounds for νp(A) can be obtained by invoking
the (p-)triangle inequality.

Proposition 3.8.

νp(A) ≤
{

2 ‖A‖p for 1 ≤ p ≤ ∞;
21/p ‖A‖p for 0 < p < 1.

Proof. Let A = D + N be a Schur decomposition of A. Recall that

‖D‖p ≤ ‖A‖p

by Remark 3.5 (ii).
If 0 < p < 1, then

‖N‖p
p = ‖A−D‖p

p ≤ ‖A‖p
p + ‖D‖p

p ≤ 2 ‖A‖p
p .

Thus νp(A) ≤ 21/p ‖A‖p.
If 1 ≤ p ≤ ∞, then

‖N‖p = ‖A−D‖p ≤ ‖A‖p + ‖D‖p ≤ 2 ‖A‖p .

Thus νp(A) ≤ 2 ‖A‖p. 2

Remark 3.9. For p = 2m, m ∈ N, the estimates above have been obtained by Gil’
[Gil, Lemma 2.6.6].

4. Resolvent estimates

Using the results of the previous section we are now able to derive upper bounds
for the resolvent of A ∈ Sp. The proof relies on the following well-known fact. If
D ∈ L(H) is normal, then

(4.1)
∥∥(zI −D)−1

∥∥ =
1

d(z, σ(D))
(z ∈ %(D)),

where for z ∈ C and σ ⊂ C closed,

d(z, σ) := inf
λ∈σ

|z − λ|

denotes the distance of z to σ.
For a short proof of (4.1) recall that if D is normal, then ‖D‖ = r(D), where r(D)

denotes the spectral radius of D. Let z ∈ %(D). Then (zI −D)−1 is normal. Thus∥∥(zI −D)−1
∥∥ = r

(
(zI −D)−1

)
= sup

λ∈σ(D)

1
|z − λ|

=
1

d(z, σ(D))
.

The proof of our main result relies on the following idea. Suppose that A ∈ Sp

(0 < p < ∞). Using a Schur decomposition we can write A as a sum of a normal
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operator D with σ(D) = σ(A) and a quasi-nilpotent operator N . We can think of A
as a perturbation of D by N . Using standard arguments from perturbation theory
together with the fact that the influence of the quasi-nilpotent perturbation N can be
controlled by Theorem 2.1 it is possible to find upper bounds for the resolvent of A
in terms of the standard bounds (4.1) for the resolvent of the normal part D. More
precisely, we have the following.

Theorem 4.1. Let 0 < p < ∞. Then for every A ∈ Sp∥∥(zI −A)−1
∥∥ ≤ 1

d(z, σ(A))
exp

(
ap

νp(A)p

d(z, σ(A))p
+ bp

)
,

where ap and bp are the positive constants (depending on p only) given by Theorem 2.1.

Proof. If z ∈ σ(A), the RHS of the inequality is infinite, so there is nothing to
prove. We may thus assume z ∈ %(A). Let A = D + N be a Schur decomposition of
A with normal part D and quasi-nilpotent part N . Noting that σ(A) = σ(D) we see
that (zI −D)−1 exists. Furthermore, (zI −D)−1N is quasi-nilpotent and belongs to
Sp with ∥∥(zI −D)−1N

∥∥
p
≤
∥∥(zI −D)−1

∥∥ ‖N‖p =
‖N‖p

d(z, σ(D))
.

Thus, (I − (zI −D)−1N) is invertible in L(H) and∥∥(I − (zI −D)−1N)−1
∥∥ ≤ exp

(
ap

‖N‖p
p

d(z, σ(D))p
+ bp

)
,

by Theorem 2.1. Now, since (zI −A) = (zI −D)(I − (zI −D)−1N), we conclude that
(zI −A) is invertible in L(H) and∥∥(z −A)−1

∥∥ ≤
∥∥(I − (zI −D)−1N)−1

∥∥ ∥∥(zI −D)−1
∥∥

≤ 1
d(z, σ(D))

exp

(
ap

‖N‖p
p

d(z, σ(D))p
+ bp

)
.

Taking the infimum over all Schur decompositions while using σ(A) = σ(D), the result
follows. 2

Remark 4.2.

(i) The estimate remains valid if νp(A) is replaced by something larger, for example
by the upper bound given in Proposition 3.8. In this case we recover the estimate
of Dechevski and Persson [DP1].

(ii) For normal A our estimate reduces to the standard estimate (4.1) — apart from
the factor exp(bp), which equals 1 for 0 < p ≤ 1 by Remark 2.2 (iii).

(iii) For p = 2m, m ∈ N the estimates above can be sharpened (see [Gil, Lemma
3.3.1]).

(iv) An interesting discussion of various notions of sharpness for the resolvent esti-
mates given above can be found in [DP2].
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5. An application to the perturbation of spectra

As an application of our resolvent estimates we now consider the problem of finding
upper bounds for the Hausdorff distance of the spectra of two operators belonging to
Sp. Recall that the Hausdorff distance h(., .) is the following metric defined on the
space of compact subsets of C

h(σ1, σ2) := max {d̂(σ1, σ2), d̂(σ2, σ1)},

where

d̂(σ1, σ2) := sup
λ∈σ1

d(λ, σ2)

and σ1 and σ2 are two compact subsets of C.
For A,B ∈ Sp, our aim is to find upper bounds for h(σ(A), σ(B)) expressible in terms

of ‖A−B‖. Results of this type are useful in providing computationally accessible a
posteriori error estimates for spectral approximation procedures (see [BJ]). The finite-
dimensional prototype of our result is the Ostrowski-Elsner formula, which states that

h(σ(A), σ(B)) ≤ (2M)1−1/n ‖A−B‖1/n for A,B ∈ L(Cn),

where M := max {‖A‖ , ‖B‖} (see [Els]).
In order to extend this formula to operators in Sp we shall use the resolvent bounds

obtained in the previous section together with a simple but powerful argument usually
credited to Bauer and Fike [BF] who first employed it in a finite-dimensional context.

Lemma 5.1. Let A, B ∈ L(H). Then

z ∈ σ(A) ∩ %(B) =⇒ ‖A−B‖−1 ≤
∥∥(zI −B)−1

∥∥
.

Proof. By contradiction. Let z ∈ σ(A) ∩ %(B) and assume to the contrary that∥∥(zI −B)−1
∥∥ ‖A−B‖ < 1.

Then
(
I − (zI − B)−1(A − B)

)
is invertible in L(H), which implies that (zI − A) =

(zI−B)
(
I−(zI−B)−1(A−B)

)
is invertible in L(H). Thus z ∈ %(A) which contradicts

z ∈ σ(A). 2

We are now ready to prove the main result of this section.

Theorem 5.2. Let 0 < p < ∞ and let A, B ∈ Sp. Then

(i)

d̂(σ(A), σ(B)) ≤ νp(B)

fp

(
νp(B)
‖A−B‖

) ;
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(ii)

h(σ(A), σ(B)) ≤ max {νp(A), νp(B)}

fp

(
max {νp(A),νp(B)}

‖A−B‖

) .

Here, fp : R+
0 → R+

0 is the inverse of the function

gp : R+
0 → R+

0 ,

gp(x) := x exp(apx
p + bp),

and ap and bp are the constants given by Theorem 2.1.

Proof. (i) It suffices to show that

(5.1) z ∈ σ(A) =⇒ d(z, σ(B)) ≤ νp(B)

fp

(
νp(B)
‖A−B‖

) .

In what follows we shall use the following abbreviations:

d := d(z, σ(B)), E := ‖A−B‖ .

In order to prove (5.1) let z ∈ σ(A). If z ∈ σ(B) there is nothing to prove. We may
thus assume that z ∈ %(B). Hence

1
‖A−B‖

≤
∥∥(zI −B)−1

∥∥ ≤ 1
d

exp
(

ap
νp(B)p

dp
+ bp

)
(5.2)

=
1

νp(B)
gp

(
νp(B)

d

)
,(5.3)

where the first inequality follows from the previous lemma and the second from The-
orem 4.1. Since gp is strictly monotonically increasing, so is fp. Thus

fp

(
νp(B)

E

)
≤ νp(B)

d
,

whence

d(z, σ(B)) ≤ νp(B)

fp

(
νp(B)
‖A−B‖

) .

(ii) It is easily verified that the implication (5.1) remains true, if νp(B) is re-
placed by max {νp(A), νp(B)}. To see this, note that (5.2) and hence (5.3) hold with
max {νp(A), νp(B)} in place of νp(B). Thus d̂(σ(A), σ(B)) is bounded by the RHS of
(ii), and so is d̂(σ(B), σ(A)), by symmetry. The desired inequality follows. 2
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Remark 5.3.

(i) It is not difficult to see, for example by arguing as in the proof of part (ii) of the
theorem, that the inequalities (i) and (ii) above remain valid if νp(A) or νp(B)
is replaced by something larger — for example, by the upper bounds given in
Proposition 3.8.

(ii) If both operators are normal, then (ii) reduces to

h(σ(A), σ(B)) ≤ ‖A−B‖ exp(bp).

Note that the factor exp(bp) equals 1 for 0 < p ≤ 1 by Remark 2.2 (iii).

(iii) For p = 2m, m ∈ N estimates of the Hausdorff distance of the spectra of two
operators belonging to Sp similar to the above can be found in [Gil, Section 4.1].

Acknowledgements

I would like to thank Philip Spain, Michael Dritschel, Oliver Jenkinson, Jeff Webb and

Simon Wassermann for stimulating discussions and feedback during the preparation of this

article.

References

[ALL] M Ahues, A Largillier, BV Limaye (2001) Spectral Computations for Bounded Operators;
Roca Baton, Chapman & Hall/CRC

[BJ] OF Bandtlow and O Jenkinson (2003) Finite sections of holomorphic transfer operators;
preprint

[BF] FL Bauer, CT Fike (1960) Norms and exclusion theorems; Num. Math. 2, 42–53

[Bur] J Burgoyne (1995) Denseness of the generalized eigenvectors of a discrete operator in a Banach
space; J. Operator Theory 33, 279–297

[Car] T Carleman (1921) Zur Theorie der linearen Intergralgleichungen; Math. Z. 9, 196–217

[DP1] LT Dechevski, LE Persson (1994) Sharp generalized Carleman inequalities with minimal
information about the spectrum; Math. Nachr. 168, 61–77

[DP2] LT Dechevski, LE Persson (1996) On sharpness, applications and generalisations of some
Carleman type inequalities; Tôhoku Math. J. 48, 1–22
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