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Abstract

We consider a game between a principal, an agent, and a monitor in which the
principal would like to rely on messages by the monitor to target intervention against
a misbehaving agent. The difficulty is that the agent can credibly threaten to retaliate
against likely whistleblowers in the event of intervention. As a result, intervention
policies that are very responsive to the monitor’s message can give rise to silent cor-
ruption in which the agent dissuades informative reporting. Successful intervention
policies must therefore garble the information provided by monitors. We show that
even if hard evidence is unavailable and monitors have heterogeneous incentives to
(mis)report, it is possible to establish robust bounds on equilibrium corruption using
only non-verifiable reports. Our analysis suggests a simple heuristic to calibrate in-
tervention policies: first get monitors to complain, then scale up enforcement while
keeping the information content of intervention constant.
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1 Introduction

This paper explores anti-corruption mechanisms in which a principal relies on messages by

an informed monitor to target intervention against a potentially misbehaving agent.1 The

difficulty is that the agent can credibly threaten to retaliate against likely whistleblowers.

We show that taking information as given, intervention policies that are more responsive to

the monitor’s messages provide greater incentives for the agent to behave well. However,

making intervention responsive to the monitor’s message also facilitates effective retaliation

by corrupt agents and limits endogenous information provision. As a consequence there is

a trade-off between eliciting information and using that information efficiently. This makes

finding effective intervention policies difficult: imagine that no complaints are received, does

this mean that there is no underlying corruption, or does it mean that would-be whistle-

blowers are being silenced by threats and intimidation? We investigate the relationship

between intervention, corruption and whistleblowing, and suggest ways to identify effective

intervention strategies using only unverifiable reports.

Our framework encompasses various forms of corruption such as bribe collection by state

officials, collusion between police officers and organized crime, fraud by sub-contractors in

public good projects, breach of fiduciary duty by a firm’s top executives, and so on. Re-

taliation can also take several forms: an honest bureaucrat may be socially excluded by his

colleagues and denied promotion; whistleblowers may be harrassed, see their careers derailed,

or get sued for defamation; police officers suspected of collaborating with Internal Affairs

may have their life threatened by lack of prompt support.2 In many cases retaliation is

facilitated by the fact that only a few colleagues, subordinates, or frequent associates are

informed about the agent’s misbehavior. However, group punishments may also be used. For

instance, entire communities may be denied access to public services following complaints

1Throughout the paper we refer to the principal and monitor as she, and to the agent as he.
2See Punch (2009) for examples of punishment of informants in a study of police corruption.
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to authorities.3 In addition, monitors may fear that anonymity is not properly ensured and

that untrustworthy institutions may leak the source of complaints to the agent or one of his

associates. All these situations exhibit two features that are key to our analysis: (1) there

is significant information about corrupt agents which the principal wants to obtain; (2) the

individuals who have this information and are able to pass it on to the principal can be

punished by the agent.

Our model considers a dynamic game played by a principal, an agent and a monitor. Both

the principal and the agent have commitment power, and they act sequentially. The principal

first commits to an intervention strategy as a function of the information obtained from the

monitor, i.e. to a likelihood of intervention as a function of messages “corrupt” and “non-

corrupt”. The agent then commits to a retaliation strategy against the monitor as a function

of subsequent observables — including whether or not he is the subject of an investigation —

and makes a corruption decision. The monitor observes the corruption behavior of the agent

and chooses what message to send to the principal. Finally, intervention and retaliation are

realized according to the commitments of both the principal and the agent.

A key element of our modeling approach is to recognize that the principal need not

have full control over the agent’s and the monitor’s outcomes following intervention. For

instance, a principal may decide to sue the agent, but the agent’s final outcome is determined

by an exogenous judiciary process. Similarly, whistleblower protection schemes may not

fully shield the monitor against indirect punishments such as ostracism, or harassment,

and supposedly anonymous information may be leaked. Furthermore, we do not assume

that the monitor necessarily desires intervention against corrupt agents. For instance, in a

development context, corruption scandals may lead to a withdrawal of funding altogether,

which hurts citizens even if they were getting only a small share of funds. We also allow for

3For instance, Ensminger (2013) suggests that egregious corruption affecting the World Bank’s arid land
program were not reported by the local Kenyan communities that suffered from it for fear of being cut off
from subsequent projects.
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the possibility of covetous monitors, i.e. monitors who benefit from having an honest agent

investigated. Whether they hold a personal grudge, or seek to discredit a competitor, such

covetous monitors may report that corruption is occurring even when it is not the case.

Our analysis emphasizes two sets of results. The first is that any effective intervention

strategy must garble the information provided by the monitor. Indeed, because the prin-

cipal’s behavior is correlated with the monitor’s message, it is a signal that the agent can

exploit to resolve his own agency problem vis-à-vis the monitor: when the likelihood ra-

tio of intervention rates under messages “corrupt” and “not corrupt” is high, the threat of

retaliation conditional on intervention dissuades the monitor to send informative messages

at little equilibrium cost to the agent. An immediate consequence is that the likelihood

of intervention against non-corrupt agents must be bounded away from zero. In addition,

it may be optimal not to intervene against agents reported as corrupt, since this allows to

reduce costly intervention on non-corrupt agents while keeping the information content of

intervention low.

Our main set of results characterizes the geometry of reporting and corruption decisions

as a function of intervention rates, in a rich environment with both heterogeneous pay-

offs and heterogeneous beliefs. We show that the region of the intervention-strategy space

in which corruption occurs is star-shaped around the origin, and that keeping corruption

behavior constant, messages by agents depend only on the likelihood ratio of intervention

rates. We show how to exploit these properties to obtain sharp bounds on corruption using

non-verifiable reports alone. This analysis suggests that a useful rule-of-thumb to determine

appropriate intervention policies is to first provide sufficient plausible deniability that mon-

itors are willing to complain, and then scale up enforcement while keeping the information

content of intervention constant.

This paper hopes to contribute to a growing effort to understand the effectiveness of

counter-corruption measures. In recent years, the World Bank, the OECD and the United
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Nations have launched new initiatives to improve governance, in the belief that a reduc-

tion in corruption can improve the growth trajectory of developing countries.4 Growing

micro-economic evidence confirms the importance of corruption issues affecting public ser-

vice provision and public expenditure in education or health (see Olken and Pande (2011)

for a recent review), while recent experimental evidence suggests that appropriate incentive

design can reduce misbehavior (Olken (2007), Duflo et al. (forthcoming)). In our view, one

key aspect of corruption is that even when there is strong suspicion that it is occurring,

there seems to be little direct and actionable evidence flowing back to the relevant principals

(see for instance Ensminger (2013) who emphasizes the role of threats and failed information

channels in recent corruption scandals affecting community driven development projects).5

We show that correct policy design is essential to keep information channels open under

the threat of retaliation, and we suggest ways to measure underlying corruption using only

unverifiable messages.

Our work is closely related to that of Tirole (1986), Laffont and Martimort (1997) or

Prendergast (2000) on principal-agent problems with side-contracting between the agent

and the monitor. Our approach differs in several ways: first, we focus on retaliation, rather

than side payments, as the main side-contracting instrument6; second we endogenize the

difficulty of the side-contracting problem between the agent and the monitor; third, we

allow for non-verifiable messages and monitors with heterogeneous motives; fourth, we focus

on inference and seek to establish bounds on unobserved corruption, rather than solve for

optimal contracts in specific environments. Our work is also related to that of Rahman

4See Mauro (1995) for early work highlighting the association of corruption and lack of growth. Shleifer
and Vishny (1993) and Acemoglu and Verdier (1998, 2000) provide theories of corruption that introduce
distortions above and beyond the implicit tax that corruption imposes.

5In a discussion of why citizens fail to complain about poor public service, Banerjee and Duflo (2006)
suggest that “the beneficiaries of education and health services are likely to be socially inferior to the teacher
or health care worker, and a government worker may have some power to retaliate against them.”

6This assumption can be endogenized using the fact that payments are costly on the equilibrium path.
It plays an important role in the analysis as discussed in Appendix A.
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(2012) who also considers agency problems with non-verifiable reports, and emphasizes the

value of random recommendation-based incentives to jointly incentivize effort provision by

the agent and by the monitor supposed to evaluate the agent. However, Rahman (2012)

excludes the possibility of side contracting between the agent and the monitor. As a result,

the role of mixed strategies in our work is entirely different: monitoring is costless and

randomization occurs only to garble the information content of the principal’s intervention

behavior.7 Finally our work shares much of its motivation with the seminal work of Warner

(1965) on the role of plausible deniability in survey design, and the recent work of Izmalkov

et al. (2011), Ghosh and Roth (2010), Nissim et al. (2011), or Gradwohl (2012) on privacy

in mechanism design.

The paper is structured as follows: Section 2 introduces our model and delineates the

main points of our analysis using a simple example; Section 3 introduces our general frame-

work which allows for rich incomplete information; Section 4 establishes general patterns

of corruption and reporting as the intervention policy varies, and shows how they can be

exploited to evaluate unobserved corruption and make policy recommendations; Section 5

discusses potential applications and related implementation challenges. Appendix A presents

several extensions. Proofs are contained in Appendix B.

2 An Example

This section introduces our framework and illustrates the mechanics of corruption, intimi-

dation and whistleblowing in the context of a simple example. For clarity, we make several

restrictive assumptions, which we generalize in Sections 3 and 4. Specifically, we work un-

der complete information, assume that the monitor is non-covetous (i.e. does not benefit

from intervention against an honest agent), and that the agent does not have access to

7Eeckhout et al. (2010) propose a different theory of optimal random intervention based on non-linear
responses of criminal behavior to the likelihood of enforcement.
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side information about the monitor’s message, except that provided through the principal’s

intervention strategy.

2.1 Setup

Players, timing, and actions. There are three players: a principal P , an agent A and a

monitor M . The timing of actions is as follows.

1. The agent chooses whether to be corrupt (c = 1) or not (c = 0). The monitor observes

corruption c and sends a message m ∈ {0, 1} to the principal.

2. The principal observes the monitor’s message m and triggers an intervention or not:

i ∈ {0, 1}. Intervention has payoff consequences for the principal, the agent and the

monitor.

3. The agent can retaliate with intensity r ∈ [0,+∞) against the monitor.

Observables and payoffs. The monitor costlessly observes the agent’s corruption decision

c ∈ {0, 1}, and can send a message m ∈ {0, 1} to the otherwise uninformed principal. The

agent does not observe the monitor’s message m, but observes whether the principal triggers

an intervention i ∈ {0, 1}.8

As a function of c ∈ {0, 1}, i ∈ {0, 1} and r ≥ 0, realized payoffs uA, uP and uM to the

agent, principal and monitor take the form

uM = πM × c+ vM(c,m)× i− r

uA = πA × c+ vA(c)× i− kA(r)

uP = πP × c+ vP (c)× i

8Our general framework allows the agent to observe leaks from the institutional process that can be
informative of the message m sent by the monitor.
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where πM , πA, and πP capture the expected payoff consequences of corruption, vM , vA, and

vP capture the expected payoff consequences of intervention, r is the level of retaliation

imposed by the agent on the monitor, and kA(r) is the cost of retaliation to the agent.

Payoffs conditional on corruption are such that πA > 0 and πP < 0. The cost of retaliation

kA(r) is strictly increasing in r, with kA(0) = 0. Payoffs are common-knowledge. We make

the following assumption.

Assumption 1. Expected continuation payoffs following intervention (i = 1) satisfy

vM(c = 0,m = 1) < 0 (non-covetous monitor);

πA + vA(c = 1) < vA(c = 0) ≤ 0 (dissuasive intervention);

∀c ∈ {0, 1}, vM(c,m ̸= c) ≤ vM(c,m = c) (weak preferences for the truth);

∀c ∈ {0, 1}, vP (c) ≤ 0 and πP ≤ vP (c = 0) (bounded cost of intervention).

The assumptions that there are no covetous monitors — i.e. that the monitor gets a

negative continuation payoff vM(c = 0,m = 1) < 0 following intervention on an honest

agent — and that certain intervention is sufficient to dissuade the agent from being corrupt,

are constraining, but are only made for simplicity. We relax them in the general analysis

of Sections 3 and 4. Our two other assumptions are more innocuous. First, we assume

that taking intervention as given, the monitor is weakly better off telling the truth. This

assumption, which typically comes for free when payoffs are derived from a full mechanism

design problem, serves to give an operational meaning to messages m ∈ {0, 1}. Second, we

assume that intervention is costly to the principal.

Strategies and commitment. Both the principal and the agent can commit to strategies

ex ante. Though we do not provide explicit micro-foundations, we think of this commitment

power as arising from repeated interaction. The principal is the first mover and commits

to an intervention policy σ : m ∈ {0, 1} 7→ σm ∈ [0, 1], where σm ≡ prob(i = 1|m) is
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the likelihood of intervention given message m.9 Without loss of generality, we focus on

strategies such that σ1 ≥ σ0.

Knowing the principal’s intervention strategy σ, the agent takes a corruption decision

c ∈ {0, 1} and commits to a retaliation policy r : i ∈ {0, 1} 7→ r(i) ∈ [0,+∞) as a function

of whether or not he observes intervention. The monitor moves last and chooses the message

m ∈ {0, 1} maximizing her payoffs given the commitments of both the principal and the

agent.10

We are interested in characterizing patterns of corruption and information transmission

as the principal’s policy σ changes. We also solve for the principal’s optimal intervention

policy σ and show that it must be interior.

Reduced-form payoffs. It is important to note that while we take payoffs upon inter-

vention as exogenous, this does not mean that our approach is inconsistent with a broader

mechanism design problem in which payoffs upon intervention vA and vM are also policy vari-

ables affected the principal. Indeed, we place few restrictions on reduced-form payoffs, and

they can be thought of as being determined in a first optimization stage, before determining

intervention patterns σ.

Formally, if V denotes the set of feasible payoff structures v = (vA, vM), Σ the set of

possible intervention policies σ, and c∗(v, σ) the agent’s equilibrium behavior under payoff

structure v and policy σ, the principal can be thought of as solving

max
v∈V,σ∈Σ

E[uP |σ, c∗(v, σ)] = max
v∈V

max
σ∈Σ

E[uP |σ, c∗(v, σ)].

9We assume that the principal can commit to using a mixed strategy. Section 5 discusses credible ways
for the principal to do so. In particular, we suggest that mixing can be obtained by garbling the messages
provided by the monitor directly at the recording stage, before it even reaches the principal.

10The order of moves reflects the various parties ability to make more or less public commitments: the
principal can make fully public commitments, whereas the agent can only commit vis-à-vis the monitor:
public commitments to retaliate would be directly incriminating.
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Provided that payoffs in V satisfy Assumption 1 (or the relaxed assumptions of Section 3),

our analysis applies within the broader mechanism design problem.

Our decision to eschew endogenizing payoffs reflects what we perceive as great hetero-

geneity in the ability of principals to reliably affect the welfare of involved parties. Indeed,

even powerful international organizations such as the World Bank need to go through local

judiciary systems to target corrupt agents. For this reason, while payoffs are clearly a first

order policy instrument when available, we choose to focus on intervention profiles as our

main policy dimension of interest. One that we believe is novel, important, and largely

available to principals regardless of external institutional constraints they may be subjected

to.

2.2 The Trade-off Between Eliciting and Using Information

To frame the analysis it is useful to contrast the effectiveness of intervention policies when

messages are exogenously informative, i.e. when the monitor is an automaton with strategy

m(c) = c, and when messages are endogenous.

Fact 1 (basic trade-off). (i) If messages are exogenously informative, i.e. m(c) =

c, setting σ0 = 0 and σ1 = 1 is an optimal policy. There is no corruption and no

retaliation in equilibrium.

(ii) If messages are endogenous, theres exists λ > 1 such that for any intervention

policy σ satisfying σ1

σ0
≥ λ,

• the agent is corrupt and commits to retaliate conditional on intervention;

• the monitor sends message m = 0.

Point (i) follows from Assumption 1, which ensures that the agent refrains from cor-

ruption if intervention occurs with high enough probability. Since messages are exogenous,
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intervention can be fully responsive to the monitor’s message: it provides sufficient incentives

for the agent to be honest, and avoids costly intervention on the equilibrium path.

Point (ii) shows that this is no longer the case when messages are endogenous. In this

case, when the likelihood ratio σ1

σ0
is high, intervention itself becomes a very informative signal

of which message the monitor sent. This means that the agent can dissuade the monitor to

send message m = 1 while keeping incentive costs low, simply by threatening the monitor

with high levels of retaliation conditional on intervention.

To prevent corruption, the principal must therefore commit to trigger intervention with

sufficiently high probability even when she is obtains message m = 0. This makes the agent’s

own incentive problem more difficult to resolve, since retaliation must be carried out with

positive probability.

An anecdote. The main takeaway from Fact 1 is that a strictly positive baseline rate of

intervention σ0 > 0 is needed to ensure that information will flow from the monitor to the

principal. Indeed, this provides the monitor with plausible deniability, should her message

lead to an intervention, which makes incentive provision by the agent harder.

To provide a plausible illustration of how this mechanism may play out in practice, we use

the example of recent evolutions in British accounting-oversight policy.11 We emphasize that

the goal here is only to describe the trade-off identified in Fact 1 sufficiently realistically that

it can be used to rationalize existing data. This, however, is merely a suggestive anecdote

and there are clearly alternative interpretations of the data we discuss.12

Between 2004 and 2005 the UK’s Financial Reporting Review Panel — the regulatory

authority in charge of investing the accounts of publicly owned firms — radically changed its

investigation policy. It moved from a purely reactive policy — in which investigations were

11We are grateful to Hans Christensen for suggesting this example.
12In fact, concurrent changes make this example unsuitable for proper identification. For instance, over a

time period covering the data we bring up, accounting standards were being unified across Europe.
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only conducted in response to complaints filed by credible agents — to a proactive policy,

under which a significant number of firms were investigated each year regardless of whether

complaints were filed or not; credible complaints continuing to be investigated as before

(Financial Reporting Council, 2004). The change in the number of complaints is large, going

from an average of 4 a year in the period from 1999 to 2004, to an average of 50 a year in

the period from 2005 to 2011.13

This striking pattern can be mapped to our framework as follows. It turns out that

the natural monitor of a firm’s aggregate accounting behavior is the firm’s own auditor.

Under a purely reactive system, following intervention, the firm knows that its auditor must

have reported it. Of course, this puts the auditor in a difficult position, and is likely to

disrupt future business. In contrast, under a proactive system, baseline intervention rates

give the auditor plausible deniability should its client be investigated, thereby limiting the

damages to long-run cooperation. As a result, proactive investigations allow for higher rates

of complaints.

13The data is obtained from Brown and Tarca (2007) for years 1999 to 2004, and from the Financial
Reporting Review Panel (2005–2011) for years 2005 to 2011.
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2.3 Intervention, Reporting and Corruption

We now study in greater details patterns of corruption and information flow as a function

of intervention policy σ. Recall that we assumed the monitor was non-covetous, i.e. that

vM(c = 0,m = 1) < 0. We proceed by backward induction.

Reporting by the monitor. We begin by clarifying the conditions under which the

monitor will report corruption or not. Take as given an intervention profile σ = (σ0, σ1),

with σ0 < σ1, and a level of retaliation r conditional on intervention.

We first note that when the agent is not corrupt (c = 0), it is optimal for the monitor to

send message m = 0 regardless of retaliation level r. Indeed, we necessarily have that

σ1[vM(c = 0,m = 1)− r] ≤ σ0[vM(c = 0,m = 0)− r].

Note that this relies on the assumption that the monitor is non-covetous. When the monitor

may be covetous, even honest agents may threaten to retaliate to ensure that message m = 0

is sent.

Consider now the case where the agent chooses to be corrupt, i.e. c = 1. The monitor

will report corruption and send message m = 1 if and only if

σ1[vM(c = 1,m = 1)− r] ≥ σ0[vM(c = 1,m = 0)− r].

This holds whenever

r ≤ rσ ≡
[
σ1vM(c = 1,m = 1)− σ0vM(c = 1,m = 0)

σ1 − σ0

]+
(1)

where by convention x+ = max{x, 0}. Expression (1) suggests an instructive classification

of potential monitors.
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If vM(c = 1,m = 1) < 0 the monitor suffers from intervention even against a corrupt

agent. As a result, there will be intervention profiles σ such that rσ = 0: the monitor prefers

to send message m = 0 even in the absence of retaliation. This possibility is a prominent

concern in the context of foreign aid since reports of corruption can cause aid to be withheld

(Ensminger, 2013).

If instead vM(c = 1,m = 1) > 0, the monitor values intervention against a corrupt agent,

and for any intervention profile σ, positive amounts of retaliation rσ > 0 are needed to

dissuade the monitor from reporting corruption.

We define λ ≡ σ1

σ0
and note that rσ can be expressed only as a function of λ:

rσ = rλ ≡
[
λvM(c = 1,m = 1)− vM(c = 1,m = 0)

λ− 1

]+
.

Note that rλ is decreasing in likelihood-ratio λ: when the information content of intervention

is large, moderate threats of retaliation are sufficient to shut-down reporting.

Information manipulation and corruption. We now examine the agent’s behavior.

Consider first the agent’s incentives to influence reporting conditional on being corrupt, that

is, assuming that c = 1. Since retaliation r is costly to the agent, he either picks r = 0 and

lets the monitor send truthful messages, or picks r = rσ and induces message m = 0 at the

lowest possible cost. Recalling that λ = σ1

σ0
, the agent will manipulate messages through the

threat of retaliation if and only if:

σ1vA(c = 1) ≤ σ0[vA(c = 1)− kA(rσ)]

⇐⇒ λvA(c = 1) ≤ vA(c = 1)− kA(rλ). (2)
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Hence, the agent will choose not to be corrupt if and only if

πA +max{σ1vA(c = 1), σ0[vA(c = 1)− kA(rσ)]} ≤ σ0vA(c = 0). (3)

The corresponding patterns of intervention, corruption and reporting are illustrated in

Figure 1. For the purpose of inference, we are especially interested in the relationship between

reports and underlying corruption. In this example, even though reports are unverifiable and

silent corruption is a possibility, variation in reports across different policy choices provides

significant information about the underlying amount of corruption.

Consider old and new intervention profiles σO and σN such that

σO
0 < σN

0 , σO
1 < σN

1 , and
σN
1

σN
0

<
σO
1

σO
0

. (4)

We think of these two intervention profiles as policy experiments implemented on different

subsamples of a population of agents and monitors.14 Intervention profile σN involves strictly

more intervention than σO while being less informative about the monitor’s report. Let cO,

cN and mO, mN denote the corresponding corruption and reporting decisions in equilibrium

(conditional on σO and σN). The following properties hold.

Fact 2. (i) There exists λ0 ≥ 1 such that a corrupt agent induces message m = 0

if and only if σ1

σ0
≥ λ0.

(ii) If vA(c = 0) = 0, then mN = 1 implies that cO = 1.

(iii) For all payoffs satisfying Assumption 1, {mO = 1 and mN = 0} implies that

cN = 0.

Point (i) states that corrupt agents shut down information transmission whenever the

14Taking seriously this population view of the agency problem, we allow for heterogeneity across agents
and monitors in Sections 3 and 4.
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likelihood ratio of intervention rates is high enough. Point (ii) has important empirical

content. Assume that intervention is costless to non-corrupt agents. If corruption is reported

at a new policy σN which makes intervention more likely, while also decreasing the likelihood

ratio of intervention rates, then it must be that there was corruption (possibly unreported)

at the old intervention policy σO. This allows us to detect silent corruption. Point (iii)

shows how one can identify intervention policies that discourage corruption from unverifiable

messages alone: if people complained at the profile σO which involved less intervention and

less plausible deniability, then a lack of report at policy σN can be reliably interpreted as

evidence that there is no underlying corruption.

Figure 1: corruption and messages (c,m) as a function of intervention profiles (σ0, σ1); payoff
specification πA = 3, vA(c) = −4− 6c, vM(c,m) = −2 + c(3 + 2m), kA(r) = 5r.

Optimal intervention. It is instructive to characterize the optimal intervention profile:

we show that the optimal policy involves interior rates of intervention conditional on both

messages m = 0 and m = 1.
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Fact 3. The optimal intervention profile σ∗ satisfies (2) and (3) with equality:

σ∗
1 = λ0σ

∗
0 and σ∗

1 =
πA

−vA(c = 1)
+ σ∗

0

vA(c = 0)

vA(c = 1)
.

Profile σ∗ is interior: σ∗
0 ∈ (0, 1) and σ∗

1 ∈ (0, 1). Under policy σ∗, there is no corruption

and no retaliation on the equilibrium path.

Inference from Reports. We note that Fact 2 also allows to identify the optimal policy

from unverifiable equilibrium reports alone. Denote by m∗(σ) equilibrium reports at policy

profile σ.

Fact 4. Optimal policy σ∗ solves

inf
σN

{σN
0 | m∗(σN) = 0 and ∃σO satisfying (4) s.t. m(σO) = 1}.15 (5)

In words, the optimal policy is the one that requires the lowest level of baseline inter-

vention σ∗
0 consistent with: (1) message m = 0 being sent at σ∗; (2) message m = 1 being

sent at an intervention profile that involves less intervention and is more informative to the

agent, in the sense of exhibiting a higher likelihood-ratio of intervention rates σ1

σ0
. Point (2)

ensures that there is no silent corruption occurring at σ∗ and that reports of no corruption

can be trusted.

Of course, Fact 4 relies extensively on complete information and Assumption 1. We now

explore the extent to which it can be extended in a general framework allowing for arbitrary

incomplete information.

15More precisely σ∗ is the limit of intervention profiles (σn)n∈N attaining the infimum defined in (5).
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3 General Framework

Our general framework relaxes the assumptions of Section 2 in three important ways: first,

we allow for arbitrary incomplete information over the types of the agent and the monitor;

second we allow for the possibility of covetous monitors, i.e. monitors who benefit from

intervention against an honest agent; third we allow for the possibility of leaks which may

reveal information over messages sent by the monitor following intervention. This allows

us to identify general properties of our framework, which can be leveraged to make robust

inferences over unobserved patterns of corruption, and suggest effective policy profiles.

Payoffs. Payoffs take the same general form as in Section 2, but we weaken Assumption 1

as follows.

Assumption 2 (general payoffs). There is common-knowledge that payoffs satisfy

πA ≥ 0;

∀c ∈ {0, 1}, vA(c) ≤ 0;

∀c ∈ {0, 1}, vM(c,m = c) ≥ vM(c,m ̸= c).

We note that under Assumption 2, a positive mass of agents may get no benefits from

corruption (πA = 0), the certainty of intervention need not dissuade corruption (πA+vA(c =

1) > vA(c = 0)), and monitors may be covetous (vM(c = 0,m = 1) > 0). We continue

to assume that conditional on intervention, monitors have weak preferences for telling the

truth. Note that this doesn’t preclude the possibility of covetous monitors, i.e. monitors that

benefit from intervention happening against the agent. Consistently with this assumption,

we consider policy profiles such that σ1 ≥ σ0.
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Information. We relax the complete information assumption of Section 2 and allow for

arbitrary incomplete information. Monitors and agents have types τ = (τM , τA) ∈ TM×TA =

T such that the monitor’s type τM determines her payoffs (πM , vM), while the agent’s type

τA determines his payoffs (πA, vA), and his belief over the type τM of the monitor, which we

denote by Φ(τM |τA) ∈ ∆(TM). We assume that TM is a bounded subset of Rn.

Instead of only observing intervention, the agent now observes an abstract signal z ∈ Z

on which he can condition his retaliation policy. We assume that z = ∅ conditional on

no intervention and follows some distribution f(z|m, c) conditional on intervention (with ∅

remaining a possible outcome).16

The only restriction we impose on f is that for all c ∈ {0, 1},

probf (z = ∅|m = 0, c) ≥ probf (z = ∅|m = 1, c),

in words, message m = 0 is weakly more likely to lead to no consequences. Allowing for

such general informational environments ensures that our analysis applies broadly, even if

investigating institutions are not entirely trustworthy and may leak information back to the

agent.

We denote by µT ∈ ∆(T ) the true distribution of types τ ∈ T in the population. Distri-

bution µT may exhibit correlation between the types of the principal and the agent. This

distribution is unknown to the principal. We think of this underlying population as a large

population from which it is possible to sample independent principal agent pairs. The

primary objective of Section 4 is to identify general properties of this environment, and

characterize what inferences can be made on the basis of non-verifiable reports alone.

16For notational simplicity, we do not let this distribution depend on types, nor do we allow for differing
priors over the distribution of z between the agent and the monitor. Allowing for heterogeneity in signal
distribution and beliefs does not affect the analysis that follows.
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4 Patterns of Corruption and Reporting

4.1 The Basic Trade-off

The basic trade-off between using information efficiently and keeping information channels

open is the same as in Section 2 and Fact 1 extends without difficulty. Denote by c∗(σ, τA)

the optimal corruption decision by an agent of type τA under policy σ, by m∗(σ, τ) the

optimal message by a monitor of type τM facing an agent of type τA under policy σ, and by

λ = σ1

σ0
the likelihood ratio of intervention rates.

Proposition 1. Assume that messages are exogenously informative, i.e. that the monitor

is an automaton following strategy m(c) = c. In this case, any optimal intervention profile

σ∗ ̸= 0 must be such σ∗
0 = 0 and σ∗

1 > 0.

If instead messages are endogenous, we have that

lim inf
λ→∞

∫
TA

c∗(σ, τA)dµT (τA) ≥ probµT
(πA > 0);

∀τA s.t. vA(·) < 0, lim
λ→∞

∫
TM

m∗(σ, τ)dΦ(τM |τA) = 0.

As the likelihood ratio of intervention rates λ = σ1

σ0
gets arbitrarily large, all agents with

strictly positive value for being corrupt choose to be corrupt, and all agents who suffer strictly

from intervention shut down reporting (from either covetous or non-covetous monitors).

Note that the optimal intervention policy σ∗ may be equal to zero if the equilibrium cost

of intervention overwhelms the gains from limiting corruption. Indeed we no longer assume

that certain intervention is sufficient to dissuade agents from being corrupt. As a result the

principal may prefer not to intervene rather than incur high intervention costs for a marginal

reduction in corruption.
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4.2 The Geometry of Corruption and Reporting

Consider a given agent of type τA, we first show that without loss of generality, we can restrict

attention to retaliation schemes that involve retaliation only conditional on intervention.

Lemma 1. For any corruption decision c, it is optimal for the agent to retaliate only con-

ditional on intervention: for any intervention policy σ, the agent’s optimal retaliation policy

is such that r(∅) = 0.

Indeed, retaliation conditional on z = ∅ can only increases the monitor’s incentives to

report the agent as corrupt. A retaliation profile r : Z → [0,+∞) and a corruption decision

c induce a messaging profile m : TM → {0, 1} such that for all τM ∈ TM ,

m(τM) ∈ arg max
m̂∈{0,1}

σm̂[vM(c, m̂)− E(r|c, m̂)]. (6)

We denote by M = {0, 1}TM the set of message profiles. For any corruption decision c, and

any message profile m ∈ M, consider the measure of manipulation costs KτA
c,m(σ) defined by

KτA
c,m(σ) =

1

σ0

inf
r:Z→[0,+∞)

∫
Z×TM

σm(τM )kA(r(z))dF (z|c,m(τM))dΦ(τM |τA) (7)

s.t. ∀τM , m = m(τM) satisfies,

σm [E(vM |m, c)− E(r|m, c)] ≥ σ¬m [E(vM |¬m, c)− E(r|¬m, c)]

By convention, this cost is infinite whenever message profile m is not implementable, i.e.

when there is no retaliation profile r such that (6) holds. Noting that for all m ∈ {0, 1},
σm

σ0
= λm and σm

σ¬m
= λ2m−1, it follows that the cost KτA

c,m(σ) of implementing message profile

m can expressed as a function KτA
c,m(λ) of the likelihood ratio λ of intervention rates. The
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agent will choose to be honest if and only if

πA + σ0 sup
m∈M

{∫
TM

λm(τM )vA(c = 1)dΦ(τM |τA)−KτA
c=1,m(λ)

}
≤ σ0 sup

m∈M

{∫
TM

λm(τM )vA(c = 0)dΦ(τM |τA)−KτA
c=0,m(λ)

}
. (8)

This implies several useful properties for message manipulation and corruption decisions.

Proposition 2 (patterns of manipulation and corruption).

(i) Pick an agent of type τA and consider old and new intervention profiles σO, σN

such that σO = ρσN , with ρ > 0. Denote by cO, cN and mO,mN the corruption

decisions and message profiles implemented by the agent in equilibrium at σO and

σN . If cO = cN , then mO = mN .

(ii) Consider an agent of type τA. The set of intervention profiles σ such that

the agent chooses to be corrupt is star-shaped around (0, 0): if c∗(σ, τA) = 1, then

c∗(ρσ, τA) = 1 for all ρ ∈ [0, 1].

(iii) Fix an intervention ratio λ ≥ 1. Under the true distribution µT , the mass

of corrupt agents ∫
TA

c∗(σ, τA)dµT (τA)

is decreasing in baseline intervention rate σ0.

In words, point (i) states that whenever intervention profiles have the same ratio of

intervention rates, message profiles change if and only if the underlying corruption behavior

of the agent is changing. Points (ii) and (iii) show that keeping the information content

of intervention constant, agents are less likely to be corrupt as the intensity of intervention

increases.
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4.3 Inference from Unverifiable Reports

We now investigate the extent to which unverifiable reports can be used to make inferences

on underlying levels of corruption and inform policy choices. Note that the only data driven

observable available to the principal is the aggregate report

∫
T

m∗(σ, τ)dµT (τ).

We first highlight that in our rich environment, unverifiable messages at a single policy profile

σ imply no restrictions on underlying levels of corruption.

Fact 5. Take as given a policy profile σ, and a true distribution µT yielding aggregate report∫
T
m∗(σ, τ)dµT (τ). We have that

{∫
TA

c∗(σ, τA)dµ̂T (τA)
∣∣∣ µ̂T s.t

∫
T

m∗(σ, τ)dµ̂T (τ) =

∫
T

m∗(σ, τ)dµT (τ)

}
= [0, 1].

This follows from the fact that we allow for both covetous monitors and agents who get no

benefit from corruption. While reports at a single policy profile are uninformative, we now

show that variation in reports across policy profiles can imply useful bounds on underlying

levels of corruption.

Proposition 3. Consider policies σO and σN such that σN = ρσO, with ρ > 1. The following

holds:

(minimum honesty)

∫
T

[1− c(σN , τA)]dµ(τA) ≥
∣∣∣∣∫

T

[m∗(σN , τ)−m∗(σO, τ)]dµT (τ)

∣∣∣∣ ;
(minimum corruption)

∫
T

c(σO, τA)dµ(τA) ≥
∣∣∣∣∫

T

[m∗(σN , τ)−m∗(σO, τ)]dµT (τ)

∣∣∣∣ .
In words, changes in message patterns as policy profiles move along a ray provide lower

and upper bounds to underlying levels of corruption.

23



Imagine that some set of policy experiments σ ∈ Σ can be performed, where Σ is a set of

feasible policy profiles. Proposition 3 suggests the following heuristic to specify intervention

policies. Define vP = minc∈{0,1} vP (c), and denote by C the function such that for all

σ ∈ [0, 1]2,

C(σ) ≡ 1−max

{∣∣∣∣∫
T

[m∗(σ, τ)−m∗(σ̂, τ)]dµT (τ)

∣∣∣∣
∣∣∣∣∣ σ̂ ∈ Σ ∩ {ρσ|ρ ∈ [0, 1]}

}
.

From Proposition 3 we know that C is an upper bound to the amount of underlying corrup-

tion. Noting that for a given intervention profile σ, the principal’s payoff is

EµT
[uP |c∗,m∗, σ] = πP

∫
TA

c∗(σ, τA)dµT (τA) +

∫
T

vP (c
∗(σ, τA))σm∗(σ,τ)dµT (τ),

we obtain the following corollary.

Corollary 1. For any intervention profile σ, we have that

EµT
[uP |c∗,m∗, σ] ≥ πPC(σ) + vP

[
σ0 + (σ1 − σ0)

∫
T

m∗(σ, τ)dµT (τ)

]
.

Furthermore, if Σ = [0, 1]2, then the data-driven heuristic policy σ(µT ) defined by

σ(µT ) ∈ arg max
σ∈[0,1]2

πPC(σ) + vP

[
σ0 + (σ1 − σ0)

∫
T

m∗(σ, τ)dµT (τ)

]

is a weakly undominated strategy with respect to the unknown true distribution µT .

The logic underlying policy σ(µT ) can be exploited in alternative ways which may be more

practical. There are two basic steps: first, find an intervention profile that provides monitors

with sufficient plausible deniability that they are willing to send complaints; second, scale

up intervention rates in proportional ways until complaints diminish by a sufficient amount.
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5 Discussion

5.1 Summary

We model the problem of a principal who relies on messages from informed monitors to

target intervention against a potentially corrupt agent. The difficulty is that the agent can

dissuade the monitor from informing the principal by threatening to retaliate conditional

on intervention. In this setting, intervention becomes a signal which the agent can use to

effectively dissuade the monitor from complaining. As a consequence, effective intervention

strategies must garble the information content of messages. In particular, there needs to be

a positive baseline rate of intervention following the message “non-corrupt”, so as to provide

the monitor with plausible deniability in the event of intervention.

To explore the extent to which one can make inferences about unobservable corruption

on the basis on unverifiable messages alone, our framework allows for arbitrary heterogene-

ity across agents and monitors, as well as incomplete information. We establish general

properties of reporting and corruption patterns which can be exploited to derive bounds

on underlying corruption as a function of unverifiable reports alone. These bounds suggest

heuristics to identify robust intervention policies which can be described as follows: first find

intervention profiles that guarantee sufficient plausible deniability for monitors to complain,

then increase intervention rates proportionally until complaints fall at an acceptable level.

The appendix extends our analysis of inference in several way. First, we explore the

information content of reports in a partial equilibrium capturing short run responses to

policy changes. Second, we consider different objectives for inference, such as evaluating the

extent of silent corruption, i.e. corruption that is occuring but is not reported, as well as

gauging the proportion of covetous monitors in the population.
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5.2 Committing to mixed intervention policies

A strength of our analysis is that it does not presume that the principal has extensive

control over the payoffs of the agent and the monitor. This accommodates environments

in which the relevant principal may have to rely on existing institutional channels to carry

out interventions, and lets us focus on a more reliably available component of policy design:

the way messages are mapped to likelihood of intervention. The corresponding weakness of

our analysis is that we assume the principal is able to commit to mixed strategies which is

admittedly more demanding than committing to pure strategies.

One way to justify this assumption is to evaluate more closely the foundations for the

principal’s commitment power. We think of commitment power as arising from reputation-

formation in a repeated game. Committing to mixed strategies is equivalent to forming a

reputation under imperfect public monitoring. Fortunately, we know from Fudenberg and

Levine (1992) that type-based reputation formation arguments hold in such settings provided

that actions are statistically identifiable from signals. This is the case here since intervention

can be observed by the agent.

Beyond reputation formation, we emphasize that commitment to mixed strategies can be

achieved through hard-wired garbling of the messages provided by the monitor. Specifically,

instead of recording messages directly, the principal may instead record the outcomes of two

Bernoulli lotteries l0 and l1 such that

l0 =

 1 with proba σ0

0 with proba 1− σ0

and l1 =

 1 with proba σ1

0 with proba 1− σ1.

The monitor communicates by picking a lottery, with realized ouctome y. Conditional on y

the principal intervenes according to pure strategy i(y) = y. This approach has the benefit of

making plausible deniability manifest to participating monitors. Crucially, one can recover
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intended aggregate reports from outcome data alone: for any mapping m : T → {0, 1},

∫
T

m(τ)dµT (τ) =

∫
T
y(τ)dµT (τ)− σ0

σ1 − σ0

.

Hence the analysis of Section 4 continues to apply as is. Note that this implementation

of mixed strategies is closely related to the randomized response techniques introduced by

Warner (1965).17

5.3 Hard versus soft measures of corruption

Our analysis has focused on inference from unverifiable messages alone. This is motivated

by the fact that the principal need not have access to the outcomes of interventions, or

only with significant procedural delay, and with limited reliability. Still, while it is both

surprising and encouraging that one can obtain a handle on underlying corruption on the

basis of unverifiable messages alone, one should not exclude the possibility of obtaining

reliable direct measures of corruption.18 In fact, soft and hard measures of corruption can

usefully complement each other.

Indeed, even if the cost of obtaining hard measures of corruption limits their scalability,

even a limited sample of direct measures can be used to calibrate the meaning of unverifiable

reports obtained from agents. This would allow to more precisely exploit the information

content of messages, better adjust intervention policies, as well as confirm or not the predic-

tions of our analysis.

17The main difference is that typical randomized response techniques simply enjoin the monitor to garble
his response, but the monitor can always guarantee his preferred message. Hence, in our fully rational
framework, traditional randomized response techniques do not guarantee plausible deniability. This difference
is important when messages are used for equilibrium incentive design, rather than for one shot surveys.

18See for instance Bertrand et al. (2007), Olken (2007).
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Appendix

A Extensions

A.1 Short-run inference

Our analysis so far has emphasized inference in equilibrium. We now study inference under

a partial equilibrium in which the monitor can adjust her behavior, while the retaliation

policy of the agent remains fixed. This partial equilibrium may be more suited to interpret

data collected in the short-run

We assume that corruption, retaliation and reporting policies (cO, rO,mO) under policy

σO are at equilibrium. Under the new policy σN , we consider the short-run partial equi-

librium in which the agent’s behavior is kept constant equal to cO, rO, while the monitor’s

reporting strategy mN
SR best-replies to cO, rO under new policy σN .

We first note that in the short run, the policy experiment considered in Section 4 is

uninformative. Indeed, consider a benchmark policy σO and an alternative policy σN such

that

σN = ρσO, with ρ > 1.

Fact A.1 (no short run inferences). In the short-run equilibrium, message patterns are not

affected by new policy σN :

∀τ ∈ T,

∫
T

mO(τ)dµT (τ) =

∫
T

mN
SR(τ)dµT (τ).

However, as we now show, other experimental variation may be used to extract useful

information from short run data.
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A lower bound on silent corruption. Consider policies σO and σN such that

σO
0 < σN

0 and σO
1 = σN

1 .

Proposition A.1. Under the assumption that there are no covetous monitors and agents

know it, we have that

∫
T

cO(τA)[1−mO(τ)]dµT (τ) ≥
∫
T

[mN
SR(τ)−mO(τ)]dµT (τ).

A lower bound on covetousness. We now consider policies σO and σN such that

σO
0 < σN

0 and σO
1 = σN

1 .

Proposition A.2. Assume that f(z|c,m) = f(z|c). We have that

∫
T

[
mN

SR(τ)−mO(τ)
]
dµT (τ) ≤

∫
τ

1VM (c=0,m=1)>0dµT (τ).

A.2 Retaliation and Side Payments

The paper relies significantly on the assumption that the agent uses retaliation to incentivize

the monitor. This appendix has two objective: the first is to highlight that key results which

no longer hold if the agent uses side-payments instead; the second is to endogenize the use

of retaliation alone.

Comparative statics under side payments. A key result of the paper, Proposition

2 (iii), states that increasing intervention rates in a proportional way can only decrease

corruption. This is no longer true when the agent uses rewards to provide incentives.

To make this point, it is sufficient to consider the complete information example presented
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in Section 2, imposing that the agent can now only rely on rewards (which can be thought

of as negative levels of retaliation). It is immediate in this setting that rewards will only be

given if no intervention happens. Conditional on corruption, given a promised reward b > 0

following no intervention, the monitor will send message m = 0 if and only if

(1− σ0)b+ σ0vM(c = 1,m = 0) ≥ (1− σ1)b+ σ1vM(c = 1,m = 1)

⇐⇒ b ≥
[
σ1vM(c = 1,m = 1)− σ0vM(c = 1,m = 0)

σ1 − σ0

]+
≡ bσ

Let kA(b) denote the cost of providing reward b for the agent. For simplicity, we assume that

vA(c = 1) = vA(c = 0) = vA. The agent will choose to be corrupt if and only if

πA +max{−(1− σ0)kA(bσ) + σ0vA, σ1vA} ≥ σ0vA.

Consider a configuration such that −(1− σ0)kA(bσ) + σ0vA > σ1vA, and adjust πA so that

πA +max{−(1− σ0)kA(bσ) + σ0vA = σ0vA − ϵ.

Consider now a small increase ∆σ0 in σ0, keeping σ1

σ0
(and therefore bσ) constant. This

diminishes the payoff from corruption by [vA + kA(bσ)]∆σ0, and diminishes the payoff from

non-corruption by vA∆σ0. Hence for ϵ small enough, it follows that a proportional increase

in intervention rates can increases corruption.

Sufficient conditions for the use of retaliation only. We now consider the general

framework of Section 3, allow for retaliation to take negative values, i.e. r ∈ R, and provide

sufficient conditions for the agent to only use retaliation. The cost of retaliation kA is

extended over R, and for simplicity, we assume that it is differentiable. Recall that state z = ∅

occurs with probability 1 if there is no intervention, and with probability probf (z = ∅|c,m)
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if there is intervention. Let us define

p = min
(c,m)∈{0,1}2

probf (z = ∅|c,m).

The following holds.

Proposition A.3. Whenever

p× inf
r<0

k′
A(r) ≥ (1− p)× sup

r>0
k′
A(r),

for any intervention profile σ and any type τA, the agent’s optimal retaliation strategy is such

that for all z, r > 0, i.e. the agent uses no rewards.

Whenever the marginal cost of retaliation is low, and the probability of intervention

having consequences is low, it is optimal for the agent to use retaliation only to discipline

the monitor. Note that we do not assume that cost function kA is continuously differentiable.

In particular, there may be a kink at 0.

A.3 Example: the Case of Covetous Monitors

To illustrate the richness of messaging patterns that can arise when we allow for covetous

monitors, we explicitly extend the example presented in Section 2 to the case where

vM(c = 0,m = 1) ≥ 0.

In words, the monitor values intervention, at least on non-corrupt agents. This may be the

case if the monitor benefits from discrediting the agent, for instance she could hope to obtain

the agent’s position, alternatively she could benefit from replacing an honest agent with a

corrupt one.
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Reporting by the monitor. Take as given an intervention profile σ = (σ0, σ1), with

σ0 < σ1, and a level of retaliation r conditional on intervention.

When the agent is not corrupt (c = 0), the monitor sends message m = 0 if and only if

σ1[vM(c = 0,m = 1)− r] < σ0[vM(c = 0,m = 0)− r].

This holds if and only if

r ≥ r0σ ≡
[
σ1vM(c = 0,m = 1)− σ0vM(c = 0,m = 0)

σ1 − σ0

]+
.

Because the monitor is covetous, a non-corrupt agent may now have to threaten the monitor

with retaliation r0σ to induce the monitor to send message m = 0.

When the agent is corrupt, i.e. c = 1, the monitor will report corruption and send

message m = 1 if and only if

σ1[vM(c = 1,m = 1)− r] ≥ σ0[vM(c = 1,m = 0)− r].

This will hold whenever

r ≤ r1σ ≡
[
σ1vM(c = 1,m = 1)− σ0vM(c = 1,m = 0)

σ1 − σ0

]+
.

Note that since the monitor is covetous, we have r1σ ≥ 0. As before, r1σ is decreasing in the

ratio σ1

σ0
. In turn r0σ > 0 is decreasing in σ1

σ0
over the range of ratios σ1

σ0
such that r0σ > 0.

As before, the information content of intervention affects the level of retaliation needed to

influence messaging.

Information manipulation and corruption. We now examine the agent’s behavior.

Consider the agent’s incentives to manipulate information given a corruption decision c ∈
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{0, 1}. Since retaliation r is costly to the agent, he either picks r = 0 and does not influence

the monitor, or picks r = rcσ and induces message m = 0 at the lowest possible cost. Hence,

the agent will induce a message m(σ, c) such that

m(σ, c) ∈ arg max
m∈{0,1}

σm[vA(c)− 1m=0kA(r
c
σ)]. (9)

The agent will choose not to be corrupt if and only if

πA +max{σ1vA(c = 1), σ0[vA(c = 1)− kA(r
1
σ)]} ≤ max{σ1vA(c = 0), σ0[vA(c = 0)− kA(r

0
σ)]}.

(10)

The corresponding patterns of intervention, corruption and reporting are illustrated in Figure

A.3. The following property holds.

Fact A.2. There exist intervention profiles σO,σN satisfying (4) under which mO = 0, cO =

1, and mN = 1 and cN = 0.

Optimal intervention. Similarly to the case of the non-covetous monitor, the principal’s

payoff is maximized either by setting σ0 = σ1 = 0 and tolerating corruption, or by preventing

corruption at the smallest possible cost, i.e. by setting the policy σ∗ defined by

σ∗ ∈ argmin
σ

σmσ(c)

∣∣∣ σ satisfies (10) (11)

where m(c) is defined by (9).
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Figure 2: corruption and messages (c,m) as a function of intervention profiles (σ0, σ1); payoff
specification πA = 3, vA(c) = −6− 4c, vM(c,m) = (1− c)(6−m)+ c(10+ 2m), kA(r) = 15r.

B Proofs

B.1 Proofs for Section 2

Proof of Fact 1: We begin with point (i). Note that 0 is the highest payoff the principal

can attain. Under intervention policy σ0 = 0, σ1 = 1, Assumption 1 implies that it is optimal

for the agent to choose c = 0. As a result, there will be no intervention on the equilibrium

path. Hence the principal attains her highest possible payoff, and σ0 = 0, σ1 = 1 is indeed

an optimal intervention policy.

Let us turn to point (ii). Consider policies σ such that σ1

σ0
> 2 and the retaliation profile

under which the agent retaliates by an amount r ≡ 2vM(c = 1,m = 1)− vM(c = 1,m = 0).

Retaliation level r is chosen so that whenever the agent is corrupt, the monitor prefers to
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send message m = 0. Indeed, the monitor prefers to send message m = 0 if and only if

σ1[vM(c = 1,m = 1)− r] ≥ σ0[vM(c = 1,m = 0)− r]

⇐⇒ r ≥ λvM(c = 1,m = 1)− vM(c = 1,m = 0)

λ− 1
(12)

where λ = σ1

σ0
. Noting that the right-hand side of (12) is decreasing in λ and that λ > 2, we

obtain that the monitor indeed sends message m whenever r ≥ vM(c = 1,m = 1)− vM(c =

1,m = 0).

It follows that a corrupt agent’s expected payoff under this retaliation strategy is

πA + σ0[vA(c = 1)− kA(r)] ≥ πA +
1

λ
[vA(c = 1)− kA(r)].

Since πA > 0, it follows that this strategy guarantees the agent a strictly positive payoff for

λ sufficiently large. Given that the highest possible payoff for an agent choosing c = 0 is

equal to 0, it follows that for λ large enough the agent will be corrupt.

Given corruption, we now show that the agent will also use retaliation. Under no retali-

ation the agent obtains an expected payoff equal to πA + σ1vA(c = 1). Under the retaliation

strategy described above, the agent obtains a payoff equal to πA + σ1

λ
[vA(c = 1) − kA(r)].

Since vA(c = 1) < 0 it follows that for λ large enough, it is optimal for the agent to commit

to retaliation. �

Proof of Fact 2: Let us begin with point (i). Recall that λ = σ1

σ0
. We know from Section

2 that the corrupt agent induce message m = 0 if and only if (2) holds, i.e. if

λvA(c = 1) ≤ vA(c = 1)− kA(rλ).

From the fact that rλ is decreasing in λ and vA(c = 1) < 0, it follows that there exists λ0
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such that (2) holds if and only if λ > λ0.

Consider point (ii). Note that whenever c = 0, since vA(c = 0) ≤ 0, it is optimal for

the agent to never retaliate, which induces message m = 0. It follows that mN = 1 implies

cN = 1. Let us define the notation λN =
σN
1

σN
0

and λO =
σO
1

σO
0
. Since corruption is optimal for

the agent at σN , we obtain that

πA +max{σN
1 vA(c = 1), σN

0 [vA(c = 0)− kA(rλN )]} ≥ 0.

Since λN < λO, rλ is decreasing in λ, vA(·) ≤ 0 and σN > σO for the usual vector order, we

obtain that

πA +max{σO
1 vA(c = 1), σO

0 [vA(c = 0)− kA(rλO)]} ≥ 0.

Hence, it must be optimal for the agent to be corrupt at σO: cO = 1.

We now turn to point (iii). Since mO = 1, we know that cO = 1. Since the agent chooses

not to induce message m = 0 at σO, it must be that λO ≤ λ0. Since λN < λO, it follows

from point (i) above that a corrupt agent would not induce message m = 0 at σN . Hence,

it must me that cN = 0. �

Proof of Fact 3: By Assumption 1, the optimal intervention profile must discourage cor-

ruption in equilibrium (σ0 = σ1 = 1 guarantees no corruption and is preferred to corruption

in spite of high intervention costs). Since there won’t be corruption in equilibrium, the equi-

librium rate of intervention is σ0. The principal’s problem is therefore to find the smallest

value of σ0 for which there exists σ1 ≥ σ0 satisfying

πA +max{σ1vA(c = 1), σ0[vA(c = 1)− kA(rλ)]} ≤ σ0vA(c = 0). (13)

Let us first show that at the optimal policy, it must be that σ1vA(c = 1) = σ0[vA(c =
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1) − kA(rλ)]. Indeed, if we had σ1vA(c = 1) > σ0[vA(c = 1) − kA(rλ)], then one could

decrease σ0 while still satisfying (13), which contradicts optimality. If instead we had that

σ1vA(c = 1) < σ0[vA(c = 1) − kA(rλ)], then diminishing σ1 increases rλ which allows to

diminish σ0 while still satisfying (13). Hence it must be that σ1vA(c = 1) = σ0[vA(c =

1)− kA(rλ)]. By definition of λ0, this implies that σ1 = λ0σ0.

Hence (13) implies that πA+σ1vA(c = 1) ≤ σ0vA(c = 0). Furthermore this last inequality

must be an equality, otherwise one would again be able to diminish the value of σ0 while

satisfying (13). This implies that πA+σ1vA(c = 1) = σ0vA(c = 0). This proves the first part

of Fact 3.

We now show that this optimal policy is necessarily interior. We know that σ0 ∈ (0, 1)

from Fact 1 and the assumption that πA + vA(c = 1) < vA(c = 0). Let us show that σ1 < 1.

The first part of Fact 3 allows us to compute σ1 explicitly as

σ1 =
πA

−vA(c = 1)

1

1− vA(c=0)
λ0vA(c=1)

≤ πA

−vA(c = 1)

1

1− vA(c=0)
vA(c=1)

≤ πA

−vA(c = 1) + vA(c = 0)
< 1,

where the last inequality uses the assumption that πA + vA(c = 1) < vA(c = 0). This con-

cludes the proof of Fact 3. �

Proof of Fact 4: Fact 2 implies that any profile σN satisfying the condition in (5) is such

that c(σN) = 0.

We now show that there exists a sequence of intervention profiles converging to σ∗ that

satisfies the conditions in (5). We know from Fact 3 that policy σ∗ satisfies m∗(σ∗) = 0 and
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σ∗
1 = λ0σ

∗
0. Consider sequences (σ

O
n )n∈N and (σN

n )n∈N such that

σN
0,n =

(
1 +

1

n

)
σ∗
0 , σO

0,n =

(
1− 1

n

)
σ∗
0 ,

σN
1,n = λ0

(
1− 1

n

)
σN
0,n , σO

1,n = λ0

(
1 +

1

n

)
σO
0,n.

For n sufficiently large, the pair (σO
n , σ

N
n ) satisfies the condition in (5), and sequence (σN

n )n∈N

converges to σ∗. This concludes the proof. �

B.2 Proofs for Section 4

Proof of Proposition 1: Consider the case where the monitor is an automaton sending

exogenously informative messages m(c) = c. We show that it is optimal to set σ0 = 0.

Since messages are exogenous, it is optimal for the agent not to engage in retaliation

regardless of his type. Therefore the agent will be corrupt if and only if

πA + σ1vA(c = 1) ≥ σ0vA(c = 0).

Hence we obtain that the principal’s payoff is

∫
T

1πA+σ1vA(c=1)≥σ0vA(c=0)σ0vP (c = 0)dµT +

∫
T

1πA+σ1vA(c=1)<σ0vA(c=0)[πP + vP (c = 1)σ1]dµT

≤
∫
T

1πA+σ1vA(c=1)<[πP + vP (c = 1)σ1]dµT ,

where we used the assumption that vA(c) ≤ 0 for all c ∈ {0, 1}, and πP < 0. Hence it follows

that setting σ0 is optimal for the principal when messages are exogenously informative.

We now consider the case where messages are endogenous. A proof identical to that of

Fact 1 shows that whenever πA > 0 for λ sufficiently high, c∗(σ, τA) = 1. Hence by dominated
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convergence, it follows that

lim
λ→∞

∫
TA

c∗(σ, τA)

∫
µT (τA) ≥ probµT

(πA > 0).

We now show that for all types τA such that vA(·) < 0, the agent will induce the monitor

to send message m = 0. The proof is by contradiction. Consider an agent of type τA and

assume that there exists ϵ > 0 such that for all λ large enough,

∫
TM

m∗(σ, τ)dΦ(τM |τA) > ϵ.

This implies that given a corruption decision c, the agent’s payoff is bounded above by

πA × c+

[
σ0 + (σ1 − σ0)

∫
TM

m∗(σ, τ)dΦ(τM |τA)
]
vA(c) < πA × c+ σ0[1 + (λ− 1)ϵ]vA(c).

Consider the alternative strategy in which the agent chooses corruption status c but commits

to retaliate with intensity

r = sup
vM∈suppΦ(·|τA)

[2vM(c,m = 1)− vM(c,m = 0)]
1

minm,c probf (z ̸= ∅|m, c)

whenever z ̸= 0. This retaliation strategy ensures that all types τM in the support of Φ(·|τA)

choose to send message m = 0. Under this strategy the agent obtains a payoff greater than

πA × c+ σ0[vA(c)− kA(r)].

For λ sufficiently large that (λ − 1)vA(c) ≥ kA(r), this contradicts the hypothesis that

m∗ is an optimal message manipulation strategy for the agent. Hence it must be that

limλ→∞
∫
TM

m∗(σ, τ)dΦ(τM |τA) = 0. This concludes the proof of Proposition 1. �
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Proof of Lemma 1: Taking a corruption decision c as given, the agent’s expected payoff

under an optimal retaliation profile r : Z → [0,+∞) is

πA × c+ probµT
(m = 0|r, c, σ)σ0[vA(c)− E(kA(r)|m = 0, c)]

+ probµT
(m = 1|r, c, σ)σ1[vA(c)− E(kA(r)|m = 1, c)].

If it is optimal for the agent to engage in a positive amount of retaliation, it must be that

σ0[vA(c)− E(kA(r)|m = 0, c)] ≥ σ1[vA(c)− E(kA(r)|m = 1, c)],

since otherwise, no retaliation would guarantee the agent a greater payoff. We now show

that setting r(∅) to 0 increases the probability with which the monitor sends message m = 0.

Since it also reduces the cost of retaliation, it must increase the agent’s payoff.

A monitor sends a message m = 0 if and only if

−(1− σ0)r(∅) + σ0[vM(c,m = 0)− E(r|m = 0, z ̸= ∅, c)probf (z ̸= ∅|m = 0, c) (14)

− r(∅)prob(z = ∅|m = 1, c)]

≥ −(1− σ1)r(∅) + σ1[vM(c,m = 1)− E(r|m = 1, z ̸= ∅, c)probf (z ̸= ∅|m = 1, c)

− r(∅)prob(z = ∅|m = 1, c)].

Since σ1 ≥ σ0 and, by assumption, probf (z ̸= ∅|m = 1, c) ≥ probf (z ̸= ∅|m = 0, c), it follows

that whenever (14) holds for a retaliation profile such that r(∅) > 0, it continues to hold

when r(∅) is set to 0, everything else being kept equal. Hence optimal retaliation profiles

are such that r(∅) = 0. �

Proof of Proposition 2: We begin with point (i). We know from Section 4 that the
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agent’s payoff conditional on a corruption decision c and a message profile m can be written

as

πA × c+ σ0

{∫
TM

λm(τM )vA(c)dΦ(τM |τA)−KτA
c,m(λ)

}
.

It follows that given a corruption decision c, the agent induces a message profile m that

solves

max
m∈M

∫
TM

λm(τM )vA(c)dΦ(τM |τA)−KτA
c,m(λ).

Since this problem depends only on ratio λ = σ1

σ0
, it follows that mO = mN .

Let us turn to point (ii). Assume that it is optimal for the agent to take decision c = 0

at intervention profile σ. It must be that

πA + σ0

{∫
TM

λm(τM )vA(c = 1)dΦ(τM |τA)−KτA
c=1,m(λ)

}
≤ σ0

{∫
TM

λm(τM )vA(c = 0)dΦ(τM |τA)−KτA
c=0,m(λ)

}
.

Since πA ≥ 0, this implies that

∫
TM

λm(τM )vA(c = 0)dΦ(τM |τA)−KτA
c=0,m(λ)−

(∫
TM

λm(τM )vA(c = 1)dΦ(τM |τA)−KτA
c=1,m(λ)

)
≥ 0,

which implies that keeping λ constant

πA + σ′
0

{∫
TM

λm(τM )vA(c = 1)dΦ(τM |τA)−KτA
c=1,m(λ)

}
≤ σ′

0

{∫
TM

λm(τM )vA(c = 0)dΦ(τM |τA)−KτA
c=0,m(λ)

}
.

for any σ′
0 ≥ σ0. This implies that the agent will choose not to be corrupt at any profile ρσ,

with ρ > 1.
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Point (iii) follows from point (ii). For any σO, σN such that σN = ρσO with ρ > 1, we

have that for all types τA ∈ TA, c
∗(σO, τA) ≥ c∗(σN , τA). Integrating against µT yields point

(iii). �

Proof of Fact 5: Fix σ and a distribution µT such that
∫
T
m∗(σ, τ)dµT (τ) = M ∈

[0, 1]. Fix C ∈ [0, 1]. We show that there exists µ̂T such that
∫
T
m∗(σ, τ)dµ̂T (τ) = M and∫

TA
c∗(σ, τA)dµT (τA) = C.

For simplicity we work with type spaces such that the agent knows the type of the

monitor, and allow payoffs to be correlated. A possible environment is as follows. The agent

observes intervention and no other signal. With probability C, the agent gets a strictly

positive payoff πA > 0 from corruption. Conditional on πA > 0, with probability α, the

monitor has high value for intervention against corrupt agents vM(c = 1,m) = v > 0 =

vM(c = 0,m); with probability 1−α, the monitor has a low value for intervention on corrupt

agents: vM(c,m) = 0 for all (c,m) ∈ {0, 1}2. The cost of retaliation for the agent is such

that kA is convex, k′
A(0) = 0 and kA(v) = k > 0. For vA(c = 1) > 0 appropriately low, it will

be optimal for the agent to be corrupt, and commit to an arbitrarily low retaliation profile

so that the monitor with a low value for intervention sends message m = 0 and the monitor

with a high value for intervention sends message m = 1.

With probability 1 − C the agent gets a payoff πA = 0 from corruption and has an

arbitrarily high cost of retaliation. The agent’s values upon intervention are such that

vA(c = 1) < vA(c = 0). With probability β, the monitor has negative value for intervention

against a non-corrupt agent vM(c = 0,m) < 0. With probability 1 − β the monitor gets a

positive payoff v > 0 from intervention against the agent, regardless of his corruption. For

v and a cost of retaliation kA sufficiently high, the agent will choose not to be corrupt, the

non-covetous monitor will send message m = 0, and the covetous monitor will send message

m = 1.

42



For any C ∈ [0, 1], one can find α and β such that Cα + (1− C)β = M. This concludes

the proof. �

Proof of Proposition 3: From Proposition 2 (ii), we obtain that c(σO, τA)− c(σN , τA) ∈

{0, 1}. Using Proposition 2 (i), this implies that c(σO, τA) − c(σN , τA) ≥ |m(σO, τ) −

m(σN , τ)|. Integrating against µT implies that

∫
T

|m(σO, τ)−m(σN , τ)|dµT (τ) ≤
∫
TA

[c(σO, τA)− c(σN , τA)]dµT (τA)

⇒
∣∣∣∣∫

T

m(σO, τ)−m(σN , τ)dµT (τ)

∣∣∣∣ ≤ ∫
TA

[c(σO, τA)− c(σN , τA)]dµT (τA).

Using the fact that c(σO, τA) ≤ 1 and c(σN , τA) ≥ 0, we obtain the bounds given in Propo-

sition 3. �

Proof of Corollary 1: The first part of the corollary follows directly from Proposition

3. The second part of the corollary follows from Fact 4. Indeed, the strategy profile σ(µT )

coincides with the optimal strategy profile whenever payoffs are complete information and

Assumption 1 holds. �
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