
Journal of Systems Architecture 55 (2009) 457–467

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX
Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/ locate /sysarc
Accurate and efficient processor performance prediction via regression tree
based modeling

Bin Li a, Lu Peng b,*, Balachandran Ramadass b

a Department of Experimental Statistics, Louisiana State University, Baton Rouge, LA 70803, USA
b Department of Electrical and Computer Engineering, Louisiana State University, Baton Rouge, LA 70803, USA

a r t i c l e i n f o
Article history:
Received 6 February 2009
Received in revised form 11 August 2009
Accepted 16 September 2009
Available online 20 September 2009

Keywords:
Modeling techniques
Modeling of computer architecture
Measurement
Evaluation
Modeling
Simulation of multiple-processor systems
1383-7621/$ - see front matter � 2009 Elsevier B.V. A
doi:10.1016/j.sysarc.2009.09.004

* Corresponding author. Tel.: +1 225 578 5535; fax
E-mail addresses: bli@lsu.edu (B. Li), lpeng@lsu.edu

(B. Ramadass).
a b s t r a c t

Computer architects usually evaluate new designs using cycle-accurate processor simulation. This
approach provides a detailed insight into processor performance, power consumption and complexity.
However, only configurations in a subspace can be simulated in practice due to long simulation time
and limited resource, leading to suboptimal conclusions which might not be applied to a larger design
space. In this paper, we propose a performance prediction approach which employs state-of-the-art tech-
niques from experiment design, machine learning and data mining. According to our experiments on sin-
gle and multi-core processors, our prediction model generates highly accurate estimations for unsampled
points in the design space and show the robustness for the worst-case prediction. Moreover, the model
provides quantitative interpretation tools that help investigators to efficiently tune design parameters
and remove performance bottlenecks.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction design representatives from a large amount of design alternatives.
Computer architects usually evaluate new designs using
employing cycle-accurate processor simulators which provide a
detailed insight into processor performance, power consumption
and complexity. A huge design space is composed by the product
of the choices of many microarchitectural design parameters such
as processor frequency, issue width, cache size/latency, branch
predictor settings, etc. To achieve an optimal processor design, a
wide configuration spectrum of the design space has to be tested
before making a final decision. However, only configurations in a
subspace can be simulated in practice due to long simulation time
and limited resources, leading to suboptimal conclusions which
might not be applied to the whole design space. In addition, more
parameters brought by chip-multiprocessors (CMPs) make this
problem more urgent. In this paper, we propose to use a state-of-
the-art tree-based predictive modeling method combined with ad-
vanced sampling techniques from statistics and machine learning
to explore the microarchitectural design space and predict proces-
sor performance. This bridges the gap between simulation require-
ments and simulation time and resource costs.

The proposed method includes the following four components.
(1) The maximin space-filling sampling method that selects initial
ll rights reserved.

: +1 225 578 5200.
(L. Peng), bramad2@lsu.edu
(2) The state-of-the-art predictive modeling method – Multiple
Additive Regression Trees (MART) [8] which builds an ensemble
of trees with a highly prediction accuracy. (3) An active learning
method which adaptively selects the most informative design
points needed to improve the prediction accuracy sequentially.
(4) Interpretation tools for MART-fitted models which are able to
show the importance and partial dependence of design parameters
and shed light on the underlying working mechanism. These pro-
vide computer architects a quantitative and efficient approach to
optimize processor performance by adapting key design factors.

For each workload, 500 initial design points were sampled
based on the maximin distance methods chooses a subset of design
points (from the entire design space) in which the smallest pair-
wise distance is maximized (detailed in Section 2.1). Then another
500 points were sampled according to an adaptive sampling
scheme (described in Section 2.3). We repeat the sampling process
until 3000 design points were sampled for each benchmark. An
independent test set which consists of another 5000 points is used
to evaluate the prediction performance of fitted models. After sam-
pling and testing, the interpretation is performed based on the fit-
ted MART model with all the 3000 sampled points.

According to our experiments on 12 SPEC CPU2000 and four
SPLASH2 benchmarks, by sampling 3000 points drawn from a mic-
roarchitecture design space with nearly 15 million configurations
for each SPEC program and a CMP design space with nearly 9.7
million points for each SPLASH2 workload, we can summarize
the following results:

https://core.ac.uk/display/357331336?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.sysarc.2009.09.004
mailto:bli@lsu.edu
mailto:lpeng@lsu.edu
mailto:bramad2@lsu.edu
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc


Table 1b
CMP simulation parameters.a

Parameters Values

Core configuration In order, out of order
Issue width 1, 2, 4
Number of cores 1, 2, 4, 8
Off chip bandwidth 4, 8, 16, 24, 32 bytes/cycles
Memory latency (cycles) 200, 250, 300, 350, 400, 450, 500
L2 cache size 1, 2, 4, 8 MB
L2 cache block size 32, 64, 128 B
L2 cache associativity 1, 2, 4, 8, 16 way
L2 cache hit latency 7, 9, 11, 13 cycles
L2 replacement policy LRU, random
L1 I/D cache size 32 KB, 64 KB
L1 I/D cache block size 32, 64 B
L1 I/D cache associativity 1, 2, 4
Branch predictor Hybrid, 2-level

a L2 cache is shared and L1 I/D cache are private to each core.

458 B. Li et al. / Journal of Systems Architecture 55 (2009) 457–467
1. Performance prediction: application-specific models predict
performance, based on 5000 independent sampled design
points, with median percentage error ranges from 0.3% to 3.0%
for our single-core processor performance prediction in a design
space with about 15 million points and 0.5–1.4% for the CMP
performance prediction in a design space with about 9.7 million
points.

2. Worst-case performance: for the single-core processor perfor-
mance prediction, the worst percentage errors are within 7%
for 10 out of the 12 benchmarks; the largest worst-case per-
centage error is 22.5% for art. In the CMP performance study,
the worst percentage errors are within 16.1% for all the four
benchmarks.

3. Relative performance: compared to a classical linear regression
model with a random sampling scheme, our method typically
reduces 88% and 98% average percentage error for the single-
core and CMP study, respectively. Our method also has 8%
and 37% lesser average percentage error in the single-core and
CMP study separately than Multiple Additive Regression Trees
with a random sampling scheme.

4. Model interpretation: the model can be used to explain variable
importance and partial dependence to each variable. For the
two selected benchmarks, we find that ‘‘Width/ALU” (processor
issue width/the number of ALU units) and ‘‘L2Size” (L2 cache
size) are key factors to bzip2 while ‘‘Load store queue (LSQ)” is
important to mcf. Tuning these factors helps to improve proces-
sor performance to these programs. The partial dependence
plots clearly illustrate processor design trends and bottlenecks
for the processor.

The remainder of this paper is organized as follows. Section 2
introduces the MART-aided methodology. Section 3 describes the
experimental setup, while experiment results are presented in Sec-
tion 4. The model interpretation tools and model discussion are
demonstrated in Section 5. Section 6 introduces the related works.
Section 7 concludes this paper.
2. Methodology and background

We propose to use the nonparametric tree-based predictive
modeling method combined with advanced sampling techniques
from statistics and machine learning to explore the microarchitec-
tural design space efficiently. The fitted model based on hundreds
Table 1a
Single core processor simulation parameters.

Parameters Values

Fetch/issue/commit width 2/4/8 instructions
Branch predictor: bimod predictor or

2-level predictor <L1>/<L2>/
<history size>

Bimod predictor – 4096 entries or
8192 entries
2-level predictor: 1/4096/10, 1/8192/

10, 2/4096/10, 2/8192/10, 4/4096/10,
4/8192/10

Branch target buffer <number of
sets>/<assoc>

1024/4, 2048/2, 1024/8, 2048/4

Integer/floating ALUs 1/1, 2/1-related to issue width 2
2/1, 2/2-related to issue width 4
2/2, 4/4-related to issue width 8

Register update units 64/128/256 entries
Load store queue 16/32/64 entries
L1 inst. cache size 8 K, 16 K, 32 K, 64 KB
L1 data cache size 8 K, 16 K, 32 K, 64 KB
L2 unified cache size 256 K, 512 K, 1024 K, 2048 KB
Memory latency 100, 140, 180, 220, 260 cycles
L1 I/D and L2 block size 32B, 64B, 128B
L1 I/D cache associativity 1, 2, 4
L2 cache associativity 4, 8, 16
of regression trees can be summarized, interpreted and visualized
similarly to conventional regression models.

2.1. Maximin distance design

In experiment design, the distance-based space-filling sampling
methods are popular, especially, when we believe that interesting
features of the true model are just as likely to be in one part of the
experimental region as another. Among them, the maximin dis-
tance design is commonly used. The maximin distance criterion
chooses a subset of design points (from the entire design space)
in which the smallest pairwise distance is maximized.

In our study, some architectural design parameters are nominal
with no intrinsic ordering structure and the others are discrete
with a small number of values (see Table 1). Hence, we define
the following distance measure used in our study. Let wtj be the
weight for the jth design parameter. The distance between design
points x1 and x2 are defined as

dðx1;x2Þ ¼
Xp

j¼1

½wtj � Iðx1j–x2jÞ�; ð2:1Þ

where wtj ¼ log2ðnumber of levels for jth design parameterÞ and
IðAÞ is an indicator function, equal to one when A holds, otherwise
zero. Note that the weight for each design parameter is equal to
its information entropy with uniform probability for each of its pos-
sible values.

2.2. Regression model with MART

MART is one of several techniques that aim to improve the per-
formance of a single model by fitting many models and combining
them for prediction. MART consists of two parts: classification and
regression trees (CART [1]) and boosting technique.

CART analysis consists of two basic steps. The first step consists
of tree building, during which a tree is built using recursive binary
splitting. The term ‘‘binary” implies that we first split the space
into two regions, and model the response by a constant for each re-
gion. Then we choose the variable and split-point to achieve the
best fit again on one or both of these regions. Thus, each node
can be split into two child nodes, in which case the original node
is called a parent node. The term ‘‘recursive” refers to the fact that
the binary partitioning process can be applied over and over again
until some stopping criterion is reached. Each resulting node is as-
signed a value, which is based on the distribution of the observa-
tions in the training set that fall in that node. The second step
consists of tree ‘‘pruning’’, which results in the creation of a se-
quence of simpler trees, through the cutting off the weakest links.



B. Li et al. / Journal of Systems Architecture 55 (2009) 457–467 459
Tree-based methods are popular because they represent infor-
mation in a way that is intuitive and easy to visualize, and have
several other advantageous properties. First, the tree is inherently
nonparametric and can handle mixed-type of input variables natu-
rally, i.e. no assumptions are made regarding the underlying distri-
bution of the values for the input variables, e.g. numerical data that
are highly skewed or multi-modal, as well as categorical predictors
with either ordinal or non-ordinal structure. This eliminates
researchers’ time which would otherwise be spent in determining
whether variables are normally distributed, and making transfor-
mation if they are not. Second, the tree is adept at capturing
non-additive behavior, i.e. complex interactions among predictors
are routinely and automatically handled with relatively few inputs
required from the analyst. This is in marked contrast to some other
multivariate nonlinear modeling methods, in which extensive in-
put from the analyst, analysis of interim results, and subsequent
modification of the method are required. Third, the tree is insensi-
tive to outliers, and unaffected by monotone transformations and
differing scales of measurement among inputs. Despite these ben-
efits, tree is not usually as accurate as its competitors, and small
changes in training data can result in very different series of splits
[8].

Boosting is a general method for improving model accuracy of
any given learning algorithm, based on the idea that it is easier
to find an average many rough rules of thumb than to find a single
highly accurate prediction rule [20]. The idea of boosting has its
roots in PAC (Probably Approximately Correct) learning [23].
Kearns and Valiant [12] proved the fact that ‘‘weak” learners, each
performing only slightly better than a random decision, can be
combined to form a ‘‘powerful” learner. In boosting, models (e.g.
trees) are fitted iteratively to the training data, using appropriate
methods to gradually increase emphasis on observations modeled
poorly by the collection of trees. Boosting algorithms vary in how
they quantify lack of fit and select settings for the next iteration.

In MART, boosting is a form of ‘‘functional gradient descent”.
MART approximates the underlying function f(x) by an additive
expansion

f̂ ðxÞ ¼
XM

m¼1

bmbðx; cmÞ; ð2:2Þ

where the expansion coefficients fbmg
M
1 and the tree parameters

fcmg
M
1 are jointly fitted into the training data. The model is fitted

in a forward ‘‘stagewise” (not ‘‘stepwise”) fashion, meaning that
existing trees are left unchanged as the model is enlarged. In MART,
one starts with an initial guess f̂ 0ðxÞ and then for each iteration m =
1, ..., M:

(1) Compute the negative gradient fgig
n
i¼1 as the working

response
gi ¼
@Lðyi;xiÞ
@f ðxiÞ

jf ðxiÞ¼f̂ ðxiÞ
; ð2:3Þ

where Lðy; f̂ Þ is some loss function we expect to minimize. In
this study, loss function L is the squared error loss function
and g is partial derivative of L with respect to f(x).
(2) Fit a regression tree b(x; c) and a gradient descent step size b
which minimizes
Xn

i¼1

Lðyi; f̂ m�1ðxiÞ þ bbðxi; cÞÞ: ð2:4Þ

Note that the gradient descent step size b can be viewed as
the weight for the regression tree that minimizes the loss
function.
(3) Update the estimate of f(x) as
f̂ mðxÞ ¼ f̂ m�1ðxÞ þ bbðx; cÞ: ð2:5Þ

Namely, the updated estimator is the summation of the previ-
ous estimator and the weighted newly-fitted regression tree.
From a user’s perspective, MART, as applied in this paper, has
the following features. First, the model fitting process is stochastic
– i.e. it includes a random or probabilistic component. Particularly,
within each iteration, the regression tree is fitted based on a boot-
strap sample of the training set. The observations selected to fit the
regression tree are called in-bag samples, while the observations
not selected are called out-of-bag samples. The stochasticity (from
randomly select bootstrap samples within each iteration) improves
predictive performance, reducing the variance of the final model,
by only using a random subset of data to fit each new tree [7]. This
means that, unless a random seed is set initially, final models will
subtly differ each time they are run. Second, the gradient descent
step determines the contribution of each tree to the growing mod-
el. Studies in Ref. [6] show that using small values of gradient des-
cent step size always lead to better prediction performance. Hence,
we fix b at 0.01 in this study. Third, the tree complexity controls
whether interactions are fitted: a tree with depth of one (‘‘stump”
with only two terminal nodes) fits an additive model without
including any interaction. In this study, we set the maximum depth
for trees at three, which fits a model with up to three-way interac-
tions. Finally, the choice of M, i.e., when to stop the boosting algo-
rithm, is based on monitoring the estimation performance on out-
of-bag samples, which are the set of observations not selected
(from the training data) to fit trees within each iteration.

In this paper, MART is run by using the gbm, an R implementa-
tion of MART package produced by Greg Ridgeway [17]. For details
of MART, we refer the readers to Ref. [8]. For details of applying
MART in gbm, we refer the readers to its online manual at http://
cran.r-project.org/web/packages/gbm/gbm.pdf.
2.3. Adaptive sampling

Adaptive sampling, also known as active learning in machine
learning literature, involves sequential sampling schemes that
use information learned from previous observations to guide the
sampling process. Several empirical and theoretical studies have
shown that adaptively selecting samples in order to learn a target
function can outperform conventional sampling schemes. For
example, Freund et al. [5], Saar-Tsechansky and Provost [18] and
Sung and Niyogi [22] all employed this method.

In this paper, we select the 500 subsequent samples in the fol-
lowing four steps:

(1) Apply MART on the sampled points 20 times with different
random seeds.

(2) For each of the MART-fitted model, predict the unsampled
points in the design space.

(3) Sort these points (in a decreasing order) according to the
coefficient of variance (CoV, the ratio of standard deviation
to mean) for the model prediction.

(4) Set an initial distance threshold h. First, include the least
confident point (one with the largest CoV value). Then,
include the next least confident points if its distance to the
first point is above h. After that, we include the least confi-
dent points if its distances to the first two points are above
h. Repeat the procedure. If all 500 points have been selected,
increase the value of distance threshold h slightly and restart
the selection procedure until we reach the maximum
threshold that allows us to select all 500 points.

http://cran.r-project.org/web/packages/gbm/gbm.pdf
http://cran.r-project.org/web/packages/gbm/gbm.pdf


460 B. Li et al. / Journal of Systems Architecture 55 (2009) 457–467
Consider an easy unsampled point (in terms of its predictabil-
ity). The MART models (with different random seeds) should have
very similar predicted value on this point. However, for a difficult
point (with high uncertainty in prediction), then different models
will provide very different prediction values. Hence, to improve
the model by sampling more points, we need to select the most
uncertain ones, which can benefit the model greater than the easy
ones.

The intuition of selecting the subsequent samples as above is
based on the bias-variance decomposition. Note that the decompo-
sition is originally proposed for the squared loss, but can be gener-
alized to other losses such as zero-one losses for classification [3].
In practice, since the bias is unknown before measuring, we can
only measure the variance of predictions. However, there are two
concerns. First, we often care more about the relative scale than
the absolute loss in practice. This makes us to sort the design
points based on their CoV rather than the variances. Second, if
we select the points strictly according to their CoV, the selected
ones are often clustered. In other words, they tend to be close to
each other in the design space. In order to achieve the global accu-
racy, we try to select sampling points as separated as possible,
although the ones with large CoV should have higher preference
to be selected.

2.4. Stopping criterion

The procedure is stopped based on either the time/cost con-
straint or the performance measure. The former depends on inves-
tigators’ time and cost budget, while for the latter, we can monitor
the procedure based on a cross-validation measure or prediction
performance on an independent test set. Namely, if the prediction
accuracy is above a pre-specified level and/or the improvement of
prediction accuracy is below a pre-specified level, the procedure
will be stopped. Since we consider the stopping issue is more on
the user-end, in this study, we fix the total number of points we
need to sample throughout the paper.

2.5. Interpreting the model

Although it producing a model with hundreds to thousands of
trees, MART does not have to be treated like a black box. MART
model can be summarized, interpreted and visualized similar to
conventional regression models. This involves identifying those
parameters that are most influential in contributing to its variation
and visualizing the nature of dependence of the fitted model on
these important parameters.

The relative variable importance measures are based on the
number of times a variable is selected for splitting, weighted by
the squared improvement to the model as a result of each split,
and average over all trees. The relative influence is scaled so that
the sum adds to 100, with higher numbers indicating stronger
influence on the response.

Visualization of fitted functions in a MART model is easily
achieved using partial dependence function, which shows the ef-
fect of a subset of variables on the response after accounting for
the average effects of all other variables in the model. Given any
subset xs of the input variables indexed by s � f1; . . . ; pg. The par-
tial dependence of f(x) is defined as

FsðXsÞ ¼ Exns ½f ðxÞ�; ð2:6Þ

where Exns ½:� means the expectation over the joint distribution of
all the input variables with index not in S. In practice, partial depen-
dence can be estimated from the training data by
F̂sðxsÞ ¼ ð1=nÞ

Pn
i¼1 f̂ ðxs;xinsÞ, where fxinsgn

1 are the data values of
xns .
3. Experimental setup

We have two parts of experiments: single core processor simu-
lation and CMP simulation. For single core simulation, we modified
the sim-outorder, the out-of-order pipelined simulator in SimpleS-
calar [2], to be an eight-stage Alpha-21264 like pipeline. Only 12
(eight integer and four floating point) CPU and memory intensive
programs from SPEC2000 were selected. They are art, bzip2, crafty,
equake, fma3d, gcc, mcf, parser, swim, twolf, vortex and vpr. We
skipped a number of instructions for each SPEC program based
on a previous work [19]. Then we collected the number of execu-
tion cycles for the next 100 million instructions. Since we use gen-
eric simulators and benchmarks, we believe that the validated
model can be applied to other simulators and workloads. Table
1a lists 13 groups of design parameter choices for an out of order
(OoO) executed pipelined processor. The cross-product of these
choices is about 15 million design points per benchmark, repre-
senting an intractably large space to fully simulate.

For CMP simulation, we employed SESC [21] which has detailed
out-of-order processor simulation for each core and memory sub-
system. We downloaded pre-compiled binaries of four SPLASH2
applications from Ref. [21]. They are barnes, fmm, radiosity and ray-
trace. During execution of these programs, the number of slave
threads was set the same as the number of cores. We collected exe-
cution cycles for 100 million instructions. For results of multiple
cores, we took the average number of execution cycles of all cores
as CMP’s execution cycles. Table 1b listed 14 groups of design
parameter choices for a CMP. For each program, the design space
size is about 9.7 millions.

Fig. 1 shows a scheme plot of our sampling, modeling and inter-
pretation procedure. For each workload, 500 initial design points
were sampled based on the maximin distance criterion described
in Section 2.1. Then another 500 points were sampled according
to the adaptive sampling scheme described in Section 2.3. We re-
peated the sampling process until 3000 design points were sam-
pled for each benchmark. Notice that for the 3000 points, we
only explored approximately 0.02% of the total 15 million points
in the design space for the single-core study and about 0.03% of
the 9.7 million points. An independent test set consisting of an-
other 5000 points was used to evaluate the prediction performance
of fitted models. The interpretation was based on the fitted MART
model with all the 3000 sampled points.
4. Prediction performance evaluation

Table 2 shows the average and maximum percentage error (PE)

PE ¼ jðPredicted� ActualÞ=Actual j � 100% ð4:1Þ

of our method on an independent test set with 5000 design points.
We see that the average PE decreases as the training set sizes in-
crease (via adaptive sampling). In the single-core study, by sam-
pling only 0.02% of sample points from the design space, the
mean average PE’s are within 1% for 9 out of 12 benchmarks. For
art, which achieves least accuracy, the mean average PE is 4.18%.
Similarly, in the CMP study, by sampling only 0.03% of sample
points from the design space, the mean average PE’s are all within
2% for the four multithreaded benchmarks.

Lee and Brooks [14] proposed a linear regression modeling
method for performance prediction. In their paper, they used the
similar design space as ours. Their mean percentage error was
4.9%. _Ipek et al. [9] proposed a neural network based active learn-
ing method to explore the design space. Although their design
spaces are quite different from ours, they reported 4–5% error on
average on the CMP study based on training the model on 1.03%
sample drawn from the design space (about 2500 sampled design



Fig. 1. Overview of the proposed MART model.

Table 2
Summary of relative prediction performance with specified error and sample size.

Benchmark 0.0067% Sample (1000 pts.) 0.013% Sample (2000 pts.) 0.02% Sample (3000 pts.)

Mean PE Max PE Mean PE Max PE Mean PE Max PE

Single-core study
art 6.30 42.79 4.63 24.95 4.18 22.56
bzip2 0.73 4.50 0.46 3.16 0.41 3.33
crafty 1.62 13.11 1.02 7.17 0.87 5.53
equake 2.65 18.69 2.26 15.77 2.13 15.04
fma3d 0.91 5.43 0.70 3.36 0.62 2.96
gcc 0.74 4.04 0.49 3.02 0.43 2.26
mcf 0.67 4.99 0.50 4.22 0.46 4.24
parser 0.83 4.90 0.52 3.65 0.42 2.30
swim 1.44 9.59 0.90 5.94 0.66 4.63
twolf 1.83 10.36 1.38 7.53 1.23 6.31
vortex 1.36 13.07 0.93 7.11 0.80 6.88
vpr 0.98 6.93 0.62 4.53 0.53 4.32

0.01% Sample (1000 pts.) 0.02% Sample (2000 pts.) 0.03% Sample (3000 pts.)

CMP study
barnes 2.53 17.26 2.05 13.43 1.90 13.91
fmm 2.17 15.71 1.72 11.78 1.45 10.15
raytrace 1.12 21.90 0.83 17.36 0.75 16.02
radiosity 1.02 9.08 0.79 7.12 0.74 6.4

B. Li et al. / Journal of Systems Architecture 55 (2009) 457–467 461
points). Hence, we conclude that our method has a highly compat-
ible mean PE compared to those two methods.

One advantage for the tree-based methods is that they are
highly stable and robust to the outliers (or extreme values). A com-
mon way to evaluate the robustness of a method is to check the
worst-case performance. Table 2 also shows the maximum per-
centage errors among the 5000 testing points. By exploring 0.02%
of the design space in the single-core study, the maximum PE is
less than 10% in 10 out of 12 benchmarks. Even in the least accu-
rate benchmark, art, the maximum PE is 22.55%. In the CMP study,
the maximum PE is within 20% for the four benchmarks. As com-
parison, the maximum PE, in Lee and Brooks [14], is 20.298%. In
the CMP study from _Ipek et al. [9], their maximum PE ranges from
about 34% to 53%. Therefore, our method has a comparable maxi-
mum PE to Lee and Brooks’ work and a highly compatible worst-
case performance to _Ipek et al.’s approach. This shows strong
robustness of our models.
Fig. 2 shows the average PE’s (black line) with different number
of sampled points in the single-core study. The x-axis represents
the portion of full parameter space simulated to form the training
sets, and the y-axis stands for the average percentage error rate
across the independent test set. The dashed lines represent the
mean plus/minus one standard deviation of PE’s. We see that the
average percentage error rate decreases monotonically as the
training set size increases (via adaptive sampling).

Fig. 3 depicts the empirical Cumulative Distribution Function
(CDF) plots of percentage errors (on test set) with about 0.02%
sampled points in the single-core study. The x-axis shows the
PE, and the y-axis shows the percentage of data points that
achieve error less than each x value. We see that for 9 out of
12 benchmarks, more than 90% of the points are predicted with
less than 2% error. The three with largest percentage errors are
art, equake and twolf. For these three workloads, more than 90%
of the points are predicted with less than 10%, 5% and 3% error,



Fig. 2. Prediction accuracy of the models on the design space (adaptive sampling in single-core study).

462 B. Li et al. / Journal of Systems Architecture 55 (2009) 457–467
respectively. Figs. 4 and 5 illustrate the average PE’s (with stan-
dard deviations) across different number of sampled points and
CDF plots in the CMP study. Note that for all the four bench-
marks, 90% of the points are predicted with less than 4.2%
error.

The reasons that our method achieves high prediction accuracy
lie in twofolds: (1) the superior prediction performance inherited
from MART; (2) and the proposed adaptive sampling scheme. To
illustrate the robustness of our model, we compare the predictive
ability of our method with another two regression models, differ-
ing in specification and data used to perform the fit. The two mod-
els are listed as follows.

(1) R + M: Fitting MART on the randomly selected sample points.
(2) R + L: Fitting traditional linear regression model with all pos-

sible two-way interactions on randomly selected sample
points. This resembles the linear regression approach pro-
posed in Ref. [14], which represents one of the best recent
predictive models for processor performance.

Table 3 lists the relative percentage errors in R + L and R + M
against our proposed method. The numbers in Table 3 are the ra-
tios of the average and maximum PE (based on the test set) from
the specified model and the proposed method. Note that in Table
3, the larger the numbers, the more improvements from using
our proposed method. If the ratio is equal to one, it means that
the average PEs are the same. From Table 3, we have the following
two conclusions:

(1) The ratios for R + L are larger than those for R + M in both
studies, which means using MART substantially improves
the prediction performance under the random sampling
scheme. This is due to the fact that MART is adept at captur-
ing nonlinear and non-additive behavior, e.g. nonlinear
dependence and interactions among independent variables
are routinely and automatically handled.

(2) The ratios of relative prediction performance for R + M are
greater than 1 in most of cases of the single-core study
and all the cases in the CMP study. The benefit of using adap-
tive sampling scheme is obvious, especially in the CMP
study. For example, with 0.03% of the sampled points, using
the proposed adaptive sampling scheme reduces more than
37% of the average PE for all of the four benchmarks and
more than 95% worst-case PE for three out of the four bench-



Fig. 3. Empirical CDF of prediction errors (single-core study).

Fig. 4. Prediction accuracy of the models on the design space (adaptive sampling in the CMP study).

B. Li et al. / Journal of Systems Architecture 55 (2009) 457–467 463
marks. Note that 37% comes from (1.37 � 1) � 100% in the
‘Mean PE’ column for R + M, while 95% comes from
(1.95 � 1) � 100% in the ‘Max PE’ column for R + M. Multi-
threaded programs running on CMPs generates high vari-
ability which can be easier caught by our adaptive
sampling method compared to random sampling approach.
The comparisons illustrate the robustness of our proposed
method.
5. Model discussion, interpretation and visualization

5.1. Model discussion

5.1.1. Statistical justification of test set size
In this study, we evaluated the prediction performance based

on 5000 independently and randomly selected test samples. Com-
pared with the overall design space, it is still a small set. A natural



Fig. 5. Empirical CDF of prediction errors for the CMP performance study.

Table 3
Summary of relative predictive accuracy (against A + M) with specified sample size.

Benchmark 0.013% Sample (2000 pts.) 0.02% Sample (3000 pts.)

R + L R + M R + L R + M

Mean PE Max PE Mean PE Max PE Mean PE Max PE Mean PE Max PE

Single-core study
art 4.05 3.76 1.12 1.09 4.44 3.89 1.00 1.04
bzip2 7.40 4.13 1.21 1.31 8.27 4.02 1.11 1.01
crafty 7.62 6.02 1.11 1.41 8.64 7.41 1.10 1.50
equake 2.74 2.50 1.04 1.00 2.81 2.54 1.04 0.94
fma3d 3.25 3.79 1.07 1.22 3.56 4.32 1.04 1.14
gcc 9.63 7.25 1.07 1.52 10.89 9.47 1.10 1.59
mcf 10.90 4.99 1.06 1.15 11.84 4.58 1.10 1.05
parser 7.83 4.06 1.06 0.90 9.45 6.33 1.08 1.19
swim 14.76 8.99 1.06 0.87 20.11 10.67 1.04 0.78
twolf 3.55 4.26 1.05 1.20 3.90 4.93 1.04 1.44
vortex 3.87 2.87 1.11 1.67 4.38 2.77 1.11 1.40
vpr 13.25 6.89 1.14 1.03 15.26 7.45 1.18 1.02

0.02% Sample (2000 pts.) 0.03% Sample (3000 pts.)

CMP study
barnes 25.68 15.20 1.38 1.89 27.55 12.67 1.37 1.95
fmm 48.50 27.79 1.66 2.19 57.86 31.26 1.83 2.24
raytrace 65.58 10.18 1.64 1.15 72.29 10.12 1.69 1.09
radiosity 65.57 24.39 1.42 1.98 70.36 23.62 1.50 2.01

464 B. Li et al. / Journal of Systems Architecture 55 (2009) 457–467
question is: whether the test sample size is large enough to have
an accurate evaluation of the prediction performance. Hence, we
applied bootstrapping technique to justify our choice of test sam-
ple size. Bootstrapping developed by Efron [4] is a general tool of
estimating statistical properties of an estimator (e.g. the 95% con-
fidence interval for the median and mean percentage errors). By
using bootstrapping, we can estimate the confidence interval for
the mean and median PE based on 5000 test samples. Note that
the confidence interval based on bootstrapping does not assume
any distribution assumption on the population (i.e. normal distri-
bution assumption on PE’s). However, bootstrapping procedure
needs resampling the samples (in this case, they are the 5000 test
samples) with replacement a large number of times (say 1000
times). We can check whether the test sample size is large enough
based on the width of the bootstrap interval. Namely, if the width
of the bootstrap interval (BI) is small, it indicates the test sample
size is large enough and the mean and median PE based on this test
samples has small sampling variation. Table 4 shows the 95% boot-
strap interval based on 1000 bootstrapped samples for the mean
Table 4
Summary of bootstrap interval for mean and median PE.

Benchmark Mean
PE

95% BI on mean
PE

Median
PE

95% BI on median
PE

art 4.18 (4.05,4.31) 3.01 (2.90, 3.11)
equake 2.13 (2.08, 2.19) 1.62 (1.57, 1.67)
barnes 1.90 (1.85, 1.94) 1.47 (1.42, 1.51)
and median PE in three benchmarks, which have the highest mean
PE in single-core and CMP studies. We see that both upper and
lower confidence limits for the 95% bootstrapped intervals are very
close to their corresponding point estimates. For example, the
mean PE for art is 4.18 which is very close to its upper and lower
limits for the 95% bootstrap interval on mean PE. This indicates
that the test sample size is large enough to have an accurate esti-
mate of prediction performance in the study.
5.1.2. Sensitivity study of sampling set size
Like other regression methods, MART typically predict better

when trained on more data. On the other hand, data collection in
architecture design space exploration is expensive, and a tradeoff
exists between number of simulations and model accuracy. As
we mentioned in Section 2.4, determination of the training sample
size is an end-user issue. Namely, the stopping criterion is based on
either the investigator’s time and cost budget or convergence of
prediction performance. Fig. 6 shows two typical curves of the per-
cent of improvement in the single-core and CMP studies, which is
defined as the proportion of improvement for each additional
batch over the total improvement (in terms of the mean PE in
the test set) in six batches. For example, suppose the mean PE
based on the first 500 points (first batch) is 0.11. The mean PE
based on the first 1000 points (two batches) is 0.06. The mean PE
based on the total 3000 points (six batches) is 0.01. Then the total
improvement is 0.11 � 0.01 = 0.1. The improvement based on the
second batch is 0.06 � 0.01 = 0.05. Hence, the proportion of
improvement for the second batch is then (0.05/



Fig. 6. Sensitivity of training set size.

B. Li et al. / Journal of Systems Architecture 55 (2009) 457–467 465
0.1) � 100% = 50%. Based on Fig. 6, we see that the percent of
improvement after the fourth batch (2000 design points) is rela-
tively small comparing to the first three batches in both single-core
and CMP studies. Hence, the results suggest the reasonable number
of training samples to be 2000 for a large simulation study.
5.2. Variable importance

The proposed method can easily be used to analyze the impor-
tance of individual design parameters. Note the explanation of the
variable importance measure is presented in Section 2.5. This illus-
trates an inside view and provide computer architects with effi-
cient directions of improving processor performance. We select
two workloads bzip2 and mcf in the single-core study as an exam-
ple. Fig. 7 shows the relative variable influence, scaled to have a
sum added to 100. For bzip2 shown in the left figure, the most
important variables are ‘‘Width/ALU” and ‘‘L2Size” while ‘‘LSQ” is
the most important factors for mcf. From these figures, we can
see that CPU intensive programs such as bzip2 are very sensitive
to the instruction issue width and integer/floating point units as
well as L2 cache size. Increasing these parameters provides an effi-
cient way to improve processor performance. Mcf presents another
sensitivity preference on LSQ size. This is reasonable because mcf
has a considerable percentage of L2 cache misses due to its inten-
sive pointer chasing. These outstanding load instructions tend to
exhaust LSQ entries. The right part of Fig. 7 indicates that tuning
LSQ entries will obtain greater performance benefits than other de-
sign parameters. Similarly, the variable importance method can
also apply to multi-core processors. We found that the number
of cores is the most important parameters with an importance fac-
tor over 90 in average. This indicates that thread-level parallelism
is the key factor for CMPs performance.
Fig. 7. Variable Importan
5.3. Partial dependence plot

Another advantage of the proposed model is that visualization
and interpretation of fitted functions in a MART model can be
achieved through partial dependence plots even though functions
fitted by the MART models can be highly variable in shape and
are frequently non-linear. The partial dependence plots can pro-
vide computer architects with visible interactions between differ-
ent design parameters and performance trends and bottlenecks.
From the plots, they can select configurations with optimized per-
formance given a cost budget. As an example, we illustrate the
two-dimensional partial dependence plot of the execution cycle
of mcf to the two most important variables in Fig. 8. From this fig-
ure, we can see that a processor with a large LSQ size and cache
block size tends to have high performance (the white region
marked by ‘‘H”). On the other hand, the bottom left region marked
by ‘‘L” indicates low performance configurations with a large exe-
cution cycle suffering from the small sizes of the LSQ and cache
blocks. Moreover, we can see the tradeoffs between the design
alternatives from this figure. For example, to reach a performance
design goal which demands about 6.5e + 08 for the execution cycle
of mcf, one can design a processor with the following alternatives
for the LSQ and the cache block size: (1) the LSQ size equals to
26 and the cache block size is larger than 88 (part A of the line
marked with ‘‘6.5e + 08”); (2) the LSQ size ranges from 26 to 46
and the cache block size equals to 88 (part B of the line); (3) the
LSQ size equals to 46 but the cache block size ranges from 32 to
88 (part C of the line). With the help of this tool, computer archi-
tects can make judicious choices with other constraints from
power, cost and complexity.
6. Related work

Architectural design space exploration has recently emerged to
be an interesting problem in this community as increasingly large
number parameters brought by advanced circuit integration tech-
nology. _Ipek et al. [9] predicted performance of memory subsys-
tems, processors and CMPs via artificial neural networks (ANNs).
They combine neural network and active learning method to effi-
ciently explore large design space and predict unsampled points
in the design space. Lee et al. [14] proposed regression models
for performance and power prediction. They considered prediction
based on both linear and nonlinear regression models as well as
model inference such as significance testing for each design
parameter and assessing goodness of fit. They also used regression
models in Pareto frontier analysis, pipeline depth analysis and
multiprocessor heterogeneity study [15]. Joseph et al. [10] devel-
oped linear regression models that characterized the interactions
between processor performance and microarchitectural parame-
ce of bzip2 and mcf.



Fig. 8. The two-dimensional partial dependence plot of the execution cycle of mcf to the most important variables: ‘‘LSQ size” and ‘‘cache block size”.

466 B. Li et al. / Journal of Systems Architecture 55 (2009) 457–467
ters. They built the models by using Akaike’s Information Criteria
(AIC) directed iterative processes by which significance of the
parameters to the CPI performance were ordered. They further pro-
posed a non-linear regression model based on Radial Basis Func-
tion (RBF) networks for a superscalar processor performance
prediction [11]. The RBF centers are chosen from the centers of
the hyper-rectangles fitted from the regression trees. The working
procedure requires multiple stages including building regression
trees and RBF networks fitting, while MART fits the regression trees
iteratively. Ould-Ahmed-Vall et al. [16] used a model tree to ana-
lyze performance of a subset of SPEC2006 running on an Intel Core
2 Duo processor.

Compared with the classical linear regression model, ANNs and
RBF-networksour proposed method has the following features: (1)
our proposed method is particularly well suited for the discrete
(either ordinal or nominal variables) design space parameter; (2)
MART achieves extremely accurate prediction which is supported
by both lots of empirical evidence and theoretical proofs; (3) our
method is highly robust to the tuning parameter values (need min-
imal knowledge to tune the model); (4) it also comes with model
interpretation tools such as the measure of variable importance
and the partial dependence plot, which provide computer archi-
tects a quantitative view for design alternatives and may shed light
on the underlying mechanism. This paper extends the original con-
ference version which appeared in Ref. [13] by more results in Sec-
tions 3–5.
7. Conclusion

In this paper, we propose a MART model which exploits micro-
architectural design space and predicts performance of a single-
core processor and a CMP. This model samples up to 0.02% of the
full design space for a single-core processor with about 15 million
points but achieves a very high accuracy. The median percentage
error rate, based on an independent 5000 test points, ranges from
0.32% to 3.12% in 12 SPEC CPU2000 benchmarks. For a CMP design
space with about 9.7 million points, the median percentage error is
limited to a range from 0.50% to 1.89%. These results show that our
model has highly compatible prediction performance to recently
proposed regression and neural network models. The comparison
of worst-case prediction also shows that our model has stronger
robustness than both the linear regression (R + L) and the MART
with random sampling (R + M) approaches. In addition, our model
reflects performance trends and bottlenecks by showing the
importance and partial dependence of processor design
parameters.

References

[1] L. Breiman, J. Friedman, R. Olshen, C. Stone, Classification and Regression Trees,
Wadsworth, 1984.

[2] D. Burger, T. Austin, The Simple Scalar Tool Set, Version 2.0, Technical Report
#1342, CS Department, University of Wisconsin–Madison, June 1997.

[3] P. Domingos, A unified bias-variance decomposition and its applications, in:
Proceedings of the Seventeenth International Conference on Machine Learning,
2000, pp. 231–238.

[4] B. Efron, The Jackknife, the Bootstrap, and Other Resampling Plans, Society for
Industrial and Applied Mathematics, Philadelphia, Penn., 1982.

[5] Y. Freund, H.S. Seung, E. Shamir, N. Tishby, Information, prediction, and query
by committee, in: Proceedings of the Advances in Neural Information
Processing Systems, 1993, pp. 483–490.

[6] J. Friedman, Greedy function approximation: a gradient boosting machine, The
Annals of Statistics 29 (2001) 1189–1232.

[7] J. Friedman, Stochastic gradient boosting, Computational Statistics and Data
Analysis 38 (2002) 367–378.

[8] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning,
Springer, NY, 2001.

[9] E. _Ipek, S.A. McKee, B.R. Supinski, M. Schulz, R. Caruana, Efficiently exploring
architectural design spaces via predictive modeling, in: Proceedings of the
Twelfth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS XII), San Jose, CA, October 2006.

[10] P. Joseph, K. Vaswani, M. Thazhuthaveetil, Use of linear regression models for
processor performance analysis, in: Proceedings of the Twelfth IEEE
Symposium on High Performance Computer Architecture (HPCA-12),
February 2006, pp. 99–108.

[11] P. Joseph, K. Vaswani, M. Thazhuthaveetil, A predictive performance model for
superscalar processors, in: Proceedings of the International Symposium on
Microarchitecture, December 2006.

[12] M. Kearns, L.G. Valiant, Cryptographic limitations on learning Boolean
formulae and finite automata, Journal of the Association for Computing
Machinery 41 (1994) 67–95.

[13] B. Li, L. Peng, B. Ramadass, Efficient MART-aided modeling for
microarchitecture design space exploration and performance prediction, in:
Proceedings of the 2008 ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Annapolis, MD, June 2008.

[14] B. Lee, D. Brooks, Accurate and efficient regression modeling for
microarchitectural performance and power prediction, in: Twelfth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS XII), San Jose, CA, October 2006.

[15] B. Lee, D. Brooks, Illustrative design space studies with microarchitectural
regression models, in: Proceedings of the Thirteenth International Symposium
on High Performance Computer Architecture (HPCA-13), February 2007.

[16] E. Ould-Ahmed-Vall, J. Woodlee, C. Yount, K.A. Doshi, S. Abraham, Using model
trees for computer architecture performance analysis of software applications,
in: Proceedings of the 2007 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), April 2007.

[17] G. Ridgeway, Generalized Boosted Models: A Guide to the gbm Package,
<http://cran.r-project.org/web/packages/gbm/vignettes/gbm.pdf>, 2007.

[18] M. Saar-Tsechansky, F. Provost, Active learning for class probability estimation
and ranking, in: Proceedings of the Seventeenth International Joint Conference
on Artificial Intelligence, August 2001, pp. 911–920.

http://cran.r-project.org/web/packages/gbm/vignettes/gbm.pdf


B. Li et al. / Journal of Systems Arc
[19] S. Sair, M. Charney, Memory Behavior of the SPEC2000 Benchmark Suite,
Technical Report, IBM Corp., October 2000.

[20] R. Schapire, The boosting approach to machine learning – an overview, in: D.D.
Denison, M.H. Hansen, C. Holmes, B. Mallick, B. Yu (Eds.), MSRI Workshop on
Nonlinear Estimation and Classification, Springer, NY, 2002.

[21] SESC, <http://sesc.sourceforge.net/>.
[22] K. Sung, P. Niyogi, Active learning for function approximation, in: Proceedings

of the Advances in Neural Information Processing Systems, vol. 7, 1995, pp.
593–600.

[23] L.G. Valiant, A theory of the learnable, Communications of the ACM 27 (1984)
1134–1142.

Bin Li received his Bachelor degree in Biophysics from
Fudan University, China. He obtained his Master degree
in Biometrics (08/2002) and Ph.D. degree in Statistics
(08/2006) from The Ohio State University. He joined the
Experimental Statistics department at Louisiana State
University as an Assistant Professor in August, 2006. His
research interests include statistical learning and data
mining, statistical modeling on massive and complex
data, and Bayesian statistics. He received the Ransom
Marian Whitney Research Award in 2006 and a Student
Paper Competition Award from ASA on Bayesian Sta-
tistical Science in 2005. He is a member of the Institute

of Mathematical Statistics (IMS) and American Statistical Association (ASA).
Lu Peng received his Bachelor and Master degrees in
Computer Science and Engineering from Shanghai Jiao-
tong University, China. He obtained his Ph.D. degree in
Computer Engineering from the University of Florida in
Gainesville in April 2005. He joined the Electrical and
Computer Engineering department at Louisiana State
University as an Assistant Professor in August, 2005. His
research focus on memory hierarchy system, reliability,
power efficiency and other issues in CPU design. He also
has interests in Network Processor. He received an
ORAU Ralph E. Powe Junior Faculty Enhancement
Awards in 2007 and a Best Paper Award from IEEE

International Conference on Computer Design in 2001. Dr. Peng is a member of the
ACM and the IEEE Computer Society.
Balachandran Ramadass received his Bachelor’s degree
in electronics and communication engineering from
Pondicherry University, India and his Master of Science
degree in electrical and computer engineering in Loui-
siana State University. His research focuses are CMP
architecture, on-chip power optimization, interconnec-
tion network, heterogeneous CMP architecture.

hitecture 55 (2009) 457–467 467

http://sesc.sourceforge.net/

	Accurate and efficient processor performance prediction via regression tree based modeling
	Introduction
	Methodology and background
	Maximin distance design
	Regression model with MART
	Adaptive sampling
	Stopping criterion
	Interpreting the model

	Experimental setup
	Prediction performance evaluation
	Model discussion, interpretation and visualization
	Model discussion
	Statistical justification of test set size
	Sensitivity study of sampling set size

	Variable importance
	Partial dependence plot

	Related work
	Conclusion
	References


