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Ecologists often seek to understand patterns and processes across multiple spatial and
temporal scales ranging from centimeters to hundreds of meters and from seconds to
years. Hierarchical statistical models offer a framework for sampling design and anal-
ysis that can be used to incorporate the information collected at finer scales while
allowing comparison at coarser scales. In this study we use a Hierarchical Bayesian
model to assess the relationship between measurements collected on the ground at
centimeter scales nested within 2 × 3 m quadrats, which are in turn nested within
much larger (0.1–12 ha) plots. We compare these measurements with the Normalized
Difference Vegetation Index (NDVI) derived from radiometrically and geometrically
corrected 30-m resolution LANDSAT ETM+ data to assess the NDVI–Biomass rela-
tionship in the Cape Floristic Region of South Africa. Our novel modeling approach
allows the data observed at submeter scales to be incorporated directly into the model
and thus all the data (and variability) collected at finer scales are represented in
the estimates of biomass at the LANDSAT scale. The model reveals that there is a
strong correlation between NDVI and biomass, which supports the use of NDVI in
spatiotemporal analysis of vegetation dynamics in Mediterranean shrubland ecosys-
tems. The methods developed here can be easily generalized to other ecosystems and
ecophysiological parameters.
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1. Introduction

Ecologists often seek to understand patterns and processes across a broad range of spa-
tial scales (Levin 1992) including biomass, canopy structure, species composition, and
carbon flux (Nightingale et al. 2004). The challenges of accomplishing this are not only
collecting data at a range of spatial scales from disparate sources but relating these data
analytically in a coherent manner while quantifying the uncertainty (Cressie et al. 2009).
Satellite remote sensing, for example, offers a tantalizing quantity of data that are useful in
the study of vegetation dynamics across space and through time (e.g., Kerr and Ostrovsky
2003, Murwira 2005, Murwira and Skidmore 2006). Analysis of these data can provide
insight into phenology, succession, fire, and other biophysical properties such as primary
productivity and biomass in ecosystems (e.g., Song and Woodcock 2003, Hoare and Frost
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2004, Diaz-DelGado et al. 2003, Cohen et al. 2006). See Lu (2006) for a particularly thor-
ough review of various methods of estimating above-ground biomass with remotely sensed
data. In that review, Lu recognized the challenges of relating relatively coarse remotely
sensed data with finer ground measurements and reported that a ‘synthetic analysis of
multiscale data with a combination of different modelling approaches may be needed’ for
accurate biomass estimation.

There is often a disconnect between the scale of data collection for ‘ground-truthing’
exercises (often centimeters to meters) and the resolution of satellite data (tens to hundreds
of meters) (Chambers et al. 2007). Traditional statistics (i.e., OLS regression analysis)
are ill suited for data collected at different scales and so require some sort of aggrega-
tion to allow comparison with coarse resolution data (Gotway and Young 2002). Summary
statistics (such as the mean) or qualitative comparisons are often used for this purpose.
For example, Milich and Weiss (2000) ‘ground-truthed’ data from the Advanced Very
High Resolution Radiometer (AVHRR) by navigating to the center of each AVHRR pixel
along several transects in the Sahel along the southern boundary of the Sahara Desert.
Video images and qualitative descriptions of the vegetation at these centroids were consid-
ered useful indicators of the entire 58 km2 pixel. Samimi and Kraus (2004) used average
biomass measured at several points within 120 × 120 m plots to compare with several
remotely sensed spectral indices. Huang et al. (2009) used a series of separate regres-
sions to scale up from field observations to AVIRIS pixels (3.6 m resolution) and from
AVIRIS pixels to LANDSAT (30 m) pixels. Baccini et al. (2007) recently considered two
options for scaling up from 0.6 ha plots to 1 km2 MODIS data: (1) landscape stratification
and (2) averaging of fine spatial resolution (LANDSAT) maps. However, using an average
value as if it were an observed and representative value will likely lead to an overesti-
mate of the certainty in the results by disregarding the variability observed at finer scales
(Gotway and Young 2002). We present a third option that does not require aggregation of
the data collected at finer scales before comparison with coarser resolution satellite data.
Hierarchical Bayesian (HB) modeling offers a framework to explicitly incorporate data col-
lected at different scales without losing information by aggregation (Agarwal et al. 2005).
This is accomplished with the introduction of latent variables (Clark and Gelfand 2006b).
These variables represent unobserved (and practically unobservable) quantities (such as
the biomass of a 30 m × 30 m LANDSAT pixel) and are estimated using data that were
observed at different scales. In this study we provide an example of a HB statistical model
that integrates data collected at several scales (from centimeters to hundreds of meters) and
different types (from satellite imagery to biomass measurements). This allows the direct
fusion of remotely sensed data with finer measurements of biomass and the uncertainty
present at each spatial scale is passed up to the estimates at coarser scales.

1.1. Study region

In this study we illustrate a hierarchical approach to integrating data collected at different
scales by bringing together satellite and field measurements in a Mediterranean shrubland
ecosystem. The Cape Floristic Region (CFR) of South Africa (Figure 1) is an interna-
tionally recognized hotspot of floral biodiversity and is home to approximately 9000 plant
species, 69% of which are endemic (Goldblatt and Manning 2000). The CFR experiences
a Mediterranean climate with hot, dry summers and cool, wet winters in the western half
that transitions to more even precipitation seasonality in the east. Mean annual rainfall
ranges from 60 mm to over 3000 mm (Schulze 2007). There is evidence that short-interval
fires have become more frequent over the past few decades in some areas of the CFR
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Figure 1. Map illustrating the location of the Cape Floristic Region of South Africa and the three
regions visited for this study. The plots are shown as black polygons and slightly enlarged to be
visible at this scale.

(Forsyth and van Wilgen 2008) and that fire probability in the region increases in hotter,
drier conditions (Wilson et al. 2010). Thus, it is likely that warmer, drier conditions in
the future will lead to an enhanced fire regime. However, fire probability in Mediterranean
ecosystems is also dependent on biomass accumulation rates and their sensitivity to cli-
mate change (Mouillot et al. 2002). To make predictions about the impact of climate
change on the fire regime, we also need to understand how biomass accumulation rates
may change in the future. Unfortunately, collection of fuel load/biomass data is destruc-
tive and time-consuming and therefore limited to relatively small areas. The Normalized
Difference Vegetation Index (NDVI) has been used as a proxy for many vegetation char-
acteristics including biomass and burned area detection (e.g., Gerber 2000, Diaz-Delgado
et al. 2002), but the challenges of calibrating it to a specific ecosystem are not trivial (Song
and Woodcock 2003).

2. Methods

2.1. Data

2.1.1. Field data

The fynbos landscape is highly heterogeneous due largely to the regular disturbance of
wildfire (Cowling and Lombard 2002). Areas of equal age (time since fire) and similar
species composition range in size from less than a hectare to several hectares or more. We
used a hierarchical sampling scheme with large (0.1–12 ha) plots with 5–10 (depending on
plot size) randomly selected 2 m × 3 m (6 m2) quadrats, each with a grid of 10 subquadrat
points (Figure 2). Plot size was determined by the size of the homogeneous area. The plots
were selected by exploring the region and identifying areas with relatively homogeneous
vegetation structure, community composition, and time since fire. To capture the range of
possible biomass values, we selected plots that ranged from virtually zero biomass (recently
burned) to over 10 kg m−2. The plots were mapped with a GPS (Trimble GeoExplorer 3)
and the resulting data were differentially corrected.

We then navigated to the randomly located quadrats and collected hyperspectral
reflectance from 380 to 1000 nm using a portable spectrometer (OceanOptics USB4000,
OceanOptics, Inc., Dunedin, FL, USA) with a 2-m fiber-optic cord mounted to a pole
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Figure 2. Schematic of the hierarchical sampling scheme. Ten subquadrat measurements (s) were
nested within 2 m × 3 m quadrats (q), which were nested within 0.1–12 ha plots (p). Plots were
selected to be the same age (time since fire) and relatively homogeneous in community composition.
LANDSAT 7 ETM+ data with 30 m × 30 m resolution (shown in figure as a gray grid) were extracted
for each plot. We collected data from 16 plots in three regions (see Figure 1). For clarity, schematic
is not drawn to scale.

and held 1 m from the canopy. The fiber has a 25◦ field of view that resulted in each
measurement viewing a circle of radius 0.22 m. We also measured the quantity of
photosynthetically active radiation intercepted by the canopy (iPAR) with an AccuPAR
ceptometer (Decagon Devices, Inc., Pullman, WA, USA). Ambient light was measured
above the canopy and the percent light intercepted was calculated after measuring the
light penetrating to the ground through the canopy. Both the iPAR and the reflectance
were measured at each of the 10 subquadrat points described above. The iPAR was col-
lected as a proxy for biomass, with lower light penetration (higher iPAR) in quadrats
with high biomass. The linear relationship between ln(biomass) and iPAR is estimated
within the model. We also estimated the percent cover of four plant functional types
(PFTs) at the quadrat scale: (1) restio/graminoid, (2) ericoid/other woody sub-shrubs,
(3) proteoid shrubs, and (4) forbs following van Wilgen (1982) using the Braun-Blanquet
scale (Mueller-Dombois and Ellenberg 2002). Aboveground biomass was measured within
1 or 2 quadrats for each plot by cutting a proportion of the total standing biomass and
grouping the vegetation PFTs. Biomass samples were oven dried (∼70◦C) for at least
14 hours for herbaceous samples or 24 hours for shrubs and until weight change was
insignificant with further drying (up to 60 hours). Total aboveground dry biomass from the
quadrat for each PFT was calculated accounting for the moisture content of the vegetation
as follows (where B is biomass in g/m2):

Bdry
total = Bwet

total ∗ Bdry
sample

Bwet
sample

(1)
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Table 1. Region, coordinates, number of plots, and dates of field work and satellite
imagery used in the analysis. All dates are from 2008.

Region Lat Lon Number of plots Field Data LANDSAT Image

Swartberg −33.3 22.0 5 June 8–13 June 5
Cedarberg −32.4 19.1 6 June 19–26 July 21
Kogelberg −34.3 19.0 5 July 9–12 July 21

Our biomass estimates are similar to van Wilgen’s (1982) estimates of 670 g/m2

(4-year-old stand), 5100 g/m2 (21-year-old stand), and 7600 g/m2 (37-year-old stand).

2.1.2. Satellite data

The field data were compared with 30 m resolution satellite data from the LANDSAT
7 ETM+ sensor. We acquired LANDSAT images that were as close as possible
to the dates of the field sampling from the USGS Global Visualization Viewer
(http://glovis.usgs.gov/)(Table 1). We used the LANDSAT Level 1T (L1T) data that have
systematic radiometric and geometric correction by incorporating ground control points
and a Digital Elevation Model (DEM) for topographic accuracy. In our region of interest,
the scenes generally had over 100 ground control points available. LANDSAT has a 16-day
interval between images and the region is often cloudy, which led to a maximum difference
of 12 days between the field work and the image. LANDSAT images were converted to top
of atmosphere reflectance and topographically corrected using the calibration values con-
tained in the metadata and GRASS GIS processing routines (GRASS Development Team
2008). NDVI was calculated as NDVI = IR−Red

IR+Red . Because our sampling dates occurred after
the scan line corrector (SLC) on LANDSAT 7 failed in 2003, there were gaps in the data
(Howard and Lacasse 2004). Plots were selected to be near the scene centers to minimize
the effect of data loss on this analysis. The LANDSAT pixels contained by the plot bound-
aries were extracted and given an areal weight according to the percentage of the pixel that
was in the plot (i.e., pixels with less area in the plot were down-weighted). The relatively
large size of the plots reduces the error due to uncertainty in the exact location of the pixels
as we compare all pixels in the plot to all group measurements from the plot rather than a
single ground measurement to a single (potentially misaligned) pixel.

2.2. Modeling

We constructed a HB statistical model that links the data collected in the field to the scale of
the LANDSAT data (Figure 3). This approach allows the incorporation of diverse sources
of information, can account for unknown (or unknowable) influences, and can use infor-
mation from large numbers of latent variables (Clark 2005, Gelfand et al. 2005, Latimer
et al. 2006, Clark and Gelfand 2006b). The subquadrat measurements (s) are grouped into
quadrats (q), which are contained by plots (p). These plots, which were identified on the
ground a priori to be homogeneous, thus contain multiple samples of both field and satellite
(LANDSAT) data (l).

The measurements of iPAR and NDVI at the smallest scale (subquadrat) are treated as
random draws from an unobserved quadrat scale NDVI and iPAR. These quadrat scale
values are considered random variables with a full probability distribution (we used a
normal distribution, but any distribution could be substituted). These variables are then
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Figure 3. Directed acyclic graph (Clark and Gelfand 2006a) of the HB model structure used to
scale up biomass measurements to compare with LANDSAT-NDVI data. The variables are indicated
by capital letters: N = NDVI, B = ln(biomass), and I = intercepted PAR. The indices denote the
following measures of scale: l = LANDSAT, p = plot, q = quadrat, s = subquadrat. The boxes and
circles represent nodes in the model, which are either observed data (boxes) or unobserved, latent
variables (circles) that are estimated during model fitting. The arrows represent the links between
the various nodes and the directions of the arrows illustrate the conditional relationships. The text
defines the relationship between the nodes, with linear regressions and nesting of samples within
parent distributions. The spatial resolution of each node is coarsest at the plot level (on the left) and
increases to the right to the subquadrat measurements. Intercepted photosynthetically active radiation
(PAR) was used as a proxy for biomass in some quadrats.

used in a regression with the observed (harvested) biomass measurements to estimate the
biomass at the unharvested quadrats. Thus, for the quadrats where we did not directly mea-
sure biomass, we have a full probability distribution of the biomass that incorporates the
variability in the subquadrat NDVI and iPAR measurements and the uncertainty of the
regression parameters fit using the other, observed quadrats. These quadrat-level biomass
estimates are in turn considered observations of a larger, unobserved plot-level biomass.
So the uncertainty inherent in the quadrat estimates is included in the biomass estimate for
the entire plot. Rather than simply average the subquadrat measurements, and then aver-
age again to get a plot-level value, we consider all unobserved variables to be inexact and
therefore have some quantifiable uncertainty associated with them. We can take advantage
of the nested scales (i.e., points within quads within plots) in our study to use informa-
tion collected at finer scales to infer biomass estimates at the coarser scales. The model is
essentially a series of regressions and nesting, with the important distinction of passing the
uncertainty at finer scales to the coarser scales. So we can treat biomass at the plot level as
a random variable from which we have drawn samples (the quadrat and LANDSAT data).

The model structure can be written as follows:

Bp, l ∼ N (α1 + β1Np, l, σ
2
1 ) (2)

Bp =
np∑

l=1

(
Wp, lBp, l

)
(3)

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
C
o
n
n
e
c
t
i
c
u
t
]
 
A
t
:
 
1
2
:
3
3
 
3
1
 
M
a
y
 
2
0
1
1



International Journal of Geographical Information Science 515

np∑

l=1

Wp, l = 1 (4)

Bp,q ∼ N (Bp, σ 2
2,p) (5)

Ip,q ∼ N (α2 + β2Bp,q, σ 2
3 ) (6)

Np,q ∼ N (α3 + β3Bp,q, σ 2
4 ) (7)

Ip,q,s ∼ N (Ip,q, σ 2
5,p,q) (8)

Np,q,s ∼ N (Np,q, σ 2
6,p,q) (9)

where B is ln(biomass), I is intercepted PAR, N is NDVI, Wp,l represents the areal weight
of each pixel (l) in plot p (which is constrained to sum to 1), and np is equal to the num-
ber of LANDSAT pixels in each plot. Because the measured biomass values ranged from
1 to well over 10,000 g/m2, we used a log transform to better fit the data. The model
integrates the data collected at finer scales to estimate biomass at the LANDSAT (30 m)
scale. This allowed the regression of LANDSAT-NDVI values against biomass estimates
in Equation (2). The next stage in the model estimated biomass for each of the LANDSAT
pixels within each plot. This was accomplished by setting the overall plot biomass to be an
areal weighted average of the biomass of each LANSDAT pixel within it, using Equations
(3) and (4). The advantage of using relatively large plots was that we reduce the uncertainty
from georeferencing errors. Instead of comparing one small field plot to one large pixel (as
is typically done in ground- truthing excercises), we compared several field plots that each
contain many pixels from an area of known homogeneity. The sampling design was con-
structed so the quadrat-level biomass estimates were random samples from the larger plot
scale (see Equation (5)). As explained above, biomass estimates for some of the quadrats
were directly measured, but others need to be estimated using the NDVI and iPAR data
collected at all quadrats. To accomplish this, we conducted two regressions between the
quadrat-level biomass and ground NDVI (Np,q,s) and iPAR (Ip,q,s) in Equations (6) and (7).
But it was not possible to measure NDVI and iPAR directly at the quadrat level. So these
values were estimated using the subquadrat (s) iPAR and NDVI measurements (which are
independent samples drawn from each quadrat) in Equations (8) and (9).

The model was specified and fit using OpenBUGS (Thomas et al. 2006) software.
Convergence of the Markov chain Monte Carlo (MCMC) chains were assessed using the
Gelman–Rubin convergence statistic (Gelman and Rubin 1992) and visual inspection of
the chains. The model was run for 25,000 iterations, the first 5000 of which were discarded
and the remaining samples were thinned by 100 to reduce autocorrelation. Due to the hier-
archical nature of the model, it is not possible to calculate traditional fit metrics such as
the R2.

3. Results

The iPAR was useful as a proxy for biomass in the unharvested quadrats (Figure 4). The
regression between the log of the observed biomass values and quadrat iPAR values reveals
a strongly significant relationship (Table 2). This suggests that this measurement, with
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Figure 4. Posterior distributions of biomass, NDVI, and iPAR at the quadrat scale and LANDSAT
scale. Each black point represents the median posterior value for one of the 167 quadrats, with the
90% credible intervals represented with in gray. The triangles are the biomass values that were mea-
sured directly in the field. The dashed line is the fitted regression (plotted with the median posterior
samples of slope and intercept). Note that the x-axis is log transformed. The inset plots show the same
data with a linear x-axis for comparison. Panel (a) has biomass and iPAR at the quadrat scale, (b)
biomass and NDVI as measured with the field spectrometer at the quadrat scale, and (c) biomass and
LANDSAT-NDVI. Biomass was not directly observed at the LANDSAT pixel scale, so the median
regression line and credible intervals are shown. See Table 2 for regression coefficients.

calibration, can be used as an efficient proxy for biomass estimation in shrublands. The
relationship between biomass and NDVI at the quadrat scale was also significant, although
with larger uncertainty (Table 2). At the quadrat scale, there is substantial variation in veg-
etation cover, with bare ground in some areas and 2 m tall shrubs in others. The increased
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Table 2. Posterior estimates of regression parameters (median and 95% CIs in parenthesis).

Scale Regression α (Intercept) β (Slope) σ (SD)

Quadrat Iq vs. Bq 3.59 (−5.43, 12.97) 7.45 (5.86, 8.99) 10.46 (8.27, 13.1)
Quadrat Nq vs. Bq 0.23 (0.12, 0.34) 0.04 (0.02, 0.06) 0.26 (0.24, 0.29)
LANDSAT Bl vs. Nl 3.71 (2.89, 4.79) 13.89 (8.47, 18.53) 1.16 (0.81, 1.67)
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Figure 5. Posterior biomass estimates for the LANDSAT pixels within each plot. The point is
located at the median value for each plot and the gray bars show the 10–90% quantiles. Use of stand
age maps as the sole predictor of biomass and fire risk could lead to inaccurate fire risk estimates.

variability is likely driven by the heterogeneity of vegetation at submeter scales and the
sensitivity of NDVI to heterogeneity in the vegetation cover.

The biomass–LANDSAT-NDVI regression also revealed a significant relationship
(Table 2 and Figure 4c). The uncertainty is because biomass was not directly observed
at the scale of a LANDSAT pixel and thus had to be estimated from the rest of the model.
More importantly, however, is that the regression parameters are well defined: α1 = 3.71
(95% CI: 2.89–4.79) and β1 = 13.89 (95% CI: 8.47–18.53). When the plot-level biomass
estimates (with uncertainty) are plotted against stand age, increasing biomass in the years
following fire is apparent (Figure 5).

4. Discussion

This model was not constructed to test whether there is a relationship between NDVI and
biomass. The existence of such a relationship has been known for decades (e.g., Pearson
and Miller 1972, Tucker 1977). Instead, our objective with this model is to understand
the biomass–NDVI relationship spanning a range of spatial scales by integrating the types
of data that ecologists are able to collect in the field with the data provided by remote
sensing. The HB model structure allows this comparison and provides full uncertainty for
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the model parameters (Table 2). Using this model, we have shown that LANDSAT-NDVI
is a useful proxy for biomass in the CFR and quantified the uncertainty of the relation-
ship. The novelty of this approach is that the data observed at the quadrat scales were
incorporated directly into the model and thus all the data (and variability) collected at
finer scales are represented in the estimates of biomass at the LANDSAT scale. Unlike
many similar approaches, our method does not require any aggregation of the small-
scale data before fitting the model. This represents a departure from most ground-truthing
studies that often average across and disregard the observed variability at finer scales.
This modeling approach will facilitate the use of LANDSAT-NDVI data to map biomass
at regional scales and allow comparison with coarser resolution satellite data. In addi-
tion, we have shown that measuring light interception (iPAR) is an efficient and accurate
way to estimate biomass in shrubland ecosystems. More and larger ground observations
would always be useful. But with limited time and resources, this approach allows us
to use as much of the information contained in the data as possible, while quantifying
the uncertainty of predictions. Our modeling approach should be broadly applicable to
other systems and ecological questions. Because of the asymptotic relationship between
biomass and NDVI, our specific application of the model may work better and show lower
variance for shorter stature vegetation, such as grasslands and shrublands, than forested
systems.

This work supports the use of vegetation indices as a proxy for biomass and provides
a framework for data collection and analysis that can integrate data from disparate scales.
This analysis provides evidence that remotely sensed information can be useful to moni-
tor biomass (and fuel load) and post-fire vegetation ‘recovery.’ This is important in many
regions to monitor fire risk across large regions where field sampling is difficult. In the
CFR, the relationship between stand age and biomass (van Wilgen 1982) is often used
to define fire risk. For our plots, the relationship between biomass and age is quite noisy,
especially in older plots (Figure 5). This is understandable, given all the other variables
that contribute to biomass accumulation rates. However, the results presented here reveal
that relying solely on time since fire can be misleading because site productivity is also
likely to be affected by aspect, elevation, soil moisture, and other factors. Remotely sensed
data offer another source of information on fuel-load accumulation across large regions
and through time.

A challenging aspect of using remotely sensed vegetation indices to monitor biomass
accumulation is the saturation and increasing uncertainty of the estimates at higher NDVI
and biomass levels (Figure 4c). Both NDVI and iPAR saturate at higher biomass levels.
This has been observed in other systems (e.g., Steininger 2000, Lu 2005). Thus, remotely
sensed biomass estimates will be most sensitive and accurate for areas and times with lower
biomass. As biomass increases the estimates will become increasingly, but quantifiably,
uncertain.

Calibration of remotely sensed vegetation indices to vegetation attributes opens the
possibility to parameterize biomass accumulation models (with uncertainty) and to study
how biomass accumulation changes in response to fire and weather. The observed relation-
ship is likely to hold also for other, coarser resolution satellites, such as MODIS (250 m)
and AVHRR (1 km) (Brown et al. 2006). Brown et al. found that NDVI records from
AVHRR, SPOT-Vegetation, SeaWiFS, MODIS, and Landsat ETM+ Sensors are similar
enough to allow intercomparison and the development of long-term time series. LANDSAT
is very useful for high spatial resolution monitoring, but its relatively infrequent imaging
(16-day intervals between images) and the potential for clouds complicate its use in eco-
logical studies that require high temporal resolution. Post-2003 LANDSAT 7 images also
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suffer from missing data due to failure of the SLC (Howard and Lacasse 2004). Thus data
from the coarse-grain but more frequent sensors are also useful for spatiotemporal studies
of vegetation dynamics.

5. Conclusion

Issues of scale are a central subject in ecology (e.g., Levin 1992, Leibold et al. 2004, Beever
et al. 2006). This work has shown that a hierarchical sampling scheme and analytical
approach is useful to integrate the data collected at different scales. Using field data from
our model system, the shrublands of the CFR, we have shown that it is possible to collect
data at scales of centimeters to meters and to scale up to the resolution of relatively coarse-
grained satellite data. Because this is a statistical scaling approach and is not dependent on
understanding the mechanistic relationships, it is not limited to comparison of NDVI and
biomass. This approach can be applied to virtually any process that spans multiple scales
and the model framework is flexible to variations in sampling design. The number and size
of plots needed for this type of satellite validation will depend on the homogeneity of the
vegetation at the scale of the satellite data and the parameters of interest.

A more thorough understanding of the strength and nature of climatic controls on veg-
etation dynamics is vital to predicting the ecological impacts of climate change. Remote
sensing offers an abundance of relevant data, but without calibration it is difficult to inter-
pret for specific ecosystems. Decision makers (reserve managers, conservation biologists,
and policy makers) need reliable information and models to develop effective manage-
ment practices. This is especially important in the context of a changing environment, as
managers must make decisions based on predictions of future changes.
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