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Abstract 
This work presents a reliability model for determining the 
pipeline safety after obtaining information on the corrosion 
damage of the piping system by non-destructive inspection. The 
model is used to estimate pipeline system reliability in every 
region containing detected corrosion defects and the probability 
of either global system failure or of a given pipeline segment. 
The global failure probability incorporates the contribution of 
defects that are undetectable by the inspection tool. For this, the 
probability density functions of maximum depths and the 
number of undetected corrosion defects by the inspection tool 
are also determined. The failure associated to each corrosion 
defect is determined from the pipeline resistance and fluid 
pressure. The model is applied to a pipeline segment of a given 
length showing that defect measurement errors and the 
contribution of corrosion defects, undetected by inspection tool, 
can significantly influence the value of failure probability of the 
system. To calculate the failure probability of the system the 
directional simulation technique is utilized. 
 
Keywords: Pipeline, corrosion defect, detected and undetected 
defect, reliability, inspection. 
 
1. Introduction 
One of the main causes of deterioration in pipeline systems used 
by oil industry is the corrosion, originated by chemical agents of 
the fluid they transport (internal corrosion) and by external 
environment (external corrosion). The information obtained by 
non-destructive inspection gives enough certainty about the 
corrosion damage of the system, which has an effect on the 
decisions about future inspection and maintenance strategies. 
The expensive economic cost of inspections implies their 
periodical realization at intervals of several years. Inspection 
results allow knowing the system damage only partially, since 
inspection tools are incapable of detecting and measuring all 
defects. The reliability estimates will be influenced by the 
quality of the inspection tool. Mathematical tools that allow 
considering the contribution of defects undetected during the 
1  
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inspection need to be developed and thus estimating the system 
reliability with more likelihood.  
 
In this work a probabilistic model is introduced that allows 
estimating the pipeline reliability in each defect-containing 
region. It can also serve to calculate failure probability of the 
system or of the pipeline segment of a given length considering 
only detected defects. The model also allows considering the 
contribution to failure probability of the defects undetectable by 
inspection tool. The analysis evaluates pipeline performance in 
each corroded region, which is associated with the stress state in 
the pipeline wall due to fluid pressure in that region. In addition, 
the analysis incorporates the defect measurement error.  
 
2. Reliability model 
In operating conditions the failure of a pipeline with a corrosion 
defect will occur when the resisting pressure d

Rp maller than 

the demand pressure Dp  these pressures are  treated as 
uncertain, they can be respectively expressed by 

and 

, is s

. If

),,,( maxRR
d

R
d

R dlPP zX= ( )DDDD PP zX ,= , where 
 is a vector of random variables describing the pipeline 

geometry (diameter, wall thickness) and constitutive function of 
material (stress-strain relation).  is a vector of random 
variables describing the demand pressure variation at point 

RX

DX

( )yx, , where x  describes the pipeline longitudinal position 
and  the vertical position in relation to an appropriate 

Cartesian system.  and  are vectors of deterministic 
variables. A corrosion defect can be defined using its depth 

y

Rz Dz

( )xd  and position x , which defines a geometrical shape that for 
practical purposes herein is represented by a function with 
maximum depth  and length l . Based on the above 
assumptions, the pipeline failure can be represented by the safety 
margin: 

maxd
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The failure system occur when 0),,,( ≤maxdlW zX , where 

 and { }DR zzz ,= { }DR XXX ,=  with joint probability function 

. Thus, the failure probability of the system with a 
corrosion defect of given length and maximum depth can be 
estimated by the equation: 

)(⋅Xf

 
∫
≤

=
0W

X xx dfPF )(                                         (2)    

 
The integration symbol denotes a multiple integral. If data 
obtained from an inspection performed at a given time period are 
available, including geometry of  corrosion defects detected 
or, at least, maximum corrosion depth and length of each defect, 
the system failure can be expressed as the union of the events: 

Dn

 
(U

Dn

i
iD WG 0)( ≤⋅= )                                                                      

 
where  is the safety margin of defect . The failure 
probability is obtained by the equation: 

iW i

 

∫=
DG

F dfP xxX )(                                           (3)    

 
Rigorously, at the time of inspection, the system failure will be 
also associated with an uncertain number  of undetected 
defects, whose size is also uncertain, so the system failure can be 
expressed as: 

nN ND =
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( )⋅NDg  is the probability mass function of the number of 

undetected defects, ( )⋅= 0DetecDmaxf  is the probability density 

function of maximum depths of  these defects and ( )⋅Lf  is the 
probability density function of defects length conditional to 
maximum depths. Unlike the Eq. (3), the number of defects in 
the Eq. (4), is uncertain and equal to . The main 
problem to estimate the Eq. (4) consists of evaluating these latter 
functions, described above, that operate only on undetected 
defects.  

NDD Nn +
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The relation between the length and maximum depth of 
corrosion defects can be considered independent from the 
detection or non detection of the defect, ( )⋅Lf  can thereby be 
obtained from a sample of corrosion lengths and depths of each 
defect measured during inspection. In the following expressions, 
the events 1Detec =  and   indicate detection and non 
detection, respectively. 

0Detec =

 
According to Alamilla et al. [1], the probability density function 
of maximum depths of undetected defects can be obtained from 
the quality of the inspection tool as well as from the maximum 
depths of defects detected and measured by the inspection tool. 
This function was obtained from a Bayesian analysis and is 
given by the following equation: 
 

( ) ( )df
dF
dF

p
pdf DetecDmax

1Detec

1Detec

D

D
0DetecDmax 1)(

)(1
1 =

=

=
= ′′−

−
=            (5) 

 
where the quality of inspection tool is expressed in terms of 

( )dF 1Detec= , that is the probability to detect a corrosion defect 

with maximum depth . d ( )df DetecDmax 1=′′  is the Bayesian 

updated probability density function of maximum depths of 
detected defects and is obtained from inspection data.  is the 
probability of detecting a defect of uncertain size and is obtained 
as: 

Dp

 

( ) ( )Fp
∞

= dxxfx
d Dmax1DetecD ∫ =

0

                                       (6) 

 

0d  is the minimum depth considered in the analysis and is 

associated with the total number of detected defects Dn ′′ . The 
probability density function of maximum corrosion depths of 
detected and undetected defects is given by:  
 
 

( ) ( )df
dF

pdf 1DetecDmax
1Detec

D
Dmax =

=

′′=
)(

                                             

(7) 
 
 
More details about the development of the last equations are 
given in Alamilla et al. [1]. According to Shibata [2], in this 
work the distribution of detected defects is Poisson with rate 

Dn ′′ . According to Alamilla et al. [1], under assumption that here 
the number of undetected defects also comes from a Poisson 
probability mass function with rate:  
 

( ) DDDND ppnn −′′=′′ 1                                                         (8) 
 
Then the probability mass function ( )⋅

TNg  of the sum of 
detected and undetected defects will be Poisson with rate 

NDD nn ′′+′′ .  
2
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According to Eq. (8) if the quality of inspection is excellent so 
that , then  and the total number of defects 

only corresponds to . If 

1=Dp 0=′′NDn

Dn ′′ 21=Dp , then DND nn ′′=′′ . If the 

quality of inspection is very bad, then  and 0→Dp 0→′′Dn . 
In general, the quality of inspection can be expected to be 
neither excellent nor very bad, but at an intermediate level, in 
which the number of significant defects detected is greater than 
the number of undetected defects. Since the number of 
undetected defects corresponds to a pipeline interval of a given 
length , then the distance between undetected corrosion 
defects is given by an exponential probability density function 
with the parameter 

Sl

SND ln ′′ . 
 
On the other hand, it is possible to relate the probability density 
function ( )⋅=0DetecDmaxf  to the function describing the rate of 

undetected defects whose maximum depth exceeds a given 
value, obtained as follows: 
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where dxxfdF
d

d 0DetecDmax0DetecDmax )()(
0
∫ == = . Also, the 

total rate of defects that describes the total number of defects 
with depths greater than ,  can be expressed as d
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here . Using the total probability 

 it is easy to show that Eq. (10

)
  ; 0dd ≥        (1     

 

w ( ) ( ) dxxfdF
Dmax

d

dDmax ∫=
0

theorem ) can be expressed as sum 
of rates of detected and undetected defects as follows: 
 

( ) ( ) ( )ddd 1DetecdDmax0DetecdDmaxdDmax =>=>> ′′+′′=′′ ννν ; 0dd ≥   (11) 
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. Failure function 
cal model proposed by Oliveros et al. 

 corrosion defect whose geometric shape 

3
According to the mechani
[3], if a pipeline has a
can be represented by the function )(xd , wherein x  is in an 
appropriate Cartesian system that defines the position in the 
longitudinal direction and the corresp g depth )d  in the 
perpendicular direction; then, the resistant pressure of a pipeline 
with a corrosion defect can be estimated using the ex on: 

 

ondin (x

pressi

( ) mindddd gpppp −+=          (13)dLongGroovePlainPipeLongGrooveR        

 
that in accordance with Cronin and Pick [4] 

( )zd
PlainPipePlainPipe  is the resistant pressure of a pipeline 

wi out corros on defect presenting an upper limit, whereas 

d p=
th i s re

the vector 

p

( )mg zzz ,=  consist on the vector of geometrical 

properties o gz , and the vector mz  of mechanical 

properties of the steel; 

f the pipe, 

( )max
d
LongGroongGroove dpp ,z=  is the 

resistant pressure of the p whose 
geometry corresponds  depth 

)}({max
],[

xdd
baxmax ∈

ve
d
Lo

i line with a corrosion defect 
 a groove of infinite length and

pe
to

= , where [ ]ba ,  is the interval within which 

 exists. ressure represents a lower 

[ ]

the corroded material This p
limit. The parameter { })(min

,

min xgg d

baxd

contribution of the remain nt pressure. Here, 
the remaining material is d isting above the 
maximum depth threshold. The value of this parameter is the 
minimum resulting from evaluating, at each point of the defect, 
the function )(⋅dg , dependent upon the corrosion depth at the 
assessed point, i. e., on defect geometry and corrosion adjacent 
to that point. rror of the model, defined as the quotient of 
pressure obtained from the model and the value of burst test 
pressure, has a mean of 0.96 and variation coefficient of 0.08. 
More details on the model can be found in Oliveros et al. [3]. 
 
In operating conditions, resistant pressure of the pipeline will 

=  quantifies the 

ing material at resista
efined as a material ex

The e

be 
ncertain and therefore, its performance will be uncertain too, u

not only due to the error characteristic of the model, but also due 
to variability of geometric characteristics and mechanical 
properties of the material along the pipeline. Also, due to 
changes that these properties experience over time as a result of 
chemical products they continuously transport. According to the 
above facts, geometrical and mechanical properties are 
expressed by the random vector ( )mg ZZZ ,= , so that the 
properties in each region containing a corrosion defect will be 
given by the vector zZ = . If these prope  are uncertain, 
then the resistant pressures described above, which represent the 
upper and lower lim e random variables and will be 
respectively expressed as )(Zd

PlainPipe
d

PlainPipe PP =  and 

 

rties

it, ar

( )d
LongGroove

d
LongGroove PP Z= . maxd,
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nother source of uncertainty is that associated with the A
transported fluid, which involves pressure fluctuations due to 
pipeline roughness and pipeline position as a result of ground 
topography and burial depth. Based on the above facts, the limit-
state function associated with the failure due to pressure can be 
specified as: 
 

( ) 01 ≤−= D
d

R PPW ε                                                    (14)     

Where: 
 

( ) ( ) ( )( ) b
c

D hyyxx
Rg

Q
fyyPP γ+−+−

π
γ+−γε−ε=

212
0

2
05

0
2

2

0302 4
    (15)    

                    
nd s the random variable of an ure, associated 

a c
a  i  resist t press d

RP
with orrosion defect of known geometry, which is a function 
of geometrical and mechanical properties of the material. The 
random variable 1ε  considers the error on mechanical model 

prediction, whereas the random function P , given by 
Bernoulli’s equation (Benedict, [5]), depicts th luid pressure 
variability in defect region, associated with the mean point of the 
defect with coordinates ( )yx, ccording to Eq. (15), the 
pressure along the pipelin function of four factors: the first 
on the right side of equation quantifies the pressure and its 
variability at the reference point ( ) , and 2

D
e f

 A
e is a 

.

00 yx , ε  is a random 
variable that considers pressure fluctuations round mean 
pressure 

a

0P  of the fluid at the reference point ),( 00 yx . The 
second te  quantifies the pressure change due t ght of 
the reference point; 3

rm o the hei
ε  is a random variable that considers 

uncertainty in the pip ine position with regard to its burial 
depth, and 

el
γ  is the mean density of the transported fluid. The 

third term q antifies pressure losses due to the roughness of 
defects along the pipeline length. This term is a function of: 
volumetric flow rate 

u

cQ , gravitational constant g , γ , mean 

pipe diameter 0R , dis ce in relation to the point of ference 

and friction fact r f , dependent upon fluid viscosity and pipe 
roughness. For the rpose of simplicity, in this work the loss 
due to roughness is deterministic. Finally, the fourth term of Eq. 
(15) considers the possible increase or decrease of pressure due 
to the operation of a pump or turbine in the considered segment. 

bh  is the height associated to the pressure charge; however, 

ein it is considered that 0=bh  and the random variables 

tan

o

re

pu

her ε  
are assumed to be distribute ccordance with a Lognorm  
probability density function, which requires further research.  
 

d in a al

 the professional practice, a simple geometrical shape is In
commonly assumed to denote the geometry of corrosion defects, 
with maximum depth maxd  and length abl −= . For this 
reason, herein is assume arabolic geom ssumption 
of such geometry implies that statistical characteristics of the 
random variable 1

d a p etry. The a

ε  change. Oliveros et al. [3] found that this 
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variable possesses a mean value of 1.05 and variation coefficient 
of 0.11. According to this, the resistant pressure of the system is 
associated with the point of maximum depth 2

ab
maxx −= , so 

that )(min
max

d
d xgg =  thus the safety margin is s: 

 

 expressed a

( )[ ] D

ddd
PgPPP −−+=

min
ε         (16)           

igorously,  and  are random variables 
 the rand tor of geo

 dLongGroovePlainPipeLongGroove1W

 
R d

PlainPipeP d
LongGrooveP

correlated by om vec metrical and mechanical 
properties ),( mg ZZZ = . Nevertheless, it is possible to relate 
these rand by means of independent random 
variable 

om variables 
Ψ , as follows: 

 
dd PΨ= PlainPipeLongGroove                                              (17)        

 
here 

P

w )( maxdΨ=Ψ  depends only on the maximum depth of 
n, which was corrosio proven by Monte Carlo simulations, as 

shown in figure 1, Ψ is in fact observed to vary with maximum 
depth of corrosio  In addition, it can be considered 
independently from the yield stress, since the mean and mean 
plus one standard deviation obtained from simulations do not 
vary with yield stress. It can also be seen that the mean plus one 
standard deviation does not differ significantly from the mean 
value of each corrosion depth value. For this reason in this work 

d
LongGrooveP  can be represented as: 

n.

 
                                               (18)        

here 

 d
PlainPipe

d
LongGroove PP ψ≈

 
w ψ  denotes the expected value of Ψ . Hence,  is 

ed
 W

express  as: 
 

( )[ ] Dd
d

PlainPipe PgP −−+= ψψε 1min
1                                     (19)        W

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

 mean, σ
Y
= 337 M Pa

 mean plus one standard deviation, σ
Y
= 337 M Pa

 mean, σ
Y
= 357 M Pa

 mean plus one standard deviation, σY= 357 M Pa
 mean, σY= 377 M Pa
 mean plus one standard deviation, σ

Y
= 377 M Pa

 mean, σ
Y
= 398 M Pa

 mean plus one standard deviation, σ
Y
= 398 M Pa

 mean, σ
Y
= 421 M Pa

 mean plus one standard deviation, σ
Y
= 421 M Pa

 mean, σ
Y
= 445 M Pa

 mean plus one standard deviation, σY= 445 M Pa
 mean, σY= 470 M Pa
 mean plus one standard deviation, σ

Y
= 470 M Pa

 mean, σ
Y
= 497 M Pa

 mean plus one standard deviation, σ
Y
= 497 M Pa

 mean fitted

 
 ψ

η  =  d m ax/ ET 0]

 
Figure 1. Statistical moments of for given values of   Ψ  
normalized depth η  and yield stress Yσ . 
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4. Estimation of detected defects rate 
we analyzed a 1000 In order to illustrate the above formulation, 

m long pipeline segment with 10 corrosion defects detected, 
whose maximum depths and lengths are shown in table 1. The 
lengths of exhibited defects range between 20 and 70 mm, 
whereas their maximum depths vary from 1.2 to 3.5 mm. For 
each defect, the table also shows the corresponding wall 
thickness, which ranges between 4.65 and 4.77 mm, and the 
mean of these thicknesses corresponds to 6840 .=T  mm. 
Furthermore, table 1 shows the defect position tion to 
pipeline position, specified at coordinates ( )yx, , that arises 
from the topographic configuration of the gr d. Here, the 
lengths of corrosion defects are assumed to be distributed in 
accordance with a Lognormal probability density function, with 
a mean 48.0 mm and standard deviation 15.7 mm.  
 

 in rela

oun

Table 1. Position and geometry factors of corrosion defects. 

wall thickness

No. x (m) y (m) mm dmax (mm) long. (mm)

1 50 -0.25 4.77 1.20 20
2 100 -0.50 4.77 1.70 30
3 200 -1.00 4.65 3.20 52
4 500 -2.50 4.65 3.50 37
5 501 -2.51 4.65 3.30 48
6 503 -2.52 4.65 1.50 70
7 650 -3.25 4.65 1.50 40
8 700 -3.50 4.67 2.25 60
9 900 -4.50 4.67 2.00 70
10 901 -4.51 4.67 2.00 55

position defect geometry

 
 

igure 2 shows the measured rate of detected defects, which as F
defined above, decreases with the equivalent maximum depth 
defined in this work as ( )

kkk

 associated with k d

do not v

re. 

ccording to Alamilla et al [1], the measured rate of detected 

tTdd maxmax 00
* = , where 

k
t0  is the 

remaining wall thickness efect. Th eed to 
define this equivalent maximum depth lies in the fact that 
maximum depths of each defect k  measured are associated with 
a specific wall thickness. In eneral, if wall thicknesses 
measured correspond to the same value, then dd =* . In 
short-length segments, wall thicknesses ary 
significantly, thus resulting in dd ≈* , as in defects of 
the pipeline segment analyzed he
 

e n

g

kk maxmax

kk maxmax

A
defects can b e represented by  the function 
 

( ) ( )( )001max exp ddqnd DDetecdD −−′′==>ν                      (20) 

 
ith parameters  obtained from a 

In this work  
equatel

w 0114.10 =q , 38.14=′′Dn
Bayesian analysis.  In the Fig. 1, it is 
observed that Eq. (20) describes ad y the behavior of the 
measured rates. 
 

0.10 =d .
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Figure 2. Rates of corrosion detected defects. 
 
5. Estimation of total defect rate and undetected defect 
rate   
It is assumed that measured defects, shown in table 1, come from 
an inspection tool whose capacity of detection is similar to that 
in Rodriguez and Provan [6], which is expressed in terms of the 
probability of detection and represented as: 
 

( ) ( )[ ]101 1 αα −−−== dexpdFDetec                            (21) 
 
where 65500 .=α  is a factor that defines the quality of detection 
and  mm the threshold of maximum depth above which 
the tool detects and measures defects with certain likelihood. 
This equation indicates that the probability of detection increases 
with the depth of corrosion. In this work, it was considered that 
the natural logarithm of the error in the measurement of detected 
defect dimensions, defined as quotient of real dimension divided 
by measured dimension, is distributed normally. So the error in 
the maximum depth and length of the defect has unit mean and 
standard deviation of 0.05 and 0.1, respectively.  

401 .=α

 
As shown in Fig. 3, the function that describes the rate of 
undetected defects decreases with . This is due to the fact 
that detection capacity of inspection tool is low for small depth 
defects and increases when . In the depths of our 
interest, the rates of detected defects are greater than that 
corresponding to the undetected ones. In addition, it is shown 
that for maximum depths above 3 mm, the likelihood for the 
presence of undetected defects above that threshold is very low. 
For this reason, the total rate of defects above this threshold is 
almost equal to the rate of detected defects, since according to 
Eq. (11) and as shown in Fig. 3, the sum of rates of detected and 
undetected defects is equal to the rate of total defects. It is 
important to note that the model can quantify more precisely the 
number and size of the defects really present at the pipeline.  

maxd

0Tdmax →
5
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Figure 3. Rates of detected, undetected and total of corrosion 

defects. 
 
In order to demonstrate the influence of the detection capacity of 
inspection tool on the number of undetected defects, Fig. 4 
shows the rates of total and undetected defects for three 
inspection tools referred to as I, II and III, respectively, with 
quality factors 0α : 0.517, 0.655 and 1.091. These rates were 
considered to correspond to the pipeline segment described 
above and the three inspection tools were used to detect and 
measure the defects shown in table 1. It can be seen that for the 
same number of detected defects, the number of corrosion 
defects undetected by the inspection tool decreases with the 
factor of quality. These numbers are not directly comparable 
since the rate of detected defects in the analysis is the same for 
each example. Under practical conditions, we would expect from 
this rate to increase with the quality of the inspection tool. This 
kind of analysis, however, is out of the scope of this work. 
Nevertheless, the figure in question shows that the rates of 
undetected defects and the total rate are equal for maximum 
depths above 3 mm, which means that the possibility of 
existence of corrosion defects above this depth is practically 
zero. 
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Figure 4. Rates of undetected and total of corrosion defects for 

three inspection tools. 
 
The probability  of detecting a defect of uncertain size in the 
pipe for I, II and III tool, respectively was: 0.4598,  and 

Dp
5397.0
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0.7178. This is consistent with the corresponding quality factor, 
which indicates that  increases with this factor.   Dp
 
6. Reliability analysis  
Next is the calculation of reliability of the pipeline segment from 
figure 3, X52 steel, with mean outer diameter of , and 
mean yield stress 

mm254
MPay 422=σ . Figure 8 shows in logarithmic 

scale the mean and mean plus standard deviation of resistant 
pressure of the pipeline without defects for given values of yield 
stress. These statistical parameters were obtained using Monte 
Carlo simulations. For given values of yield stress, simulated 
values of resistant pressure of the pipeline were obtained; they 
were determined by substituting in equation (13) the simulated 
random function that describes the behavior of the material 
(stress-strain relation) and the mean values of wall thickness and 
diameter. The stress-strain relation was represented by Ramberg-
Osgood function [4] with uncertain parameters. The joint 
probability density function of these parameters is described in 
detail in Alamilla et al. [7]. Since the variability of wall 
thickness and pipe diameter is small as compared to the 
variability of material behavior, we have worked only with their 
mean values.  
 
According to Alamilla et al. [1] the mean resistant pressures 
follow a linear behavior with yield stress and are represented by 
the following equation: 
 

YPlainPipe AAP σ10ln +=                                              (22)        
 
where 1620 .=A , 002201 .=A  were obtained from a linear fit. 
The standard deviation of logarithm  060.=PlainPipeLnσ  is 
invariant with respect to yield stress. A statistical analysis of 
prior simulations showed that resistant pressure of a pipeline 
without defects can be appropriately represented by a Lognormal 
probability function.  
 
Figure 1 shows mean values of the random variable Ψ  obtained 
by simulation for given values of yield stress. It is observed that 
mean value of this variable is invariant with yield stress and 
decreases with maximum normalized corrosion depth 

0Tdmax=η . These values were obtained by Monte Carlo 

simulations similarly to the random variable . 
However, in this case, for a set of simulated parameters and a 
given yield stress a stress-strain relation were obtained and for a 
given maximum corrosion depth, the following simulated values 
were obtained:   and . 

So, the simulated values of  variable were obtained as 
quotient of 

d
PlainPipeP

d
PlainPipe

d
PlainPipe pP = d

LongGroove
d

LongGroove pP =

Ψ
d
PlainPipe

d
LongGroove pp . Fig. 3 shows the fitted mean 

ψ  of the variable Ψ , obtained upon assuming that the relation 
between ψ  and η  is given by the sum of two exponentials in 
the following way: 
 

( ) ( )2
2

3
1

2
0 exp

2
1exp

2
1 ηηηψ BBB −+−=               (23)       
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where the coefficients ,  and  
were obtained from a nonlinear fit.  

6120 .=B 0951 .=B 58102 .=B

 

In this work, the behavior of the material is considered to be 
independent between corroded regions, because there is not 
enough information to consider spatial correlation of the 
parameters that describe the stress-strain function of material 
between corroded regions; however, the formulation proposed 
here allows incorporating this correlation with relatively little 
effort. It would be sufficient to know the statistical variation of 
coefficient correlation of yield stress with the distance to obtain 
correlated simulated stress-strain functions. Finally, according to 
Eq. (17), correlated values of variables    could 
be obtained. 

d
PlainPipeP d

LongGrooveP

 
Figure 5 shows the position of the pipeline in question in relation 
to the ground surface as well as the change of pressure with 
distance. To estimate this change, a mean pressure of 0100 .=P  
MPa was considered together with a mean fluid density of 

0608.=γ kg/m3, a mean volumetric flow rate 2920.=cQ  m3/s 
and a mean friction factor  , which assumed that flow 
is in transition. The pipeline was considered to have a mean 
burial depth 

0320.=f

813 .=ε  m and a standard deviation of 0.25 m, 
with a mean negative slope of 0.5 %.  
 

Figure 5. Pipeline position in relation with the ground 
surface. 

 
The failure probability  corresponding to each detected 

defect , , specified in table 1 were obtained using 
directional simulation technique (Melchers [8]). The highest 
failure probability corresponds to the defect 4, whose maximum 
depth is 3.5 mm. Failure probability  of the segment 
analyzed as a series system is higher than failure probability of 
the individual defect 4, and lower than the probability 
considered as a series system with independent events 
(Melchers, [8]), i. e.: 
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Failure probability of the system considering only defects 
detected by inspection tool is observed to be approximately 1.12 
times greater than the greatest failure probability resulting from 
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analyzing each defect individually. This means that failure 
functions of each corrosion defect are strongly correlated. The 
calculation of that correlation is out of the scope of this work. 
The failure probability of the system  considering both detected 
and undetected defects was . This probability is 1.56 
times greater than failure probability associated with the defect 
of greatest depth and 1.40 times greater than failure probability 
of the system when considering only defects detected by 
inspection tool. Considering the contribution of undetected 
defects to failure probability of the system can be important as 
shown herein. However, there may be systems with different 
distribution of defect dimensions in which undetected defects do 
not contribute significantly. Anyway, in a rigorous reliability 
analysis, undetected defects must be taken into account. 

0600.PF =

 
On the other hand, the overall failure probability of the segment 
considering detected and undetected defects associated with 
inspection tools I, II and III, proved to be 0.0712, 0.060 and 
0.0478, respectively. As the quality of the inspection tool 
increases, the failure probability converges to the failure 
probability of detected defects, implying decreased contribution 
of undetected defects. According to the issues discussed above, 
prior failure probabilities are not totally comparable between 
each other, since the total number of defects is not the same in 
each analysis. 
 
7. Concluding remarks 
This work presented a reliability model that allows determining 
the safety of an inspected pipeline system. Reliability estimates 
indicate that failure regions associated with each defect are 
strongly correlated and the hypothesis of independence of failure 
regions is not convenient in reliability analyses of this kind of 
systems. It was concluded that failure probability of the system, 
when considering only detected defects, is slightly higher than 
the highest failure probability corresponding to individual 
defects. However, failure probability of the system considering 
detected and undetected defects is greater than the failure 
probability resulting from considering only detected defects, 
which is principally the result of uncertainty in size and 
detection of defects. Future studies need to consider the spatial 
correlation of constitutive functions between corroded regions, 
as well as to better characterize changes of fluid pressure along 
the pipe. Also, it is necessary to develop models that would 
consider the evolution of corrosion over time, as a function of 
internal and external environmental characteristics, which would 
allow improving the reliability estimates and performing 
adequate inspection polices and maintenance in this kind of 
systems. 
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