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SCOPE AND CONTE~TS: 

This thesis is concerned with a necessary and sufficient 

condition for t~e existence of non-zero linear continuous 
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spaces. The main idea is ~ased on the famous Hahn-Banach 

theorem. Since the connection between Hahn-Banach theorem 

and ;s-eparation theorems is "'ell known, here we study some 

;s-eparation theorems as \'Tell. 
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PREFACE: 

We inve:;tigate the concepts of B0-space, locally 

convex topologiGal vector space, Frechet space in detail 

and prove the Hahn-Banach extension and Banach separation 

theorems. Furthermore, we give a necessary and sufficient 

condition for the existence of non-zero linear continuous · 

functionals on Gertain topological vector spaces. These results 

are given in se.~tions 1 to 6 • 

.In the last section 7, we extend the Banach ~paration 

theorem from no:~med linear spaces to certain topological 

vector spaces. 
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1. Introduction 

We knoiv (M. M. Day (1)) that there exists a topological 

vector space, n.lmely LP(o, 1), O<p<l, on which there is no 

non-zero conti~1rn1s linear functional. 

In this paper, we will e;ive a necessary and sufficient 

condition for the existence of non-zero continuous linear 

functicnals on any real Fr~chet sp:1ce - a ve~tor space with a· 

Frechet norm abbreviated F-norm which is due to S. Mazur and 

W. Orlicz (4). Our basic idea is based on the famous Hahn

&"lnach extension theorem. We use the method of T. Husain [2J. 

'vie colloct our notations and terminoloeY in Section 2. 

In Section 4, WP discuss a subclass of Fr~chet spaces which 

is called the c:.ass of B0-spaces, and then investie;ate the 

existence of non-zero continuous linear functionals. Essentially, 

a B0-space is a locally convex topological vector space. If 

a topological V€~ctor space is locally convex, then t~ere exists 

a non-zero continuous linear functional (see A. Wilansky (7)). But 

the converse is not necessarily true as we show by an example 

in Section 5. I'urthermore, S. Hazur and \v. Orlicz (4) found a nec

essary anri sufficient condition for linear metric space to be 

B0-normable. A. Kolmoe;oroff {3) (also see A. Taylor [6)), 

proved the necel'.sary and sufficient condition for topological 
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vector spaces to be B-normable. Using theorem 6.1, we derive 

two theorems of S. Mazur and A. Kolmogoroff from theorems 6.2 

and 6.3. Moreo,rer, we obtain our desired result, namely theorem 

6. 4, and then e:ctend it to general topological vector spaces 

in theorem 6.5. 

In conn(~ction \.,ri th the existence of non-zero continuous 

linear functionals on a topo.logical vector space (TVS). 'We 

give Banach separation theorem and Eidelheit theorem in Section 3, 

and then extend them to general topological vector spaces 

(theorem 7.3 and theorem 7.4). 
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2. Notations and terminolog;[ 

Let X bE! a linear space with ·more than one element, and 

the scalars are real numbers unless otherwise specified. 

If X is furnished with a topology T such that addition 

and scalar ~ultiplication are continuous, we say that X is a · 

topological·vec1.or space abbreviated TVS. If each nei~hborhood 

of 0 in a TVS X contains a convex neighborhood of 0, we say that 

X is a locally convex topological vector space, abbreviated 

LCTVS. 

Definition 2.1 

Let X bE a linear: space. We sayll IIF is a Fr~chet norm 

on X if it sa tie fies, 

(1) HxiiF' = 0 if and only if x = 0, and UxiiF~ 0 for all 

x in X 

(2) llx t YIIF~ IJxiiF + IIYIIF for all x, y in X 

(3) u-x IIF'= UxiiF' and 

(4) If tn ~to, Uxn - xoii:F---+0 then lltnxn - toxoiiF--+0 

where tn' t 0 scalars and xn' x in X. 

Definition 2.2 

. Let X be a .linear space. 'We say II II is a seminorm 

on X, if . 

(1) llx II ~ 0 for all x in X 

(2) lltxjj = It l·llxll for all x in X and all scalars t, and 
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(3) llx -- Yjj ~ llx II + IIYII for all x, y in X. 

If the condition (1) is changed to "jlxll = 0 if and only if 

x = 0 for each ,; in X, qnd 11x IJ > 0 for all x in X", then 

II II is called <' norm on X. 

Definition 2.3 

Let X bE· a linea.r space, and { ll IIi' i = 1, 2, ••• , n, ••• } 

be a sequence of seminorms defined on X in which llxlli = 0 

for each i thr:n x = 0. We say 

, 
It is easy to see that Frechet norm, norm and B0-norm 

define a metric. Hence space$with these norms are metric spaces. 

Definition 2.4 

If (X, II U> is a complete normed linear space, then we 

call (X, IIID a ~ana.ch space. 

If (X, II I~ ) is a complete s0-norm space, then we call 
0 

< x' II lis ) 
0 

If (X, II UF) is a complete Fr~chet normed space, then 

we call (X, II lip) a Fr~chet space. 

Definition 2.5 

If X is t linear space, we say f is a linear functional 

on X provided f ls scalar-valued and 

f(~x + ~y) = af(x) + ~f(y) for all x, y in X and all scalars 

a, ~. 
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Definition 2.6 

Let (X, d) be a metric space with metric d and f 

~ function. on X. We say that f is continuous if it 

is continuous with respect to this metric d. (i.e. if x 
n 

converges to x
0 

with respect to the metric d, then f(xn)--.f(x0 )). 

Definition 2. 7 

A set X with binary relation ( ~ ) is said to be a 

partially ordere~ if the following conditions hold: 

( 1) X ~ X for a 11 X E: X. 

(2) If x ~ y and y ~ x then x = y. 

{3) If x ~y andy~ z then x~z. 

A partially ordered set with binary relation ~ is denoted by 

(X, ~) • 

Definition 2.8 

A partially ~rdered set (X,') is said to be a linearly 

ordered set if for any x, y ~X, either x ~ y or y ,E: x. 

Definition 2.9 

b is sai.J to be a maximal element in a partially ordered 

set X if there e~ists no element x, 

x} b where x ~X, x I b. 

Definition 2.10 

Let A be a subset of a partially ordered set (X, ~). 

b is said to be an upper bound if b ~X, and 

b ~X for all X EA. 
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Zorn's Lemma. :~et (X, ~) be a partially ordered set. If 

every linearly •)rdered subset of (X, ~) has an upper bound, 

then X contains a maximal element. 

Definition 2.11 

A set D is said to be a directed set if D is a partially 

ordered set with partially ordered relation ~ , and for every 

a;, ~ ~ D there eJ:ists Y E-D such that Y .?;d., Y ~ j3. 

Definition 2.12 

A net in a topological space is a function defined on 

a directed set Il with values in that topological space and is 

denoted by (xa., a. E: D). 

Definition 2.13 

A net ('a.' a.(: D) is said to be eventually in a set B 

if there exists cx.
0 

~ D such that xa. ~ B for all a. ~a0 • It is 

said to be frequently in B if for any a.
0 

E D there exist some 

a such that a. ~cx0 and xa (:B. 

Definition 2.14 

Let (xa' a E: D) be a net in a topological space X. 

X is said to converge to a (i.e. X is a net converging to a) 
-0'.; 0: 

if for any neighborhood Ua of a, X is eventually in Ua' 41ld. a 

denoted by x - a. a. 

Example 2.1. Let X be a topological space, and a ~X. Let D 

be the set of all neighborhoods cx. of a, ordered by inclusion 

(a.·~~ iff a.c::!3, :x., 13 ED). It is easy to see that D is a directed 

set. For each a.~ D let xa. be a point in a. then (xa.' D) is a 

net in X and xa. --a. In fact, lP.t Ua be an arbitrary neighborhood 
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of a then Ua ~ D (by definition of D). It remains to prove that 

xct is eventuall~' in Ua. Take a.0 = U a there is an a such that 

It follows that x E ex. c:U which « a 

shows that x
11 

i~; eventually in Ua· 
Definition 2.15 

Let (X, T) be a TVS with a topology T. We say that f 

is continuous if f is continuous with respect to T (i.e. whenever 

x is a net con~erging to a, f(x )~ f(a)). a a 
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3. The 'Hahn-Banach extension theorem and Separation theorem 

First WH prove a lemma and then apply Zorn's lemma. 

to prove the Hahn-Banach extension theorem. 

Lemma J.l. Let X be 

X' xl = { xo + "xo: 

a linear space, x0 a proper 

x
0 
~X 'X

0
, Y scalars}. 

subspace of 

Suppose P is a :;eminorm on x
1

; and f. a linear functional on 

X such that 
0 

f(x) ~ P(x) 

,... 
Then there exists a linear functional f on ~ such that 

" ' f(x) = f(x) for all x ~ x
0

, 

and 

" f(x) ~ P(x) for all x E x
1

• 

Proof. By hypothesis f(x) ~ P(x) for all x ~ x
0

, and we notice 

that for any x
1 1 x

2 
(: x

0
, x

1 
- x

2 
E }{O and 

Let 
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elearly m~M. C:hoose c
0 

such that m'-co~ M. 

Let f(y) = f(x) + coY where y = X + Yxo, y ~ xl' X t xo. 

Obviously the rE·presentation of y = x + Yx0 is unique, and 

"" it is quite clear that f is a linear functional on x
1

, and 

r<y) = r<y) ~ p(y) if y E x
0

• 

It rema:ins to show that ?(y) ~ p(y) for each y E x
1

• 

If Y = O, y E- x0~to{the result is trivial. 

"" If Y>O, f(y) = f(x) + c0Y~f(x) + J'vlY where yEX
1

, xEX
0

, and 

y = y xo + x. 

Therefore ref) ~ f(~) + M ~ f(~) + p(x0 + ~) - f( ~} 

1'\ X 
Hence f(y)~yp(:x0 + :y) = p(Yx

0 
+ x) = p(y), for·each yE-x

1
• 

A , 
If Y < O, f(y) = f(x). + c

0
Y l:: f(x) -fo mY, 

then ref> ~- p(xo + v), and 

'f(y)~- Yp(x
0 

+ V) = p(Yx
0 

+ x) = p(y) for each y~X1 • 

"" Hence f(y) ~ p(y) for all y (: x
1

• The proof is complete. 

Theorem 3.1 (Hahn-Banach). Let X' be·a TVS, and p a seminorm 

defined on X. If x0 is a subspace of X, and f a linear functional 

on x
0 

such that 

f(x) ~ p(x) for all x E x
0

, 
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A 
then there exists a linear functional f on X such that 

and 

f(>)=f(x) 

f(>)~p(x) 

for all x e: x
0

, 

for all x ~X. 

Proof. Let :!} be the set of all pairs (F, 1) such that F 

is a subspace ccntaihing x
0

, and 7 an extension of f (i.e. 1 is 

defined on F and 1( x) :: f(x), x E: X
0
), and 

'f(x) ~ p(x) for all x 6 F·. 

We define the partially ordered relation ~ in 'fl- as 

follows: 

Every linearly ordered subset of 2t has an upper bound. In 

fact, suppose A = { (Fcx.' fcx.)' cx.f:}\ } 

ordered .subset or ~ • Let F = u 
CJ..(:/1.. 

order Vex., f3E A 

is an arbitrary linearly 

F • Since A is linearly 
ex. 

is a subspace of X. We define a functional 1 on F such that 

f(x) = 1 (x), 'x tF • ex. ex. 

Since f is a linear functional, and 'f (x)' p(x) for each a:, ex. a. 

f is a linear functional on F, and f(x)' p(x) for all x E: F. 

Furthermore, (F, f) is an upper bound of A. By Zorn's lemma, 

there exists a m;tximal element in :J , (F, f) say. 

It remains to show that F = X. If not, then X~ F. 

LP.t x1 ii X \F, x1 = { F + Yx1 , Y € R}. Clearly x
1 

is a subspace 
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containing F. Hy above lemma j.l, there exists a linear functional 

1'\ r1 (x) = f(x), for all x E F and r1 (x) ~ p(x) for all x E x1• 

Thus 

(F, ?) .( (XJ.' f
1

) and (X
1

, f
1

)E ':} which contradicts 

the fact that (f', 'f) is a maximal element in ~ • 

Hence F : X, and 1 satisfies the required conditions. 

Q.E.D. 

Remark. In a nc•rmed linear space X if f is continuous we can 

obtain that llrlx = II f llx· In fact, take p as in theorem 3.1 
0 

to be 

Then 

and 

Clearly 

Corollary 3.1. }iven conditions of the above theorem 3.1, and 

given f on x0 su~h that lf(x)l~ p(x), then there exists a 
A 

linear functional f on X which is an extension of f and 

lr(x)l ' p(x) 1 for all X E-X. 

Proof. Since f(IC) 'p(x) for all x EX and 

1(-x) 4 p( -x) = p(x), 
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this shO'Ns that 

1\ A 
f(x)~p(x) and -f(x)~p(x) for all x~X. 

Q.E.D. 

Theorem 3.2 (Barach separation theorem). Let X be a normed space, 

v1 a non-empty c•pen convex set, and v2 be a linear manifold such 

that v 2 n v 1 = ~r. Then there exists a continl.IOUS linear 

functional f ano a real number c such that 

f(x) = c for all x EV
2 

and f(x) .( c for all x ~Vl' 

furthermore, there exists a closed hyperplane H such that 

Proof. Without loss of generality, we can assume that 0 E V 1 • 

Let p be a Minkcwski functional defined on X with respect to 

p(x) = inf{A.>O: x~A.v1 }. 

Let Y be the subspace generated by v2 

(i.e. Y is the smallest subspace of X containing v
2
). We 

observe that v2 is a hyperplane in Y. Therefore there exists 

a linear functional f0 on Y such that 

There is no loss of generality in assuming that 

v2 = {x~Y: f 0 (x) = 1}. 

Since v1 is open, for each x EV1 , p(x)< 1 and v
2
nv

1 
=¢which 
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implies that 

for all x (: V 
2 

, 

On the other hard, since for every y t Y 

y = a.x where a. real, x E V 
2

, 

we obtain 

Thus for all y ~ Y. 

Hence by the Hahn-Banach extension theorem 3.1, there exists 

a linear functicnal f on X such that 

f(x) = r
0

(x) for all x E Y, 

f(x) ~ p(x) for all X EX, and llrll = II fJ[. 

Clearly lifo II = 1, and then f is continuous. Furthermore let 

H = { x ~X: f(x) = 1 } , then H is a hyperplane in X, H:lV 
2

, 

and Hnv
1 

=¢because f(x)~ p(x)< 1 for all x ~v1 • The continuity 

of f implies that H is closed. Q.E.D. 

Corollary 3.2 Cs1pport theorem) Let X be a normed linear space 

and xo I o. The1 there exists a continuous linear functional 

f such that f(x0 ) = IJ~o IJ , llf II = 1. 

Proof. If the dimension of X is equal·to one, X = {ex. x
0

: ex. 

all scalars J ·and. we can define a continuous linear functional 

Assume that the dimension of X is greater than one. Let v
2 

= 

{a. x0 : a. all s~~alars} and v
1 

a convex neighborhood of x
1 

(x
1 

I x
0

) 

such that xo~ vl and v2nvl = ¢, and then apply theorem 3.2. 
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The result follcws immediately. Q.E.D. 

Corollary 3·~ (Eidelheit theorem). Let v1 , v2 be convex sets 

in a normed linear space X with v1(1v2 = ¢, and v2 is open. 

Then there exists a continuous linear functionalfsuch that 

SUF f(y) ~ inf f(x). 
y~Vl xE':V2 

Proof. Let V = v2 - v1 = y~V (v2 - Y). Since v2 - y is an open 
1 

set for each y ~ V 1 , ·" is open. Clearly V is convex. Furthermore 

0 ~ V because V 1(1v 2 = ¢. Since { 0} is a linear manifold, and 

V is an open convex set which is not empty, by the above 

separation theorem 3.2, we obtain a continuous linear functional 

f, such that f 1- 0 and f(x) ~0 for all xEV. 

Put x = x2 - x1 for all x2 E': v2 , x1 E': v1 which implies that 

Hence sup f(y) 'xi~Vf f(x). 
yE-Vl o: 2 

Q.E.D. 

14 



4. ~-space and its non-zero continuous linear ,functionals 

In this section, we shall show that there alw~ys exists 

a non-zero continuous linear functional on a B
0

-space. 

Example of B~'Clce 4.1. Thf.linear space c0 (-co,oo) consists 

of all continuous, bounded real functions on (- oo, ~). 

the B
0

-norm by 
Oo II xU. 

u:xuB ~ 
1 ]_ 

where P xU. = 
2i l +II xu. ' 0 i l 

]_ 
= ]_ 

Then c
0

(-oo, oa) becomes a s
0

-space. 

In fact, II xU. is a norm for each i, and 
]_ 

Define 

= su:p 
t E (-i, i) 

Where I x( t) I f M for all t E' (- 6o ~ t10). The completeness 

of c0 is due to the fact that c
0 

is complete with respect to 

every 11 II i for each 'i. 

Lemma 4.1. 

if and only if ~ K 1 . ~ 0 for each i. n 1 

Proof. It is sufficient to prove that 11x1B is a Frechet norm. 
0 

(a) IIOIIB = 0 since IIOUi 
0 

= 0 for each i, and if UxiB 
0 

Uxll. = 0 for each i. Hence x = 0. 
]_ 

' (b) II xUB 
0 

= ll- xiiB, since Uxll. = U-xlt. for each i. 
0 ]_ ]_ 

(c) II x + yU B !: II <U B +II YPB 
o o o· 

= 0 then 

Without loss of generality, let U x + yiB I 0 and 
0 

15 
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Ux + Y lis = ~ _.;. ( U 1 II + 1) -1. 
C 2~ X + y • 

i = 1 l. 

We notice that 

therefore 

1 llx 16 + ~y IIi 

i = 1 
2i 1 + Uxlli + IJYUi 

eX) 

~L 
11 >: lk +~ 

i = 1 i = 1 

(d) It i:; easy t.o see that if tn---+ t
0 

as n~ co and if 

wher(! tn, t
0 

are scalars. 

By the similar argument as above, we obtain 

Lemma 4.2. Every B0-space is a locally convex TVS. 

Proof. Let There exists a convex 



neighborhood v4·( )) of 0 such that VI! (0) C Ue(O). Consider 

V~ (O) = { ~: llxll<£ for each i}. 
Then 

00 

sirtce for every ·c E Vf. (0), llxl~ = L 
0 . 1 

~ ::: 

The convexity of Ve (0) follows from the fact that UxUi is a 

seminorm for each i. Q.E.D. 

Lemma 4. 3. In e,·ery B0-space X, there exists x0 f. 0 and a 

positive integer n such that 

Proof. The proof of this lemma is a direct consequence of 

the definition of B
0

-space. 

Theorem 4.1. On every B0-space, there exists a non-zero continuous 

linear functional. 

Proof. By lemma 4.3, we can define a seminorm p on X such that 

p(x) =Max (UxUl' ••• , ~xlln) and for some x0 , p(x0 ) I 0. 
n 

We consider the linear subspace x0 = { t x0 : t scalars}, and 

define a linear functional f on x
0 

by 
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Clearly f(x
0

) = p(x
0

), and f(x)~p(x) for all xcX
0

• By the 

Hahn-Banach extension theorem, there exists a linear functional 
,... 
f on X such that 

"' ;'\ 

f(x) = f(x) x~X0 , and f(x)-'p(x), for all xEX. 

Using the Coroll3ry 3.1. then 

Q.E.D. 

lf( x)l ~· p(x) for all X(£ X. 

·rt remai1s to show that f is continuous. If 

xol~ ~ 0 as j ~()') ' then 
0 

llxj - x0 fli- 0 for each i. Therefore 

Max 
n 

A 

That means 

This shows that f is continuous. 

Exa111ple 4.2. A r.on-zero continuous linear functional on 

C( -oo , (X)) can be represented by 

1 

f<xl • J 
-1 

x(t)dg
1
(t) + ••• + j

n 

-n 

x(t)dg (t), 
n 

where g. is a real function of bounded variation for each 
~ 
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A 
n , end f ( x) I 0. 



5. The existence of non-zero continuous linear functional 
on LCTVS. 

Defini~ion 5.1. A set C is convex if tx + (1-t)y ~ C for any 

x, y € C, and for all sc.ala.rs t, 0 ~ t·~ 1. 

Definition 5.2. A TVS X is said to be locally convex if for 

any neighborhood LJCo) of 0, there exists a convex neighborhood 

V(O) of 0 which Ls containP.d in U<o). 
Definition 5.3. A set C js said to be symmetric if -C = C 

i.e • {-X: X e C J = { X: X (: C } • 

Definition 5.4. A set C is said to be balanced if tx ~c for 

any x f C and all scalars t, jtl ~ 1. 

Definition 5.5. A set C in a TVS X is said to be absorbin~ at 

a. ,eoint b, if fOJ' any xi: X, there exists a E>O such that 

b + tx ~ C where ltl~ E • 

Furthermore, ((. set C is said to be absorbing if it is absorbing 

at 0. 

Definition 5.6. A function p defined by a convex,balanced, 

absorbing set. C is said to be a Minkowski functional p, 

where p(x) = inf { t >0: x ftC} • 

Lemma 5.1. Let C be a convex, balanced, absorbing set, p 

its Minkowski furctional, and~ a scalar. If ~·>p(a), then 
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Proof. If J..l > p(a), then by dt;!finition of p, 

\l > :in f { t ~ 0: a E: tC } , 

or 

1 > inf { ~ > 0: a E: tC } • 

This means that there exists a scalar t
0

> 0 such that 

t . 

0 < 
11
° ~ 1 and a~ t 0c. 

to 
Since. Cis balanced, -·at: t C i.e. a~lLC• Q.E.D. 

l1 0 

Lemma 5.2. Suppose p satisfies the same conditions as those 

in lemma 5.1, then pis a seminorm. 

Proof. It is sufficient to prove p(a + b)~ p(a) + p(b) for any 

a, b fC. For arbitrary· a, b ~C, and E. > 0, 

p(a) < p(a) + £ t p(b)< p(b) + e . 

By lemma 5.1, it follows that 

a t: (p(a) + e )C, b t: (p(b) +£.)C. 

Clearly, sC + tC = (s + t) C for all scalars~blltt,since C is a 

convex set. Thu:3 we obtain 

a + h ~ (p(a) + E. )C + (p(b) + €. )C = (p(a) + p(b) + 2f )C 

and 

p(a + h)~ p(a) + p(b) + 2£ • 

Letting e - O, p(a + b)~ p(a) + p(b). Q.E.D. 
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Lemma 5.3. Let X be a TVS, and V a convex, symmetric neighborhood 

of 0. Then V is convex, balanced, and absorbing. 

Proof. Since V is conveJC and symmetric, tx f V for x c: V, j t f ~ 1. 

This shows that V is .balanced. 

VIe are left to show that V is absorbing. Let x ~X, 

tn~ O,tn>O, which implies that tnx-o. That means there 

exists t
0 

> 0 such that t
0

x <: V. 

t 
Hence tx = t · t 0x6V for 0~ t ~t0 • Q.E.D. 

0 

Theorem 5.1. Let X be a LCTVS with Hausdorff topology. Then 

there exists a family of seminorms { piXJ IX E-J\. , x0 I 0,. 

and IXO~~ such that 

p Cx0) I o. 
ao 

Proof. Observe :hatifV(O) is a convex neighborhood of 0 in x, 
then so is -V(O). Therefore V(O) n -V(O} becomes a convex, 

symmetric neighborhood of 0. There exists a fundamental 

system { Va.' ocf:A J of neighborhoods of 0, such that each 

V is convex, balanced, and absorbing by Lemma 5.3. Define 
IX 

Pa. as follows 

By lemma 5.2, p is a seminorm for each a.cJl • 
ex. 

It remains to prove that, there exists oc
0
€A such that, 

for some x0 I O, Pa.
0

Cx0 ) I O. 

If not, pa(x
0

) = 0 for every a.fA which implies x
0

E:Va. for 
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each afJl. Hence x0 : 0, because X is a Hausdorff space. 

But this is a contradiction because x0 I 0. Q.E.D. 

Theorem 5.2. Every locally convex Hausdorff TVS has a non-zero 

continuous linear functional. 

Proof. Suppose X is a given locally convex Hausdorff TVS. 

By theorem 5.1, we obtain x
0 

I 0 and cx.0~A, Pa. (x
0

) I 0. 
. . 0 

For the line'ar subspace x
0 

= { tx
0

: all scalars t } , define 

f (x) = 
0 

tp (x0 ) where x = 
a.o 

It is easy to see that r
0 

is a linear functional on x
0

. 

Clearly r0(x)~pc( (x), xEX
0

• Therefore, by the Hahn-Banach 
0 

exten5ion theorem 3.1 and coroll~ry 3.1, there exists a linear 

A 
functional f on X such that 

f(x) = f(x) 

and 

x EX. 

A A 
f is continuous. In fact, we see that f is bounded on 

{xE-X: p (x) < l} which is a neighborhood of o. 
a.o 

(see Lemma 7 .8). 

(i.e. If ( x , a. €: D) is a net in X, and x ~ x (see Example 2.·1). a. a. .. 
then p (x - x) ~ O, hence f(x,., - x)-- 0). 

a.o a. '"" 

Tneorem 5.3. Every LCTVS X has a non-zero continuous linear 

functional except X is ind i Sc'fe. te • 

Proof. We can define 

23 



p(x) 

where p , ••• , 
_al 

--Max (pcx (x), 
11 1 

... ' 

p(X 
n 

are seminorms. 

Pa. (x)) such that 
n 

Clearly, pis a seminorm. We recall the theorem 5.2, then 
,.. 

there exists a linear functional f such that· 

The proof of continuity of f is the same as the proof 

of the above theorem 5.2. Q.E.D. 

The following example shows that there exists a TVS 

which has a non-zero continuous linear functional, but it is 

not locally convex. 

Example 5.1. Let..tP, 0('p<l, be the set of all sequences 

C>oQ 

such that U x11 = L !xil p < 0o, where x = (x1 , x2 , ••• , xn, ••• ). 

i = 1 

.R.,P,.O<p<l, is not locally convex. But 

f(x) =~ 
i = 1 

\Xi' where sup ltij<co , ti¢: 0 is a 
i 

non-zero continuous linear functional (see (7) :p t8o.). 
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6. Non-zero continuous linear functionals on Frechet s~ 

Let F be a Frechet space with the Frechet norm II ~F' 

denoted by (F, II II F). Then we have the following: 

Theorem 6.1. If (F, U II F) has a convex, symmetric neighborhood 

U(O) of 0, then there exists a seminorm pU.SIICI..tJa4t llxnUF~ 0 

implies p ( x ) ---to 0. 
U n 

Proof. By lemma 5.3, the convex, symmetric neighborhood U (0) 

of 0 is essentially a convex, balanced, absorbing neighborhood 

of 0. Let Pu bet~Minkowski functional, 

p (x) = inf{ t;,O: xE tU(o)} 
u 

Lemma 5.2 implies that p is a seminorm. u 
It remains to show that if I xnll F _,. 0, then pU (xn) ~ O. 

Since U (O) is a neighborhood of 0, for each scalar E , ~ U (O) a 

neighborhood of 0. In fact, let Ou (O) be an open set which is 

contained in U (O). It is easy to see that e Ou (O) is an open 

set which is contained in t U (O) because (F, U U F) is a TVS. 

Therefore, for any t, > o, X E e u (O) for sufficiently 
n 

large n, and then p U (x
0

) (.. £ for sufficiently large n. Hence 

pu(xn)~o. Q.S.D. 

Theorem 6.2. A :?rechet space F is B
0

-normable if and only if 

each Am = { x: G xQF < ~} , · m = 1, 2, ••• , contains a convex, 

symmetric neighborhood' U (O) of 0. 
m 
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Proof. (necessity) Since F is B0-normable, for each Am 

there exists B 
E.m 

- {x· - .. such that B C::A • 
Em m 

We notice that every B
0

-space is a LCTVS (section 4). Hence 

there exists a convex, symmetric neighborhood lJm(O) such that 

U C::B 'CA • 
rn E m 

(Sufficiency). 

m 

By hypothesis, for each A , there exists a 
m 

convex, symmetric neighborhood lJm(O) of 0 such that 

U (o)CA • 
m m 

Define a sequence of seminorms p Urn as follows: 

pJ~)= inf {t>O: x~t Um(O) }, m = 1, 2, •••• 

Clearly if p (x) = 0 for each m, then x = 0. For, if not, -th12n 
Urn 

there exists x0 ,1 O, p (x0 ) = 0 for all m. But Ux0 j~ -F 0, 
Urn 

so that, x0 ~Am for some 

x5E~4C Um(O) for all m, 

m. But p (x
0

) = 0 for all m implies 
Urn 

where 0 < E < 1 (since Urn (O) is 

balanced). This shows that x0 E lJmCO)C:Am for all m, a 

contradiction. Obviously, by Theorem 6.1, llxn liF-o 
implies p (x )~ 0. 

U . n Let llxlb be the B0-norm defined by 
0 m 

Novl p (x ) -0 as n-co for each m implies 
Urn n 
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We are left to prove that llxn IIB
0
--. 0 implies llxn llr -+ O. 

So 

xn E: Um(O) for sufficiently large nand each m.· Therefore 

x ~A , and llx 11 < n m n W 
1 
- for all m and large n. 
m 

Thus we obtain 

Definition 6.1. Let X be a TVS. A subset S of X is said to be 

bounded if for every neighborhood V(O) of 0, there exists a 

non-zero real number ~ , such that €SC:V(O). 

, 
Theorem 6.3. A Frechet space F can be B-normable if and only 

if there exists .:\ convex, symmetric neighborhood U<o) of o, 

and· for any scalar tn, tn --... 0, and xn £: U<o), lltnxn IIF .-o. 

Proof. In vieh' of the fact that if a linear space is B-normable 

then there exist1:; such a neighborhood as the one described 

in the theorem, He need only to show the other part. 

First we claim that if lJCo) is described as in the 

theorem then U<o) .is l:Jounded. For otherwise, there exists 

a V(O) of os...dt.tl!a.t eU<o)c;tvCo) for any € • i.e. there exists 

x, x E U<o) suer that e x ~ V(O) for any £ , which gives rise 

to a contradiction, since tn ~ 0, xn ~ U<o) implies 

Define a seminorm pU as follows: 
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We want to prove that ~ is a norm. Let x
0 

I 0. By the condition 

that til____,. 0, XI'\ E uco) implies lltnxn IIF ~ 0, there exists 

a scalar b >0 such that bx0 ~ lJCO). 

For all scalars a> 0 if ~ x0 ~ U<o) then ab ~ 1. 

Indeed, if ab ( 1, it follows that 

a. b. ~ · x0 E; ab U<o)Clj:o) i.e. b x
0 

~ U<o), since 

U<o) is balanced. This contradicts the fact that bx
0 
~ U<o). 

Hence 

1J becomes a norm. By theorem 6.1., we know that llxn IIi _____, 0 

which implies pU (xn) ~o. 

It remains to show that pU ·(xn)--+0 implies llxn ~~ --+0. 

Indeed, U<o) i:'> bounded. That means for any neighborhood 

V(O) of 0 in F' ~here exists € such that ~ u<o)CV(O). U<o) ,. 
is symmetric. W:Lthout loss of generality, we can assume that 

~ ) 0 with E. U<o)C V(O). Since P. (x ) ----.0, we can obtain U n 

that P. (x ) '< E for sufficiently large n which implies x E ~UCo), U n n 

and then xn~ V(O) for sufficiently large n. Hence llxn IIF ~ O. 

Q.E.;D. 

From the above theorems we have the following: 

Theorem 6.4. A Frechet spaceX has a non-zero continuous 

linear functional if and only if there. exists a convex, symmetric 

neighborhood LJ<o) of 0 such that LJ<o) /){. 
Proof. (necessity) Suppose f is a non-zero continuous linear 

functional on X. I.et U<o) = { x: lfh:)l < 1} • Clearly, 
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U<o) is an oper convex, symmetric set which contains 0. 

It is erough to show that LJ<o) I X. If LJ<o) =X, 

then by continuj ty of f we obtain f(x) = 0 for each x E-X 

which leads to s. contradiction. 

and 

(Suffid ency) pU (x) = inf { t > 0: x E tU(o)} is a seminorm, 

{ X: p~ (X) < 1} c U< 0) ' 

{ x = Pu < x) ~ 1} ::) Uc o) • 

We want to show that there exists a x0 I 0 such that pU (x0 ) I 0. 

If P. (x) = 0 fer all x EX, then 
u 

xc {x: 1J (x) < ~C U<o) i.e. U<o) = x 

which contradicts the hypothesis that U<o) I X. By the Hahn-

Banach extension theorem, there exists a linear functional 

ton X (see theo~ems4.1 and 5.2) and f(x0) = pU (x0) I O, such 

that lr(x)j ~ 1J (x) for all x ~ x. 
A 

The continuity of f follows from theorem 6.1 that 

llxn - xo llr --+ 0 implies pu (xn - xo) - o, then 1<xn - xo) ___, o. 
Q.E.D. 

Example 6.1. (M. M. Day). Lp = LP(o, 1), 0 <: p < 1, consists of 

all Lebesgue mea:iurable real-valued functions on (O, 1) such 
1 1 

that 5 lfl p ~ w • Ur II = 5 lfl p defines a Fr;chet norm on 
0 0 

Lp. Let M be th~~ subspace of all bounded functions in Lp. We 

shall show that l1 has no non-zero continuous line.<tr functionals. 

Since M is dense in LP, this will imply the conclusion for LP. 
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Let U l:e a conve.x neighborhood of 0. Then f f: H fU < e J C U 

for some E.) 0. Let f be an arbitrary function in M, say 

If( t) I<. N. Since 0 < p < 1 we can choose an integer n such that 

Np 
-y-- < £ • Subdivide (O, 1) into n disjoint in~ervals 
n -p 

I 1 , I 2 , ••• , In of equal ~ength. For each k = 1, 2, ••• , n 

define a function fk by 

Then 
1 

II fkll = J 
0 

each fk is in U 

nf(x) 

0 otherwise 

p · p p 1 Np 
I r1,C t) I dt ~ n • N • - = - < t. .-. n 1-p 

n 
so that 

ri 

Since f 
1 
n L fk is a convex 

k = 1 

combination of flt' f is .in U But f is arbitrary, we have 

U = M. By 'the above theorem 6.4, M has no non-zero continuous 

linea.r · functiona:' .• 

Example 6.2. Le<; S(O, 1) be the set of all measurable real-

valued functions on (O, 1) with a Frechet norm defined by 

\1 
II f II= J 

0 

I f(x)l 
dx. 

1 + 1 r(x)l 

Let U be a com·ex neighhorhood of 0 containing the sphere 

{ f: Ufl<t}. 1 Choose an integer n)I. Subdivide (O, 1) 

into n disjoint 1ntervals r
1

, r2 , ••• , !
0 

of e~1al length. 
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For eacl k = 1, 2, ••• , n define a function fk by 

nf(x) 

0 otherwise, 

where f is an arbitrary but fixed function in S(O, 1). . 

Then 

n 

so that fk is in u . Since U is convex, f fk is in U 
k = 1 

and so U = S. Hence S(O, 1) has no non-zero continuous linear 

functionals. 

Theorem 6.5. Let F be a TVS in Theorem 6.4. Then the statement 

given in theorem 6.4 is true. 

Proof. The proof of necessary part being the same as that of 

theorem 6.4. (S 1ffi.ciency_). Let U (0) be a convex, symmetric 

neighborhood of <) 1 U ( 0) I F, then £ U (O) is a neighborhood 

of 0, for any no~1-zero scalars E 

The exis~ence of a non-zero linear functional f on 

F is guaranteed ')y theorem 6.4. The proof of continuity of f 

is the same as the proof of theorem 5.2. Q. E. D. 



?. A generalization of the Separation theorem. 

In this section, we shall generalize the Separation 

theorem given in Section 3. 

Definition 7.1. A set S in a TVS X is said to be an affine set 

if there exists ~ subspace s
0 

of X and x0 in X such that 

S = x0 + S0 , where x0 + S0 = { x0 + y: YE S
0

} 

Definition 7.2. A set C in a TVS X is said to be a~ if 

txE.C for all t~ O, xEC. 

It is ea3y to see that a cone C is convex if and only 

ifC+CCCwhe-:-eC+C={x+y: x,yfC} 

We shall make use of the following lemmas: 

Lemma 7.1. Let '! be a convex set in a TVS X absorbing at a, 

and let bE V. Then V is absorbing at each point of the line 

segment [a, b). 

Proof. For any <: E (a, b), c = ta + (1-t)b for some t, 

0 < t ~ 1. Let x E X be given. Since V is absorbing at a, there 

exists Y > 0 such that a + sx tV for 1 s I ' Y. Then, for lsi HY 1 

c + sx = t(a + ( ~~) x) + (1 - t)b E: V because V is convex and 

s a + ( t) x ~ V, hE v. Hence V is absorbing at c. Q. E. D. 

Lemma 7.2. Let v be a convex set in a TVS X absorbing at a. 

Let x be an arbitrary vector in X. Then V is absorbing at 

a + tx for sufficiently small t ~ 0. 

Proof. In fact, since V is absorbing at a, we can choose Y > 0 

t t· such that y = a 1- Yx E V. For 0 ~ t < Y, a + tx = (1 - :y)a + ( :y )Y 

:E (a, y). By virtue of Lemma 7.1, V is absorbing at a + tx, 
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0 ~ t < Y. Q. E. D. 

Lemma 7-3· Let V be a convex cone in a TVS X which is 

absorbing at each point of v
0 

= V \ ( -V) = { x: x € V and x ~ ( -V)}, VU(-V)=X. 

Then v
0 

is absorbing at each of its points. 

Proof. If V = -V, then v0 = ¢. The result is obviously true. 

Suppose that v
0 

J ¢, and the conclusion is false (i.e. there 

exists a E V 
0 

such that for every e. > 0 there is x J 0, 

a t- t
0

x f V 
0 

for some t
0

, 0 <:. t
0 

<:. e. ) • By hypothesis, V is 

absorbing at ae.v0 and by Lemma 7.2, Vis absorbing at a +tx 

for sufficiently small t ;.. 0 and any x € X. Thus we can choose 

t 1 >o such that a+ t
1
xfVo (i.e. -(a+ t1x)E~nd Vis absorbing 

at a + t
1 

x. Furthermore., Lemma 7.1 implies that V is· absorbing 

at each point of the segment (-(a+ t 1x), (a + t 1x)) • We 

notice that x J 0, t
1

> 0, 0 E (-(a+ t
1
x), (a+ t

1
x)) • There-

fore V is absorbing. Since V is a convex and absorbing cone, 

Oo 

V = u nV =X. 
n = 1 

a contradiction. 

Hence V =-V = X and therefore V 
0 

:e V \ ( -V) = ¢, 

Lemma 7.4. Let K be a TVS, and V a convex cone in X. If 

(a) 'IU (-V) = X, 

and (b) 1 is absorbtng at each point of V \ (-V), 

then V n ( -V) is 3. maximal subspace of X or the space X itself. 

Proof. Let S = In ( -V). It is easy to see that S is a linear 

subspace of X. [f S I X, we claim that S is a maximal sub-

space of X. Fir.:;t of all, the condition (a) implies that 



V \ ( -V) I ¢, otlterwise S = X. Let bE V \ ( -V). Clearly 

b¢"S. We want to prove that Rb + S = {tXb + ~x: x «:Sand oc, 

~ scala_rs J =X (i.e. bandS span X). Since SU(V\S)U((-V)\ S) =X, 

it suffices to ~;how that Rb + S ::> S, Rb + S ::> V \ S, and Rb + S ::> 

((-V)\S). Obviously Rb + S=>S. But if Rb + S=>(-V)\S, then 

-(Rb + S) = Rb 1· S ::> -((-V)\ S) = V\S. Thus, it is enough 

to show that Rb + S ::> (-V) \. S. For a given x E (-V) \ S, let 

B = { tb + (1 - t)x: all scalars t j 

Lemma 7.3, and condition (b) imply that V\(-V) and (-V)\V 

are absorbing at each of their points. Therefore, C = Bfl (V \ (-V)) 
( 

and D = B (l ( ( -V) \. V) are two non-empty open subsets of B, 

I I 
and bf.C, xED, CnD = ¢. From the fact that (V\(-V))n <C-V)\V) = 

I 
S, where (V \ (-V)) is the complement of (V \ (-V)), it follows 

that ( C U D) n S = ¢. 

Furthermore, X::> B, CUD C (V \ (-V)) U ( (-VJ \ V), and 

_¢I B\(CUD)CX\ { (V\(-V))U CC-V)\V)} = S, therefore 

¢I B'. (CUD)<. (B\ (CU D))n s = Bn s because (cuo)n s = ¢. 

This shows that Bfl S I ¢. Then there exists g E B () S, g = 

tb + (1- t)x for some t ll (since b¢S) and xE: (-V)\ S 

(given.). Theref::>re 

xE
1

: t(g ~ to)ERb + S, and hence Rb + S.:>(-V)\S. Q.E.D. 

Lemma 7.5. Let ·3 be a convex subset of a TVS X which is not 

absorbing at 0, ·Jut is absorbing at a certain point a of B. 

Then there exist:> a linear functional f such that 



S = { x: f(x) = ~} is a maximal subspace and f(b) ~ 0 

for every bin [ (i.e. S lies on one side of B). 

Proof. In order to prove this lemma, we shall construct a 

maximal subspace S of X and then apply the Hahn-Banach 

extension theorem. The proof of this lemma runs through the 

following steps: 

(a) We clairn that -a 1 tB for all t > 0. Suppose -a E tB 

forsomet>O(i.e. -'fEB). SinceaEBandBisabsorbing 

at a, and B is convex, B is absorbing at every point of the 

line segment <--f, a] (see Lelmla 7.1). Moreover, since 

a 
0 E (~, a) , B is absorbing at 0 which is a contradiction. 

(b) Let Q be~ family of convex cones such that 

~ = { C: C:>B, Cis a convex cone, and -a;cj 

clearly, Q I ¢ because U f tB} E Q. We order Q by inclusion. 
t~ 0 

If D is a chain in Q, let K = l_j E then K is a convex 
E~ D 

cone. Hence, by Zorn's lemma, there exists a maximal element 

K, say. 

(c) K U (-K) = X. It suffic~.i to show that for bE X 

and if b'fK, the1 bE:-K. Indeed, let P = { tb + x: t~O, xE K]. 

Clearly, p is a convex cone. Also - a E p, for otherwise 

-a f p. Since p~' K, this contradicts the fact that K is maximal. 

Therefore -a = t·l + x for some t > 0 and xE K (t I 0 because 

1 
-a f. K) so that b = t (-(a + x)). Furthermore, since K :> B 

x faK, and K is a convex cone, we have a + x E K + KC K, and 

hence b = t <.-(a + x)) E f (-K)C -K i.e. b f: -K. 
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(d) K is atsorbing at each point of K \ (-K). For. every 

b€ K \(-K), clearly -bf K. By step (c), 

-a = t(-b) -t x for some t > 0 and x€ K. 

1 1 
Therefore 2 tb =· 2 (a + x) E: K. Since K;:;, B, B is absorbing 

at a (by hypothesis), so is K. On the other hand, x € K 

then K is absorbing at each point of the line segment (a, x), 

in particular, K is absorbing at ~ (a + x) = ~ tb. This 

shows that t K is absorbing at b. Since f K C K, K is 

absorbing at b. 

(e) From Lemma 7.4, S = Kfl (-K) is a maximal subspace 

of X. Since -a1 K, -af/ S, S f. X, by the Hahn-Banach theorem, 

there exists a linear functional f such that S = { x: f(x) = 0} 

and f(a) = 1. 

It remains to prove that f(b) ~ 0 for every bE B. 

Suppose f(b) < 0 for some bE B. Since -a = ( f(~) - a) + 

b ( ) b E (-f(b))' bEBCK, -f b )0, and K is a convex cone, (-f(b)) K. 

b b 
Moreover, f ( ffif - a) = O, "f(b') - a ESC K, and hence 

-aEK + KCK i.e. -aEK, a contradiction. Q.E.D. 

Definition 7.3. v
2

, v
1 

are said to be separated if there 
-.. 

exists a linear :'unctional f f. 0 .and real t such that 

f(a) ~ t ~ f(b) or f(a) ~ t!: f(b) for all a €V
2

, bE v
1

• 

The following theorem 7.1 is a generalization of 

Eidelheit theore~. 

Theorem 7.1. Let v1 , v
2 

be two convex sets in a TVS X, v
2 

is 

absorbing at some point a of X but is not absorbing at any point 

of V1 ~ Then V1 , v2 are separated by a linear functional f. 
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Proof. First of all, V
2

- v
1 

={a- b: aEV
2

, bEV
1
l is 

a convex set because v
1

, v2 are convex, and v
2 

- v
1 

is 

absorbing at each point ~f a - v1 because v
2 

is absorbing at a 

by hypothesis. Furthermo~e, v
2 

- v
1 

is not absorbing at O. 

For otherwise v
2 

would be absorbing at some point of v
1

• 

By Lemma 7.5, it follows that there exists a linear functional 

f I 0 such that H = { x: f(x) = 0} is· a maximal subspace 

and f(x)~ 0 for all xEV
2

- v
1

• Then we obtain that 

inf f(a)~ sup f(b). 
a•:v2 b~Vl 

Letting t = inf f(a), w~ see that f(a) ;tJ t ~ f(b) 
a E v

2 

for all aEV
2 

and bEV
1 

(i.e. v
2

, v
1 

are separated by f). 

Corollar~ 7.1. Let X be a TVS, v
1

, v
2 

be convex sets with 

v1 n v
2 

=¢and at least one of which has an interior point. 

Then there exist.s a linear functional f and real t such that 

f(b) ~t ~f(a), f·jr all bEV
1

, aEV
2

• 

Proof. Suppose v
2 

has an interior point. Now v
1
nv

2
= ¢implies 

that v2 is not aosorbing at any point of v
1

• Indeed, if v
2 

is absorbing at ::;ome point bE V 
1

, then there exists t '> 0 

such that b + txEV
2 

for ttl~£ Hence fort= O, bEV2 , 

v
1
nv

2 
I ¢,a contradiction because v

1
nv

2 
=¢(by hypothesis). 

Hence the result follm.,rs from Theorem 7.1. Q.E.D. 

Lemma 7.6. A maximal subspace S of a TVS X is either closed 

or dense. 
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Proof. First, we notice that the closure of s is also a 

linear subspace. Now if s a~sc sand the max:i.mali ty of s 
'I 

imply s = s i.e. S is closed. ct.E.D. 

Lemma 7-7· If a linear functional f on a TVS X is continuous 

at a certain point a, then it is continuous everywhere. 

Proof. Let x E. X, and xcx. ~ x, then a + xa: - x __,.a, and 

f(x) - f(x) = f(a + x - x) - f(a) ~·o. Q.E.D. a: a. 

Lemma 7.8. Let f be a linear functional on a TV$ X. If 

f is bounded on some neighborhood of 0, then f is continuous. 

Proof. Let V be a neighborhood of 0 in R, and let f( U ) be 

bouhded for a given neighborhood U of 0 in X, then tV.:::> f( U) 

-lc ) 1 -lc ) for some t > 0, or ~ V .:::> tU. Hence f V is a neighborhood 

of 0, and f is continuous at 0, and therefore f is continuous 

everywhere by Le11ma 7.7. Q.E.D. 

Theorem 7.2. A linear functional f is continuous if and only 

if S={x: f(x) = 0\ is ctosed. 

Proof. (Necessi t:r) Since { 'o \ is closed, and f is continuous 

then S = f-l( {OJ ) is closed. 

(Suffici•mcy) We notice that X/S is an one dimenSional 

TVS and hence f: X/S ~ R is a continuous linear mapping. 

But X·~ X/S is a continuous canonical mapping. Hence f: X~ R 

is continuous. (t.E.D. 

Corollary 7. 2. 1\ linear functional f on a TVS X is continuous 

if and only if S = { x: f(x) = 0 } is closed. 

Proof. · The resu:~t follows directly from the theorem 7.2 and 

Lemma ?.6. 



Lemma 7.9. Let v1 , v2 be two convex sets in TVS X with at 

least one of which has an interior point. If v1 and v2 

are separated by a linear functional f. Then f is continuous. 

Proof. Suppose v
2 

has an interior point. 0 Let v2 be the set 

of all interior points of v
2

, and for some real t, H ={ x: f(x) = t}, 

0 which is a hyperplane in X. Then H n V 
2 

= ¢. In fact, 

f(b) ~ t ~ f(a) for all a E v
2

, bE V
1 

(by Definition 7.3). 

0 We want to show that f(a) f. t for all a E V 
2

• ·suppose f(a) .. t 

. 0 
for some aEV

2
• Choose xE X such that f(x) = 1 (this is 

possible, since f f. 0 and v1 , v
2 

can be separated by f). 

Since a E V~, V 
2 

is absorbing at a, a + axE V 
2 

for some a.< 0, 

and f(a + «x) = t + cx.f(x) = t + a<: t. But f(b) ~ t 'f(a) 

for all a E v
2

, bE Vi. Thus f(a) f. t and hence H () V~ = ¢. It 

follows that His not dense in X and therefore S = { x: f(x) = 0} 

is not dense eit"1er. In view of Corollary 7. 2, f is continuous. 

Q.E.D. 

Theorem 7.3. Let X be a TVS and v
1

, v
2 

be two convex sets 

with v
1 

(1 V 2 = ¢ •md at least one of which has an interior 

point. Then v
1 

and v2 can be separated by a continuous linear 

functional. 

Proof. By Corollary 7.1, V],.' v
2 

can be separated by a linear 

functional f. The continuity of f follows from Lemma 7.9. 

Remark 1. Theor;~m 7.3 shows that if there exists two convex 

sets in a TVS X 11ith v
1
n v2 = ¢, and at least one of which 

has an interior ;)oint, then there exists a non-zero continuous 

linear functiona: .• 
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Remark 2. The condition of "at least one of which has an 

interior point" in theorem ?.3 is essential. For example, 

v
1 

~ { b I 1 v
2 

=: { a} (a I 'b) be two disjoint convex sets 

in LP(o, 1), 0 <. p < l. We know that there does not exist 

a non-zero cont:i nuous linear functional on LP( 0 /. p ( 1) 

(see Example 6.1). 

Lemma 7.10. Let B 'be a convex subset of a TVS X, which is 

not absorbing at o; 'but it is absorbing at some point a of B. 

LetS= Kn(-K) with K as defined in the proof of Lemma 7.5 1 

and fa linear fUnctional such that S = { x: f(x) = o} 1 

f(a) = 1. Then f(b)>O for each bat which B is absorbing. 

Proof. Lemma 7.5 sho ... rs that f(b)~ 0 for all b€ B. We shall 

show that f(b) I 0 for each b at which B is absorbing. 

Suppose f(b) = C. For a I b, there exists E > 0 such that 

b + ta E B for I t I * t. since B is absorbing a't b. Choosing 

t < 0 1 It I !: t. , we have f(b + ta) = tf(a) = t <. 0 1 a contra-

diction. Q.E.D. 

Lemma 7.11. Let V be a convex subset of a TVS X. If V is 

absorbing at eac 1. of its points, and 0; V. Then there exists 

a maximal subspa::eSof X such that V (l S = ¢. 

Proof. V is not absorbing at 0, for otherwise 0 E V. There-

fore, by Lemma 7•5, there exists a maximal subspace S = {x: 

f(x) = 0} , such that f(y)~ 0 for all yE V. Since Vis 

absorbing at each of its points, Lemma 7.10 implies that 

f(y)> 0 for all ;r~ V. Hence vn S = ¢. Q.E.D. 
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Lemma 7.12. Let X and B be topological vector spaces, and 

f: X ~ B a linear map. Suppose that H is a set in X satisfying 

f(H) =B. Then X = H + ·f-l( { 0) ). 

Proof. For any a in X, by hypothesis, f(a)E f(H). Then 

'r(a) = f(h), for some h~ H i.e. f(a -h) = 0, a -hE f-l( {0} ). 

Hence a = (a - h) + hE- f-l( f 0} ) +H. Q.E.D. 

Lemma 7.13. Let X, B be topological vector spaces, and 

f: X ~ B a linear onto map. Let H be a maximal subspace of 

B. Then f-1 (H) is a maximal subspace of X. 

Proof. Let S = f-1 (H). Then Sf X, since f is onto. Let H
1 

Then f(H
1

) l H and so f(H
1

) = B. be a subspace with H1 ~ s. 

By Lemma 7.12, 

Hence H1 = X and so S is maximal. 

Theorem 7.4. Let V be a convex subset of a TVS X and V 

is absorbing at each of its points, and.S be an affine set 

in X such that S n V = ¢. Then there exists a hyperplane 

H such that H ::> S and H () V = ¢. 

Proof. Since S is an affine set (see definition 7.1), S =a+ s0 

where a~ X and S) a subspace of X. First of all, we consider S 

to be a subspace of X. We wish to show that there exists a 

maximal subspace H such that HJS and JI()V = ¢. Let f: X-4X/S 

be defined by f(.~) = a + s, for each a EX. Clearly, f is a 

linear onto map. Since V is convex, absorbing at eac'l-t of its 

points, so is f('/), and fO) f. f(V)(because f(S) =to} E X/S, 

S () V = ¢, f(S) n f(V) = ¢). By Lemma 7.11, there exists 
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a maximal subspace H
1 

of X/S such that H
1 
n f(V) = ¢. Let 

H = f-1 (H1 ~~1emma 7.13, H is a maximal subspace of X, 

H.:>S because f(S) = l O\ c H
1

, and r-1 (f(V))n r-1 CH
1

) = ¢. 

Since VCf-l(f(V)), vnr-1 (H
1

) = Vf}H = ¢. 

Now in general, if S is an affine set, then S = a + s
0 

where a € X, s
0 

a subspace of X. Clearly (S - a) n (V - a) = ¢ 

i.e. s
0 
n (V - a) = ¢, and V - a is convex and absorbing at each 

of its points. By the above argument, there 'exists a maximal 

subspace H
0 

such tha~ H
0

:::> s
0 

and H
0 
n (V - a) = ¢. Let H = H

0 
+ a, 

then we have H.::>S arid Hnv = ¢. Q.E.D. 
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