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PREFACE

We investigate the concepts of B.-space, loecally

0]
convex topological vector space, Fréchet space in detail
and prove the Hahn-Banach extension and Banach separation
theorems. TFurthermore, we give a necessary and sufficient
condition for the existence of non-zero linear continuous -
functionals on cerfain topological vector spaces. These results
.are given in sections 1 to 6.

In the last section 7, we extend the Banach sparation
theorem from normed linear spaces to certain topological

vector spaces.
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1. Introduction

We know (M. M. Day (1)) that there exists a topological
vector space, namely Lp(O, 1), 0< p<1l, on which there is n§
non-zero continious linear functional,

In this paper, we Qill give a necessary and sufficient
condition for the existence of non-zero continuous linear
functionals on any real Fréchet space - a vector space with a
Fréchet norm abbreviated F-ﬁorm which is due to S. Mazur and
W. Orlicz [b). Our basic idea is based on the famous Hahn-
Banach extension theorem. We use the method of T. Huséin Eﬂ.

We collect our notations and terminology in Section 2.

In Section 4, we discuss a subclass of Fréchet spaces which

is called the class of Bo-spaces, and then investigate the
existence of non-zero continuous linear functionals. Essentially,
a Bo-space is a locally convex topological vector space. If

a topological vector space is locally convex, then there exists

a non-zero continuous linear functional (see A. Wilansky [ﬁq). But
the converse is not necessarily true as we show by an example

in Sectiﬁn 5. Turthermore, S. Mazur and W. Orlicz [h] found a nec-
essary and sufficient condition for linear metric space to be
B.,~-normable. A, Kolmogoroff {}] (also see A. Taylor [6]),

0

proved the necessary and sufficient condition for topological



vector spacés to be B-normable. Using theorem 6.1, we derive
two théorems of S. Mazur and A. Kolmogoroff from theorems 6.2
and 6.3.‘ Moreorer, we obtain our desired result, namely theorem
6.4, and then extend it to general topological vector spaces
in theorem 6.5,

In connection with the existence of non-zero continuous
linear functionals on a éopoiogical vector space (TVS). We
give Banach separation theorem and BEidelheit theorem in Section 3,
and then extend them to general topological vector spaces

(theorem 7.3 and theorem 7.4).



2. Notations and terminologl

Let X be a linear space with more than one element, and
the scalars are real numbers unless otherwise specified.

If X is furnished with a topology T such that addition
and scalar multiplication are contiﬁuous, we say that X is a
topological vector space abbreviated TVS. If each neighborhood
of O in a TVS X contains a convex neighborhooed of O, we say that
X is a locally convex topological vectér space, abbreviated

LCTVS.

Definition 2.1

Let X be a linear space. We sayl| “F is a Fréchet norm

on X if it satisfies,
(1) |lxj; = O if and only if x = O, and |jx||[z>0 for all
x in X
@) |Ix + g %l + “y“F for all x, y in X
(3 f=xll_= lix|| , and

—> O then “tnxn - toxo“F——»O

() 1f t, — to' ”xn - Xg|l§

where tn’ t, scalars and Xgy X in X.

0

Definition 2.2

Let X be a linear space. We say || | is a seminorm
on X, if . |
(1) ||x|l 20 for all x in X

(2) “tx” = Itl-“x" for all x in X and all scalars t, and



(3) ||x - y“ $||x||+ “y“ for all x, y in X.
If the condition (1) is changed to "|[x[l = O if and only if
x = 0 for each 2 in X, and “xj] > 0 for all x in X", then

“ u is called & norm on X.

Definition 2.3

Let X be a linear space, and {“ "i’ i=1,2, ¢eoy n, ...}

be a sequence ol seminorms defined on X in which “xui =0

for each i then x = O. Wé say - || “Bo is a By-norm, if
1 "Xlk .
Il = ﬁfi::'"f T <6k
o 2 I i
i=1

It is easy to see that Fréchet norm, norm and Bo-norm

define a metric. Hence spaces with these norms are metric spaces.

Definition 2.4

If (X, )| ) is a complete normed linear space, then we

call (X, || ) a Banach space.
Ir (X, "l% ) is a complete B,-norm space, then we call
0

(X,||"BO) ' a B,-space.

If (X,IIHF) is a complete Fréchet normed space, then

we call (X,|||&) a Fréchet space.

Definition 2.5

If X is a linear space, we say f is a linear functional

on X provided f is scalar-valued and

floax + By) = af(x) + Bf(y) for all x, y in X and all scalars

a, B.



Definition 2.6

Let (X, d) be a metric space with metric d and f -
‘& - function.  on X. We say that f is continuous if it
is continuous with respect to this metric d. (i.e. if x

converges to x. with respect te the metric d, then f(xn) —»f(xo)),

(0]
Definition 2.7

A set X with binary relation (£ ) is said to be a

partially ordered set if the following conditions hold:

(1) x¢ x for all x €X.

(2) If x¢y and y¢x then x = y.

(3) If x¢y and y¢z then x<z.
A partially ordered set with binary relation £ is denoted by
(X, £).

Definition 2.8

A partially ordered set (X, ¢) is said to be a linearly
ordered set if for any x, y€X, either xgy or yg x.

Definition 2. ]

b is sail to be a maximal element in a partially ordered

set X if there exists no element x,
x >b where x€éX, x £ b.

Definition 2.10

Let A be a subset of a partially ordered set (X, £).
b is said to be an upper bound if b €X, and

b2x for all x €A.



Zorn's Lemma. et (X, <) be a partially ordered set. If

every linearly ordered subset of (X, ¢) has an upper bound,
then X contains a maximal element.

Definition 2.11

A set D is said to be a directed set if D is a partially

ordered set with partially ordered relation >, and for every
@, B €D there exists Y €D such that Y 2a, Y 28.

Definition 2.12

A net in a topologic‘al space is a function defined on
a directed set I' with values in that topblogical space and is
denoted by (xa, ox€D).

Definition 2.13

A net (ya, x €D) is said to be eventually in a set B

if there exists ocoe D such that xaéB for all aZao. It is

saild to be frequently in B if for any ocoé D there exist some

o such that a 2a,. and x_ € B.
0 a

Definition 2,14

Let (x,, @ €D) be a net in & topological space X.

X, is said to converge to a (i.e. X, is a net converging to a)

if for any neighborhood Ua of a, x is eventually in Ug» and
denoted by X, — 2.

Example 2.1. Let X be a topological space, and 2 €X. Let D

be the set of all neighborhoods « of a, ordered by inclusion

(0 2B iff ac=B, x, PED). It is easy to see that D is a directed
set. Tor each x €D let x be a point in & then (xa, D) is a

net in X and x, -—a. In fact, let Ua be an arbitrary neighborhood



of a then |] €D (by definition of D). It remains to prove that

0

aCay = |J,- Hence a2y, It follows that x, € «C={J, which

shows that x, is eventually in LJa'

x, is eventually in Us® Take o, = LJa there is an a such that

Definition 2.15

Let (X, T) be a TVS with a topology T. We say that f
is continuous if f is continuous with respect to T (i.e. whenever

x, is a net converging to a, f(xay——» f(a)).



3. The Hahn-Banich extension theorem and Separation theorem
First we pre;ve a lemma and then apply Zorn's lemma

to prove the Hahn—Banaich‘ extension theorem.

Lemma 3.1. Let vae a linear space, XO a proper subspace of

X, Xl = (XO + ’xO: erX\X Y scalars} .

0)
Suppose P is a seminorm on Xl; and f a linear functional on
X such that

o M *

fix) ¢P(x) x €X,ye

Then there exists a linear functional on Xl such that

F(x) = £(x) for all x €X,,

and

#(x) £ P(x) for all x €X,.

Proof. By hypothesis f(x)& P(x) for all x€éX., and we notice

o'

eX - x.,€X . and

that for any Xyy X o' X1 > € Xq

2

f():l) - f(xé)é P(xl + xo) + P(xO + XZ),
i.e. --P(xO + xé) - f(xé)s P(x1 + xo) - f(xl).

Let

m = sup {-P(xo + xa) - f(xz)} and

xzéxo



M = inf . { P(x1 + XO) - f(xl)} ,
X,lé XO

$ M,
0 such that msco\ M

OY where y = x + Yxo,

Obv'iously the representation of y = x + Yx

Clearly m&M. (hoose c

Let f(y)l=f(x}+c yeX,, x€eX

1 0*

0 is unique, and

it is gduite clezr that f is a linear functional on Xl, and

y) = £(y) € ply) if y € X,

It remains to show that_?()') < ply) for each yéXl.
IfYy =0, yéXO;Mthe result is trivial.

If Y >0, ?(y) = f(x) + ¢ . Y& T(x) + MY where y €X

o , X €X_ , and

1

y=Yxo+x.

“ X X X X
Therefore f(%) £ f(-Y-) + Méf(?) + p(xO + 7) - f(-Y-}

Hence ?(y)s"{p(xo + -}YE) = p(YxO + x) = p(y), for-each yéXl.

If Y<O, ?(y) = f(x).‘ + cOYéf(x) + mY,

FL 2 1) + m21) - plxy + D) - £(3)

Z), and

A
L
then (&) 3> - p(xO + 35

X
Py) € - Yp(xo + -Y-) = p(YxO + x) = p(y) for each y€X,.

Hence ?(y)$p(y) for all y éX The proof is complete.

l.
Theorem 3.1 (Hahn-Banach). Let X be a TVS, and p a seminorm

defined on X. If XO is a subspace of X, and f a linear functional

on XO such thet

f(x) £ p(x) for all x €X,,



then there exists a linear functional ? on X such that

£G) = £(x) for all x €X,
and () <plx) - for all x €X.
Proof. Let %% be the set of all pairs (F, T) such that F

is a subspace ccntaihing XO, and T an extension of f (i.e. T is

defined on F and T(x) = f(x),xeXO), and

F(x) € p(x) for all xe&F.
We define the partially ordered relation £ in 2% as
follows:

IS .
, fs) if F,CF

g and ga(x) = EB(x), x€eF,.

Every linearly order.e.d subset of 31 has an upper bound. In

fact, suppose A = {(Fa’ fa), o €N } is an arbitrary linearly

ordered subset of 3(. . Let F = U 'Foc' Since /A is linearly

oeA
order Va, BEA , either FE Fg or FB;Fa. It follows F

is a subspace of X. We define a functional T on F such that
- = , .
f(x) = fa(x), x €F .

Since ?oa is a linear functional, and 'f"a(x)sp(x) for each «,
T is a linear functional on F, and F(x)g p(x) for all x€F.
Furthermore, (F, T) is an uﬁper bound of A. By Zorn's lemma,
there exists a miaximal element in SC , (F, ) say.

It remains to show that F = X. If not, then X 32 F.

Let xlé X\F, Xl = {F + Yxl, YéR}. Clearly Xl is a subspace

10



containing F. By above lemma 3.1, there exists a linear functional

fl on Xl such that

fl(x) = ?(x), for all x éF and fl(x) £ p(x) for all x€X,.

Thus

A « ' .
(F, )< (X, £)) and (X}, £,)€F  which contradicts

b
the fact that (F, T) is a maximal element in F .

Hence F = X, and ? satisfies the requireci conditions.
Q.E.D.
Remark. In a normed linear space X if f is continuous we can

obtain that [fI ]f " In fact, take p as in theorem 3.1

to be
() = liflly * 1l
“ “xoll "

Then

| 2| p(x) = llfllxc; [Ix1l
and A
%1l < Nzlly
0
Clearly
”f“x 'f“)p and hence “?“x = ”f“xo'

Corollary 3.1. 3Fiven conditions of the above theorem 3.1, and

given f on X. suczh that If(x)|\< p(x), then there exists a

0

linear functional ? on X which is an extension of f and

If(x)l £ p(x), for all xeX.

Proof. Since ()¢ p(x) for all x €X and

’f\(‘-x) §p(-x) = p(x),

11



this shows that

F(x) ¢ p(x) and -£(x)¢ p(x) for all x é&X.
Q.E.D.
Theorem 3.2 (Barach separation theorem). Let X be a normed space,
Vl a non-empty open convex set, and V2 be a iinear manifold such
that Vzn\l:L = ¢f  Then there exists a continuous linear

functional f and a real number ¢ such that
f(x) = ¢ for all er2 and f(x)<c¢ for all X €Vy,
furthermore, there exists a closed hyperplane H such that

H:v‘2 and Hﬂv1 = g,

Proof. Without loss of gemnerality,; we can assume that OéVl.
Let p be a Minkcwski functional defined on X with respect to
Vl i.e.,

p(x) =,inf{>\>0: xé}\Vl} .

Let Y be the subspace generated by V2
(i.e. Y is the smallest subspace of X containing VZ)' We
observe that V2 is a hyperplane in Y. Therefore there exists

a linear functional fO on Y such that .

V2 = {x eY: fo(x) = c}.

There is no loss of generality in assuming that

v, = {xéY: fo(x) = 1} .

Since v is open, for each x €V, p(x) <1 and Vanvl = @ which
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implies that
fc'(x) = 1< p(x) for all xev2 N

On the other hard, since for every y¢€Y

y = ax where o real, x €V

2’
we obtain
@20, folax) = a f(x)ga p(x) = plax) = ply)
a <0, fo(or.x) = Q& fo(x)SOsp(ax).
Thus fo(y)gp(y) for all yeY.

Hence by the Hahn-Banach extension theorem 3,1, there exists
a linear functicnal f on X such that

fx) = fo(x) for all x €Y, -

f(x) gp(x) - for all x € X, and “f” = ”fO”.
Clearly “fo " = 1, and then f is continuous. Furthermore let
H = {x €X: f(x) = 1} , then H is a hypérplane in X, H.‘..'.)VZ,

and anl = ¢ because f{x)€ p(x)¢ 1 for all x €V The continuity

1'
of f implies that H is closed. Q.E.D.

Corollary 3.2 (saipport theorem) Let X be a normed linear space
and xO #Z O. Thea there exists a continuous linear functional
f such that £(x,) = Il?co Il “f“ = 1.

Proof. If the dimension of X is equal to one, X = {a Xgt o

all scalars } ‘and we can define a continuous linear functional

f on X, fla xo) z “ “ , and then f(xo) = “xO" , “fu =1,

*o

Assume that the dimension of X is greater than one. Let V2 =

{on Xnt @ all scalars} and V. a convex neighborhood of xl(x:L Z xo)

1
such that XO¢V1 and Vznvl = @, and then apply theorem 3.2.



The result follcws immediately. Q.E.D.

Corollary 3.3 (Eidelheit theorem). Let Vis V, be convex sets

in a normed linear space X with vanZ =@, and V

> is open.

Then there exists a continuous linear functionalfsuch that

sugp f(y) < inf f(x).
yéVl xéV2

Proof. let V=V, -V, = U (V2 - ¥). Since V, - y is an open

2 1 yé—V1 2

set for each y € Vl’ V’ is open. Clearly V is convex. Furthermore
0 &V vecause VI(]VZ = @#. Since {0} is a linear manifold, and

V is an open convex set which is not empty, by the abov/e
separation theorem 3.2, we obtain a continuous linear functional
f, such that f # O and f(x) 20 for all x€&V.

Put x = x, - x; for all x eVz, xleV which implies that

2 1l 2 1

f(x)

f(xa) - f(xl) 20 for all x,€V

> o0 xlé vlo

inf
Hence ;uepvl £(y) € xlenVZ f(x). Q.E.D.

14



b, B:—space and its non-zero continuous linear .functionals

In this section, we shall show that there always exists

a non-zero continuous linear functional on a B -space.

(o]
Example of B -space 4.1. The linear space CO(-w , ®) consists

of all continuous, bounded real functions on (-, ®), Define

the B,.-norm by

0 00 1 Il
Ixlg = > T T where uxﬂi = sup | xCt)l.
0 i=-1 2 5 te (-1,1)
Then CO(-°°, o) becomes a B,~space.
In fact, leli is a norm for each i, and
o0 X 00 P
LA 1 1
Ixlly, = 9 , ) = lixi;, €M > = =Moo,

Bo f=aAtrway 3 AR o S

there | x(t)| € M for all t € (-&, ®@). The completeness
of CO is due to the fact that Co is complete with fespect, to
every || Il; for sach 'i. |
Lemma 4.1. Every Bo-space is a Fréchet space, and ||‘xnu BO—) 0
if and only if “xn”i_) 0 for each i.

Proof. It is sufficient to prove that ||x|B is a Fréchet norm.

0 ,
(a) JOl, = O siace |ON, = O for each i, and if xl, = O then
B i B
0 o
llxlli = 0 for each i. Hence x = 0.
(v) IIxIIBO = |- xIIBO, since xll; = |-xh; for each i.

() Nx + yi, SUXh, +1YH
By By By

Without loss of generality, let | x + ylg # 0 and
' 0

15
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- RSN S R
“X + y"BC - ﬁ: 2i (ux~+ y“i 1)

i=1

We notice that

1
“x + YHi ;

 _ and (—2 . 1)L
FE = 0 ‘lI“yIIi <(ux“ + Pl )™

therefore

&= ey 1 1 -1
I+ ke, =2 58 TR, € il T )

i=1
= ﬁ 1 ks ks
c— ey

1l =

o Il Iz
€2 w TR i:l AT " e, ol

(d) It is easy to see that if t, —> t;as n— o and if

%, = % “Bo — 0, then [t x -t x, “Bo—’ 0

n? t. are scalars.

where t 0

By the similar argument as above, we obtain

“xn"Bo—-» 0 if and only if "xn“i——’ O for each i. Q.E.D.

Lemma 4.2. Every Bo—space is a locally convex TVS,

Proof. Let Ué(O) = {x:‘ “qu < E } . There exists a convex
)



" neighborhood V,(2) of O such that V. (0)(_ | J(O). Consider
§ & €

v, (0) ={),(: “x[li<£ for each i}.

Then
v (0)CZ U£<o>,
since for every « €V, (0), “qu = EOO _1- _.l_lﬂl.l____ <
o £ 2 1o+ Ixl;

29)
€ 2> Ikd<e -

i=1
The convexity of Vg (0) follows from the fact that [[x[[l is a
seminorm for each i. Q.E.D.

lLemma 4.3. In every B.-space X, there exists X5 £ 0 and a

0

positive integer n such that

M?rilx (“xoﬂl, con, “xoll'n) # 0.

Proof. The prooif of this lemma is a direct consequence of

the definition of Bo-space.

Theorem 4,1. On every Bo-space,‘there exists a non-zero continuous

linear functional.

Proof. By lemma 4.3, we can define a seminorm p on X such that
p(x) = sz (uxul, cery ﬂx“n) and for some x;, p(xo) # 0.

We consider the linear subspace Xo = {t X5+ t scalars} , and

define a linear functional f on X, by

0

f(x) = 'p(xo)t for all x € X,.
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Clearly f(xo) = p(xo), and f(x)< p(x) for all x€X By the

0
"Hahn-Banach extension theorem, there exists a linear functional

A .
f on X such that

A
F(x) = £(x) x€X,, and f(x)g p(x), for all xeX.

Using the Corollary 3.1, then
. :
lf(x)l < p(x) for all xéX.

Clearly T # 0 sitce T(xg) = £(xg) = p(xy) # O.

‘It remains to show that f is continuous. If
“xj - XO“B — 0 as j—>00 , then
0
”x. -x ” —— O for each i. Therefore
3 oHi

M;x ( lxj - xO“l’ voe, “Xj - xolln)ﬁo. That means

p(xj . xo)—»O fov ”Xj - XO“BO—' 0 as j—00 .

Therefore /f\(xn - xO)—w 0. This shows that f is continuous.
Q.E.D.
Examgle 4,2. A ron-zero continuous linear functional on

G(-w ,®) can be represented by

1 n
f(x) = 3 x(t)dgl(t) + oese + j x(t)dgn(t),
. J. -

where 8; is a real function of bounded variation for each



i=1, ..., n, and T(x) #Z O.



5. The existence of non-zero continuous linear functional
on LCTVS.,

Definition 5.1. A set C is convex if tx + (1-t)y€C for any

X, y€C, and for all scalars t, O0<£tg1l.

Definition 5.2. A TVS X is said to be locally convex if for

any neighborhood U(O) of 0, there exists a convex neighborhood
V(0) of O which is contained in [ J(0).

Definition 5.3. A set C is said to be symmetric if -C = C

i.e. {-x: xeC} ={x: -xeC}.‘

‘Definition 5.4. A set C is said to be balanced if tx €C for
any x ¢C and all scalars t, |t|<1.

Definition 5.5. A set C in a TVS X is said to be absorbing at

a_point b, if for any x &X, there exists a £ >0 such that
b + tx € C where Itl;<£ .

Furthermore, § set C is said to be absorbing if it is absorbing
at 0.

Definition 5.6. A function p defined by a convex,balanced,

absorbing set C is said to be a Minkowski functional p,

where p(x) = inf {t >0: xetC}.
Lemma 5.1. Let C be a convex, balanced, absorbing set, p
its Minkowski furctional, and p a scalar. If p.>p(a), then

aépC.

20
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Proof. If ps p(a), then by definition of p,

w>inf {t>0: aetc},

or
>0: aetC} .

it

1 >i.nf[

This means that there exists a scalar to'>0 such that

t5 :
0C== <1 and aetC.

t

Since C is balanced, ;Q'aé tOC i.e. 2a€epuC. Q.E.D.

Lemma 5.2. Suprose p satisfies the same conditions as those
in lemma 5.1, then p is a seminorm.
Proof. It is sufficient to prove p(a + b) ¢ p(a) + p(b) for any

a, b&C. For arbitrary a, b&C, and £ >0,

p(a)d¢p(a) + &, p(b)g plb) +€ .

By lemma S.1, it follows that

ae(pla) +£)C, be(p(b) +£)C.
Clearly, sC + tC = (s + t)C for all scalarssat since C is a

convex set. Thus we obtain

a+hé(pla) + £)C +.(p(v) + €)C = (p(a) + p(b) + 2€)C
and .

p(a + b) ¢ pla) + p(b) + 2¢ .

Letting £ — 0O, pla + h)g p(a) + p(v). Q.E.D.



Lemma 5.3. .Let X be a TVS, and v a convex, symmetric neighborhood
of 0. -Then V is convex, balanced, and absorbing.
Proof. Since V is convex and symmetric, tx ¢V for xeV, lt[s 1.
This shows that V is balanced.

We are left to show that V is absorbing. Let x €X,
tn—‘—-' O,tn> 0, which implies that tnx —+ 0. That means there

.

exists t, >0 such that t x¢€ v.

Hence tx = ti--t x &V for 0t <t.. Q.E.D.

0 0 0

Theorem 5.1. Let X be a LCTVS with Hausdorff topology. Then

" there exists a family of seminorms {pa} ' X Z0,

aeA

and otoé./\. such that

pao(xo) # 0.

Proof. Observe thatif V(0) is a com}ex neighborhood of O in X,
then so‘is -v(o). .Therefore v(o)ﬂ-v(o) becomes a convex,
symmetric neighborhood of 0. There exists a fundamental
system {Va‘ ae A } of neighborhoods of 0, such that each
va is convex, balanced, and absorbing by Lemma 5.3. Define
b, s follows

p, (%) = inf{t>o: xetva} .

By lemma 5.2, P, is a seminorm for each awe A .
It remains to prove that: there exists aoé./\. such that,

for some x £ 0, pao(xo) # 0.

If not, pa(xo) = O for every aé A which implies x,€V, for
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each a€ /A . Hence Xy = 0, because X is a Hausdorff space.

But this is a contradiction because Xy #0. Q.E.D.

Theorem 5.2. Every locally convex Hausdorff TVS has a non-zero
continuous linear functional.

Proof. Suppose X is a given locally convex Hausdorff TVS.

By theorem 5.1, we obtain x, # 0 and a.¢ A, p. (x.) # 0.
., O 0 S%y 0O

For the linear subspace XO = {txoz all scalars t }, define

f (x) = tp, (xo) where x = tx,.
0 o - ,
It is easy to sees that fo is a linear functional on Xo.
Clearly i‘o(x)\(pJL (%), X € X ' Therefore, by the Hahn-Banach
0

extension theorem 3.1 and corollary 3.1, there exists a linear

functional ? on X such that '

?(x) = f(_x) x € X,

and

l?(x)l < pao(x) x € X.

A A
f is continuous. In fact, we see that f is bounded on

{x €X: p (x)(l} which is a neighborhood of 0. (see Lemma 7.8).
0

(i.e. 1If (xa, o €D) is a net in X, and X, —> X (see Example 2.1),
. A

then pczo(xcx - x) — O, hence flx, =~ x)—=a 0).

Theorem 5.3. Every LCTVS X has a non-zero continuous linear

functional except X is indiscrete.

Proof., We can define



p(x) = M%x (pal(X), con, pan(x))such that

0

p(xo) = M:x (pOL (x.), oo, pan(xo));( O for some x, € X,

1

where Py + **+» b, are seminorms.
1l n

Clearly, p is a seminorm. We recall the theorem 5.2, then

there exists a linear functional ? such that:

If}(x)l £ p(x), and ?(xo) #Z O.

The proof of continuity of f is the same as the proof
of the above theorem 5.2. Q.E.D.
| The following example shows that there exists a TVS
which has a non-zero continuous linear funcfional, but it is
- not locally convex.

r

Example 5.1. Let_zp, O¢pcl, be the set of all sequences

)
such that | x|| = E lxi| p< oo , where x
i=1

(xl, Xoy eeey X,

£p,.0<p<1, is not locally convex. But

f(x) = § tixj'.’ where szp |til(¢o , ti?‘: 0 is a
i=1

non-zero continuous linear functional (see [7] :PIBO.).
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§. Non-zero continuous linear functionals on Fréchet spaces

Let F be a.Fréchet space with the Fréchet norm. || l]F,
denoted by (F, | "F)' Then we have the following:
Theorem 6.1. If (F,| “F) has a convex, symmetric neighborhocd
U(0) of 0, then there exists a seminorm pU Suchthat || x [lp— O
implies Py (xn) — 0.
Proof. By lemma 5.3, the convex, symmetric neighborhood U (0)
of O is essentially a convex, balanced, absorbing neighborhood

of 0. Let Py bethe Minkowski functional,

P, (x) = inf{ t>20: xe tU(o)} .

Lemma 5.2 implies that pU is a seminorm.

It remains to show that if uxnnF — 0, then P, (xn)-—>0.
Since (J (0) is a neighborhood of O, for each scalar € , &/ (0) a
neighborhood of 0. 1In fact, let (J, (0) be an open set which is
contained in U (0). It is easy to see that ¢ OU (0) is an open
set which is contained in & (J (0) because (F,| “F) is a TVS.

Therefors, for any &> 0, x € & (0) for sufficiently
1arge n, and then Py (xn) ¢ & for sufficiently large n. Hence
p,(x,)™ 0. Q.%.D.

Theorem 6.2. A FTréchet space F is B_ -normable if and only if

0

< 1y .
each A = { x: uqu( -n-f}’ m=1, 2, ..., contains a convex,

symmetric neighborhood’ (/ m(O) of O.

25

McMASTER UNIVERSITY LIBRARY



Proof. (necessity) Since ¥ is B,-normable, for each A
there exists BEm = {x: "X“BO< Em} such that B£CAm.

m

We notice that every B -space is a LCTVS (section 4). Hence

0

there exists a convex, symmetric neighborhood Um(O) such that
. UmC:Bém'C:Am.

(Sufficiency). By hypothesis, for each A, there exists a

convex, symmetric neighborhood Um(O) of O such that
Un(@= A,

Define a sequence of seminorms p as follows:
' m

’pd;o= in.f{t>0:“ xet |J (@}, m=1,2 ...

Cleariy if p (x) = O for each m, then x = 0. For, if not, then
- m
there exists x. £ 0, p m(xo) = 0 for all m. But “xO“F £ 0,

0 U

S0 Fhat, kaAm ff'or some m. But pUm(XO) = 0 for 211l m implies
x§€JaC Um(O) for all m, where 0< £ < 1 (since | ] (0) is
balanced). This shows that % € LJm(O)CAm for all m, a
contradiction. Obviously, by Theorem 6.1, “xn “F——->O

-norm defined by

implies p  (x )—s 0. Let “qu be the B
.n 0
U 0
%0
{pU } » Now p (xn) ~ 0 as n —® for each m implies
m} m=1

bk — o
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We are left to prove that “xn “B-—JO irﬁplies “Xn “F — 0.
0

In fact, “x " ~— 0 implies p  (x ) — O for all m. So
n BO » m B

X € Um(O) for sufficiently large n and each m. Therefore
1 . :
x € Am, and “xn “F < = for all m and large n. Thus we obtain

X |.—0 as n—w. Q.E.D.
“ n“F

Definition 6.1. Let X be a TVS. A subset S of X is said to be

bounded. |f for every neighborhood V(0) of O, there exists a
non-zerc real number § , such that €SCV(0).

Theorem 6.3. A Frechet space F can be B-normable if and only
if there exists a convex, symmetric neighborhood ’U(O) of 0,

and -for any scalar tn’ t — 0, and XHGU(O), “tnxn“F—;O.

-_12{'_9_@_‘. Inl view of the fact that if a linear épace is B-normable
then theie exists such a neighhorhood as the one described
in the theorem, we need only to show the other part.

First we claim that if U(O) is described as in the
theorem then U(O) is bounded. For otherwise, there exists
a V(0) of Ok thet §| J(O)GZV(0) for any € . i.e. there exists
X, X € U(O) suct. that & x §V(0) for any £ , which givés rise

to a contradiction, since t — O, XHGU(O) implies
“tnxn “F 0.

Define a seminorm p as follows:

U
vpﬁXan{t >6: X € th(o) }



We want to prove that 1:0 is a norm. Let Xq #Z 0. By the condition

that t. — 0, x € J(0) implies It %, |- — 0, there exists

F
a scalar b >0 such that bx, Q U(O). |
Lo 1
For all scalars a>0 if = xoe U(O) then ab > 1.

Indeed, if ab«¢1l, it follows that

a

a.b. = xo € ab | JOICT[J0) i.e. b x ¢ Jo), since
ko) is valancei. This contradicts the fact that bx, & | 0).
Hence |

PU (xy) ='inf{a>o: xoéaU(O)} )%— >0, and

. R) becomes a norm. By theorem 6.{, we know that “xn uF — 0

which implies p

U

It remains to show that pU '(xn)—-—*O implies “Xn “F_"O

(x ) — 0.
n

Indeed, U(O) is bounded. That means for any neighborhood

V(0) of O in F, there exists § such that £|J(0)V(0). U(o) A_
is symmetric. Without loss of generality, we can assume that
& >0 with £U(O)CV(O). Since p (xn) —» 0, we can obtain

U
that p (xn) < € for sufficiently large n which implies x & LU,

U
and then x & V(0) for sufficiently large n. Hence “xn “F — 0.
Q.E:D,
From the above theorems we have the foliowing:
Theorem 6.4. A Fréchet space X has a non-zero continuous
linear functional if and only if there exists a clonvex, symmetric
neighborhood | J(0) of O such that | J(0) £X.

Proof. (necessity) Suppose f is a non-zero continuous linear

functional on X. TLet |J(0) = {x: lfGol € 1} . clearly,
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U(O) is an oper. convex, symmetric set which contains O.
It is erough to show that | J(0) #Xx. If [J(O) = x,
then by continuity of f we obtain f(x) = 0 for each x¢€X
which leads to & contradiction.
(Sufficiency) pu (x) = inf{t)O: xétU(O)} is a seminorm,

and

{x: pu. (x) < 1}(: Uy,
{x: B (x) <1} 2 o).

We want to show that there exists a xo';! 0 such that PU (xo) £ 0.

If pU (x) = O fer all x€X, then
xc:{x: R, (x)<1]CU(o), ice. [J0O) =X

which contradicts the hypothesis that U(O) # X. By the Hahn-
Banach extension theorem, there exists a linear functional

6

on X (see theorersk.1 and 5.2) and 'f“(xo) = pU (xo) # 0, such
that l’f(x)l < B (x) for all x €X.

The continuity of £ follows from theorem 6.1 that
“Xn - X “F — 0 implies pu (xn - xo) —— 0, then ?(xn - XO)——%O"
Q.E.D. ‘
Example 6.1. (M. M. Day). 1P - 1P(0, 1), 0<p<cl, consists of

all Lebesgue mea:ijurable real-valued functions on (O,l) such

1 1
that S |7l Peow . "f[l = S lflp defines a Frechet norm on
o o

LP. Let M be the subspace of all bounded functions in P, e
shall show that }1 has no non-zero continuous linear functionals.

Since M is dense in Lp, this will imply the conclusion for L.
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Let U te a convex neighborhood of 0. Then { f: 4 fi< E}C U
for some &> O. Let f be an arbitrary function in M, say

|f(t)|'< N. Since 0<p<1l we can choose an integer n such that

<& . Subdivide (0, 1) into n disjoint intervals

1'1, IZ’ e, In of equal length. For each k =1, 2, ..., n

define a function fk by

nf(x) if x € I,
fk(x) = { '
0 otherwise ,
Then
! ' I
b£, ) = |5, (£)|F at € oP. NP, = = ——<& so that
k k ~ . 1-p
0 n
n
.. . 1 .
each fk is in U . Since f = n E fk is a convex
k=1

combination of f,, f is in J . But f is arbitrary, we have
{J = M. By the above theorem 6.4, M has no non-zero continuous
linear functional..

Example 6.2. Leu S(O, 1) be the set of all measurable real-

valued functions on (0, 1) with a Fréchet norm defined by

1. :
- | £l
0 -

Let (J be a convex neighborhood of O containing the sphere

| {f: |Ifﬂ<8} . Choose an integer n)% . Subdivide (0, 1)

into n disjoint intervals Il’ I2, ceey In of equal length.



For eact. k =1, 2, ..., n define a function fk by

nf(x) if x¢€ Ik
fk(x) = {

0 otherwise,

where f is an arbitrary but fixed function in S(O, 1).

Then 1 |f |
k

1
== L N -3
“fk“ X 1+1fl " n <t
0

n
.. . . 1 .
so that f, is in U . Since U 1is convex, f == E f, is in U
k=1

and so (J = S. Hence S(0, 1) has no non-zero continuous linear
functionals.
Theorem 6.5. Let F be a TVS in Theorem 6.4. Then the statement
given in theorem 6.4 is true.
Proof. The proof of necessary part being the séme as that of
theorem 6.4, (Slfficiencx). Let U (0) be a convex, symmetric
neighborhood of 3, (J(0) £ F, then & (0) is a neighborhood
éf 0, for any noi-zero scalars § .

The exis:ence éf a non-zero linear functional f on
F is guaranteed “y theorem 6.4. 'The preof of continuity of f

is the same as the proof of theorem 5.2. Q. E. D.
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7. A generalization of the Separation theorem.

In this section, we shall generalize the Separation
-theorem given in Section 3.

Definition 7.1. A set S in a TVS X is said to be an affine set

if there exists a subspace SO of X and X in X such that

S:xO+SO,wherex +S {x + ¥ yeSo}

Definition 7.2. A set C in a TVS X is said to be a cone if

txeC for all t2 0, X€ c.

It is easy to see that a cone C is convex if and only
1fC+CCthe~eC‘+C {x+y x, y€C) /

We shall make use of the following lemmas:
Lemma 7.1. Let '] be a convex set in a TVS X absorbing at a,
and let b€V, Then V is absorbing at each point of the line
segment [ a, b).
' Proof. For any ce(a, b), ¢ = ta + (1-t)b for some t,
0<tsl., Let x€ X be given, Since V 1is a;bsorbing at a, there
exists Y> O such that a + sx€V for |s| € Y. Then, for |s|§tY,
c + sx = tla + (-1) x) + (1 - t)b€eV because V is convex and
a +(%) x€eV, €Y. Hence V is absorbing at ¢. Q. E. D.
Lemma 7.2. Let V vbe a convex set in a TVS X absorbing at a.
Let x be an arbitrary vector in X. Then V is absorbing at
a + tx for sufficiently small t2 0,
Proof. 1In fact, since V is absorbing at a, we can choose Y> O

such that y = a + Yx€V, For 0£¢t<Y, a + tx = (1 -Yi)a +($)y

€ (a2, .y). By virtue of Lemma 7.1, V is absorbing at a + tx,
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0st<Y. Q. E. D.
Lemma 7.3. Let V be a convex cone in a TVS X which is

absorbing at each point of V. = VN (-V) = { x: x€V and xf(—V)},, VUEV)=X,

0

Then VO is absorbing at each of its points.

Proof. If V = -V, then VO = @. The result is obviously true.
Suppose that V, # @, and the conclusion is false (i.e. there

exists a€ V, such that for every & > O there is x # 0,

0

a+ tox ¢ Vo for some t,, O<to<€ ). By hypothesis, V is

absorbing at a€V, and by Lemma 7.2, V is absorbing at a +tx

0

for sufficiently small t2 0 and any x€ X. Thus we can choose

t; >0 such that a + t1x¢Vo (i.e. -(a + tlx)iv)and V is absorbing

at a + t;x. Furthermore, Lemma 7.1 implies that V is absorbing
at each point of the segment (-(a + tlx), (a + tlx)] . Ve

notice that x £ 0, t.,> 0, oe(-(a + tlx), (a + tlx)] . There-

1

fore V is absorbing. Since V is a convex and abserbing cone,

-

V = U nV = X. Hence V =<V = X and therefore VO = VN (-V) = ¢,
n =1

a contradi'ction.
. Lemma 7.4. Let X be a TVS, and V a convex cone in X, If
(a) VU(-V) = X,
and (b) V is absorbing at each point of V\ (-V),
then VN (-V) is 2 maximal subspace of X or the space X itself.
Proof. Let S = VA(-V). It is easy to see that S is a linear
subspace of X. [f S # X, we claim that S is a maximal sub-

space of X. First of all, the condition (a) implies that



V\(-V) # ¢, otherwise S = X. Lét beV\ (-V). Clearly

b¢S. We want o prove that Rb + S = {ab + Bx: x €S and «,

) scala.rs) = X (i.e. b and S span' X). Since SU(V\S)U ((-VI\S) = X,
it suffices to ::ho.w that Rb + S25, Rb + SD2V\S, and Ro + § 2
((=V)\S). Obviously Rb + SDS. But if Rb + SD(-V)\ S, then

-(Rb + 8) = Rb + S D ~((~-V)\S) = V\S, Thus, it is enough

to show that Rb + SO (-V)\S, For a given x€ (-V)\ S5, let
B = { tb + (1 - t)x: all scalars tj .

Lemma 7.3, and condition (b) imply that VN (-V) and (-V)\V
are absorbing at each of their points. Therefore, C = BN CANE'S))
and D = BA((-V)\V) are two non-empty open subsets of B,
and b€ C, x€D, CAD = ¢, From the fact that (V\(-V))]n ((-v)\v)’ =
8, where (V\(-V))I is the complement of (V\(-V)), it follows
that (CuD)NsS = ¢. |

Furthermore, X2B, CUDC(V\(-V)) VU ((-VY)\V), and

gABNuD)ex\ { (WN(V)U(-N\V)} =8, therefore

g #B\N(CUD)C (BN (CUD))INS = BNS because (CUDINS = d.
This shows that BNS # @. Then there exists g€BNS, g =
tb + (1 - t)x for some t £ 1 (since b¢Sj and x€ (-V)\ 8
(given.), Therefore

1
l1 -t

X € (g - td)€Rb + S, and hence Rb + S2(-V)\ S. Q.E.D,

Lemma 7.5. Let 3 be a convex subset of a TVS X which is not
absorbing at 0, Hut is absorbing at a certain point a of B.

Then there exists a linear functional f such that



s ={ x: f(x) =0} is a maximal subspace and £(b)3 0
for every b in t (i.e. S lies on one side of B).

Proof. 1In order to prove this lemma, we shall construct a
maximal subspace S of X and then apply the Hahn-Banach
extension theorem. The proof of this lemma runs through the
following steps:

(a) We claim that ;a¢tB for all t>0. Suppose -a €tB
for some t20 (i.e. --:- € B). Since a€B and B is absorbing
at a, and B is convex, B is absorbing at every point of the
line segment (-—%, a) (s.ee Lemwa 7.1). Moreover, since
0 € (-%, a] , B is absorbing at O which is a contradiction.

(b) Let Q bethe family of convex cones such that

Q = { C: CDB, C is a convex cone, and -a¢C) )

clearly, Q # ¥ because U { tB}j€ Q. We order Q by inclusion.
ty 0

If D is a chain in Q, let K = U E then K is a convex
' EeD

cone. Hence, by Zorn's lemma, there exists a maximal element
K, say.

(¢) KU(-K) = X. It suffices to show that for b€ X

and if b¢K, ther b€-K. Indeed, let P ={tb + x: t20, x€K} .

Ciearly, p is a convex cone. Also - a€ p, for otherwise
-a¢p. Since p3z K, this contradict”s the fact that K is maximal.
Therefore -a = t"a + x for some t>0 and x€ K (t £ O because
-a¢ K) so that b = %— (-(a + x)). Furthermore, since K> B
x €K, and K is a convex cone, we have a + x €K + KCK, and

hence b =%— (-(a + x))E%- (K)C X ji.e. b € =K.
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(d) K is atsorbing at each point of K\ (-K). For every

b€ K \(-K), clearly -b¢ K. By step (¢),

-a = t(-b) + x for some £t>0 and x€K.

Therefore -3-3‘- tb ='% (a + x)€K. Since K2B, B is absorbing
at a (by hypothesis), so is K. On the other hand, x€ K

then K is absorting at each point of the line segment (a, x),
in particular, K is absorbing at —é- (a + x) = L tb. This

2
shows that £ K is absorbing at b. Since = KCK, K is

t
absorbing at b.
(e) From Lemma 7.4, S = KN (=K) is a maximal subspace

of X. Since -a¢ K, -a¢ S, S £ X, by the Hahn-Banach theorem,
there exists a linear functional f such that § = { x: £(x) = o}
and f(a) = 1.

It remains to prove thét f(b) 3‘0 for every b€ B.
Suppose f(b)< O for .s'ome‘bé B. Since -a = (?(%7 - a) +

T:f‘%';'ﬂ" b€BCK, -f(b)>0, and K is a convex cone, T-T?‘T\;ﬁe K.
Moreover, f (?(E-)- - a) =0, _f_(}%' - a€SCK, and hence

-a€X + KCK i,e. -a€ K, a contradiction. Q.E.D.

Definition 7.3. VZ’ \) are said to be separated if there

1

exists a linear Tunctional f # 0 and real t such that

2 DEV.

The following theorem 7.1 is a generalization of

fa)zt 2f(b) or f(a)4t ££(b) for all a €V

Eidelheit theorea. '
Theorem 7.1. Let Vl, V2 be two convex sets in a TVS X, V2 is

absorbing at soms point a of X but is not absorbing at any point

of Vl; Then Vl’ V2 are separated by a linear functional f.
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Proof. First of all, V, - V, ={a - b: a€V_, b€V } is

2 1 2" 1
a convex set because Vl' V2 are convex, and VZ - Vl is
absorbing at each point of a - V, because V, is absorbing at a
by hypothesis. Furthermore, V2 - Vl is not absorbing at O.

For otherwise V2 would be absorbing at some point of Vl.
By Lemma 7.5, it follows that there exists a linear functional
f # 0 such that H ={ x: £f(x) = 0} is'a maximal subspace

and f(x)2 0 for all XGVZ - Vl' Then we obtain that

inf f(a)2 sup f(bv).

a(‘iV2 béV1

Letting t = inf f(a), we see that f(a) 2t 2f(v)

aeV2

for all a€V, and bGVl (i.e. V,, V, are separated by f).

Corollary 7.1. Let X be a TVS, Vl’ V2~ be convex sets with

Vlﬂ V2 = ¢ and at least one of which has an interior point.

Then there exists a linear functional f and real t such that

£(b) ¢t £f(a), for all bEV,, a€V,.

Proof. Suppose V_ has an interior point. Now Vln VZ' = @ implies

2

that V2 is not aovsorbing at any point of V

is absorbing at some point bEV

1° Indeed, if V

then there exists &>0

2

1’
such that b + tx€V2 for |t|£€ . Hence for t =0, bev,,

Vlnv2 # #,a contradiction because Vl(')V2 = @ (by hypothesis).
Hence the result follows from Theorem ?7.l. @Q.E.D.
Lemma 7.6. A maximal subspace S of a TVS X is either closed

or dense,



38

Proof. First, we notice that the closure of S is also a
linear subspace. Now if s ﬁ&ﬂms<:§ and the maximality of §
imply S = S i.e. S is closed. Q.E.D.
Lemma 7.7. If a linear functional f on a TVS X is continuous
at a certain point a, then it is continuous everywhere.
Proof. Let x€X, and X, —» X, then a + X, - X—a, and
f(xa) - f(x) = f(a + xa‘- x) - f(a) — 0. Q.E.D.
Lemma 7.8. ZLet f be a linear functional on a TVS X. If
f is bounded on some neighborhood.of 0, then f is continuous.
Proof. Let V be a neiggborhood of 0 in R, and let f(U) be
bounded for a given neighborhood (/ of O in X, then tVD f(U)
for some t >0, or f_l(V)D%U. Hence f-l(V) is a neighbor_-hobd
of O, and f is continuous at O, and therefore f is continuous
everywhere by Lemwma 7.7. Q.E.D.
Theorem 7.2. A linear functional f is continuous if and only
if s={x: f(x) = 0} is closed.
Proof. (Necessity) Since {0} is closed, and f is continuous
then S = £ 3( {0} ) is closed.

(Sufficiency) We notice that X/S is an one dimenSional
TVS and hence f: X/s — R is a confinuous linear mapping.
But X‘——>X/S is a continuous canonical mapping. Hence f: X— R
is continuous. Q.E.D.

Corollary 7.2. A linear functional f on a TVS X is continuous

if and only if § = { x: f(x) = 0} is closed.
Proof, ' The resu’t follows directly from the theorem 7.2 and

Lemma 7.6.



Lemma 7.9. Let Vl, V2 be two convex sets in TVS X with at

least one of which has an interior point. If V1 and V2

are separated by a linear functional f. Then f is continuous.

Proof. Suppose VZ has an interior point. Let Vg be the set

of all interior points of VZ’ and for some real t, H ={ x: f(x) = t} s

which is a hyperplane in X. Then ang = @. 1In fact,

f(b)4 t £f(a) for all a€evV bGV:L (vby Definition 7.3).

21
We want to show that £(a) # t for all a€ Vg. Suppose f(a) = t
for some aevg. Choose x € X such that f(x) = 1 (this is
possible, since f £ O and Vi V'2 can be separated by f)f

Since a€ Vg, V2 is absorbing at a, a + a)'ce V2 for some @< O,

and f(a +ax) =t +af(x) =t +adt. But f(b)<t<f(a)

for all aeva, beVl-. Thus f(a) # t and hence ang = g. It

follows that H is not demse in X and therefore S = { x: f(x) = 0}

is not dense either, In view of Corollary 7.2, f is continuous.
Q.E.D.

Theorem 7.3. Let X be a TVS and Vl, V2 be two convex sets

with V1(1V2 = @ and at least one of which has an interior

' point. Then Vl and V2 can be separated by a continuous linear
functional.

Proof. By Corollary 7.1, Vl’ V2 can be separated by a linear
functional f. The continuity of f follows from Lemma 7.9.
Remark 1. Theorem 7.3 shows that if there exists two convex
sets in a TVS X with Vlﬂ v, = @, and at least one of which

has an interior j;point, then there exists a non-zero continuous

linear functional.
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Remark 2. The condition of "at least one of which has an
interior point'" in theorem 7.3 is essential. For example,
v, = {v}, V, = { &) (a # b) be two disjoint convex sets
in LP(0, 1), 0<p<1. We know that there does not exist

Aa non-zero continuous linear functional on Lp(.0< p<l)

(see Exa'mple 6.1).

Lemma 7.10. Let B be a convex subset of.a TVS X, which is
not absorbing at O, but it is absorbing at some point a of B.
Let S = KN(-K) with K as defined in the proof of Lemma 7.5,
~and f a linear functional such that § = { x: f(x) =0},

f(a) = 1. Then f(b) >0 for each b at which B is absorbing.
Proof. Lemma 7.5 shows that f(b)2 O for all b€ B. We shall
show that f(b) # O for each b at which B is absorbing.
Suppose f(b) = C. For a ¥ b, there exists & > O such that
b+ ta€B for |tl¢¢&€ , since B is absorbing at b. Choosing
_t<o, [t1¢¢& | we have f(b + ta) = tf(a) = t< 0, a contra-
diction. Q.E.D.

Lemma 7.11. Let V be a convex subset of a TVS X. If V is
absorbing at eact of its points, and O¢V. Then there exists
a maximal subspazeSof X such that VNS = g.

Proof. V is not absorbing at 0, for otherwise O€V. There-
fore, by Lemma 7.5, there exists a maximal subspace S = {x:
f(x) = 0}, such that f(y)2 O for all y€ V. Since V is
absorbing at eachh of its points, Lemma 7.10 implies that

f(y)> O for all re V. Hence VNS = @. Q.E.D.
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Lemma 7.12. Let X and B be topélogical vector spaces, and

f: X~ B a linear map. Suppose that H is a set in X satisfying
f(H) = B. Then X = H + 'f—l( {o} ). |
Proof. For any a in X, by hypothesis, f(a) € f(H). Then

f(a) = f(h), for some h€H i.e. f(a -h) =0, a - ne £ {o} ).
Hence a = (a - ) + he £ ( {o} ) + H. Q.E.D.

Lemma 7.13. Let X, B be topological vector spaces, and

f: X— B a linear onto map. Let H be a maximal subspace of
B. Then f_l(H) is a maximal subspace of X.

+ Proof. Let S = £~1(H). Then S # X, since f is onto. Let "y
be a subspace with Hli S. Then f(Hl) Z H and so f(Hl)”= B.

By Lemma 7.12,

-1
X =H +f ( {0} )c:H1 + SCHy + Hy = H,.

Hence Hl = X and so S is maximal. ' ‘

Theorem 7.4.‘ Let V be a convex subset of a TVS X and V

is absorbing at each of its points, and S be an affine set

in X such that SNV = g. Then there. exis‘ts a hyperplane

H such that H>S and HNV = Z.

Proof. Since S is an affine set (see definition 7.1), S = a + 56

where a€ X and S, a subspace of X. First of all, we consider S

)
to be a subspace of X. We wish to show that there exists a
maximal subspace H such that H2S and HNV = @, 1et f: X—X/S
be defined by f(a) = a + S, for each a€X. Clearly, f is a
linear onte map. Since V is convex, absorbing at each of its

points, so is f(7), and {0]} ¢ f(V) (because f(S) = {0} € X/S,

SNV =g, £1(8)Nn (V) = @g). By Lemma 7.11, there exists
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a maximal subspace H., of X/S such that Hln f(V) = . Let

1
H = f—l(HI)‘&y Lemma 7.13, H is a maximal subspace of X,

HD>S because f(S) = {0} € H,, and f_l(f(V))n f-l(Hl) = #.

ll
Since VC f’l(f(v)), vnf‘l(Hl) = VNH = ¢,

Now in general, if S is an affine set, then S = a + SO

where a € X, S. a subspace of X. Clearly (S - a)n (Vv -a) =¢

0

i.e. 8N (V ~a) =@, and V ~ a is convex and absorbing at each
of its points. By the above argument, there exists a maximal

- subspace H, such that H 2§, and Hof) (Vv - a) = ¢. Let H = H_ + a,

0 0

then we have HD2S and HNV = ¢g. Q.E.D.
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