
Design of Flexible Assembly Line to Minimize Equipment Cost

Joseph Bukchin
Department of Industrial Engineering

Faculty of Engineering, Tel-Aviv University, Tel-Aviv 69978

ISRAEL

Tel: 972-3-6407941; Fax: 972-3-6407669

E-Mail: bukchin@eng.tau.ac.il

Michal Tzur
Department of Industrial Engineering

Faculty of Engineering, Tel-Aviv University, Tel-Aviv 69978

ISRAEL

Tel: 972-3-6407420; Fax: 972-3-6407669

E-Mail: tzur@eng.tau.ac.il

July 1999

To appear in IIE Transaction

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357331198?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

Design of Flexible Assembly Line to Minimize Equipment Cost

Abstract

In this paper we develop an optimal and a heuristic algorithm for the problem of designing a

flexible assembly line when several equipment alternatives are available. The design problem

addresses the questions of selecting the equipment and assigning tasks to workstations, when

precedence constraints exist among tasks. The objective is to minimize total equipment costs,

given a pre-determined cycle time (derived from the required production rate). We develop an

exact branch and bound algorithm which is capable of solving practical problems of moderate

size. The algorithm’s efficiency is enhanced due to the development of good lower bounds, as

well as the use of some dominance rules to reduce the size of the branch and bound tree. We also

suggest to use a branch and bound based heuristic procedure for large problems, and analyze the

design and performance of this heuristic.

1. Introduction and Literature Review

Assembly lines are often used in the last step of production, when the final assembly of the

product from previously made parts is performed. An assembly line typically consists of several

workstations, each of them is responsible for performing a specific set of tasks. The product

moves through the line, from one workstation to the next, according to their order.

The separation of the entire set of tasks into subsets, each performed in a specific

workstation, allows for specialization at each workstation. The tasks may be performed

manually, or by a dedicated equipment, to achieve high efficiency. Recently, the use of Flexible

Assembly Systems (FAS) has been developed, that is, the use of flexible (and usually automated)

equipment such as robots or flexible machines, to perform assembly tasks. This development is

in particular a result of the fast changing demands of customers which leads to a shorter life cycle

of products.

When a flexible equipment is used for assembly tasks, the issue of designing an assembly

line is becoming very important. The design in this context consists of selecting the equipment

for the workstations, and addressing the related question of which tasks should be performed in

2

which of the workstations. Due to the flexibility of the equipment, there are usually several

equipment alternatives for each task, and it may be the case that a particular equipment is

efficient for some tasks, but not for others. This has to be taken into consideration when

grouping several tasks to be performed in the same workstation, by the same equipment.

In this paper we address the questions of selecting the equipment (flexible assembly

machines) and assigning tasks to workstations, when precedence constraints exist among tasks.

The solution consists of a series of workstations, where a single specific equipment is placed in

each station, and a set of tasks assigned to this station is to be performed by the selected

equipment. The objective is to minimize total equipment costs, given a pre-determined cycle

time (derived from the required production rate). We develop an exact branch and bound

algorithm which is capable of solving practical problems of moderate size. The algorithm’s

efficiency is enhanced due to the good lower bounds that we developed, and due to the

dominance rules that we used to reduce the size of the branch and bound tree. We also suggest to

use a branch and bound based heuristic procedure for large problems, and analyze the design and

performance of this heuristic.

 As mentioned above, the design problem is to choose the equipment type and set of tasks to

be performed in every workstation, and this in turn determines the amount of time it will take to

complete all tasks in every workstation. However, the balance among all workstations is very

important in the determination of the line’s efficiency, and is the subject of a large stream of

research. Most of the research on balancing is dealing with the so called Simple Assembly Line

Balancing (SALB), [1-4] in which no alternative equipment types are considered. That is, every

task’s time is fixed, and the remaining problem is to determine the sets of tasks to be performed

in each workstation. This is clearly a special case of our problem, in which all equipment types

are identical. The SALB is proven to be an NP-Hard problem [5], and resulting from this is the

conclusion that our problem is NP-Hard as well.

With respect to more than one type of equipment, there are relatively few studies that

address the problem. Graves and Holmes Redfield [6] consider the design problem with several

equipment alternatives, when multi products are assembled on the same line. They assume a

complete ordering of tasks of the same product and large similarities among different products.

These assumptions result in a relatively small number of candidate workstations (a number which

3

is proportional to Nk where N is the total number of tasks and k is close to, but greater than 2),

and therefore simplifies the problem considerably. Their algorithm indeed enumerates all

feasible workstations, selects the best equipment for each, and then chooses the best set of

workstations. Previous work on the single product design problem with equipment selection

includes [7] and [8], but in both articles the sequence of tasks is assumed to be fixed as well.

Pinto et al. [9] discuss processing alternatives in a manual assembly line as an extension of

SALB. Each processing alternative is related to a given set of tasks i.e., represents a limited

equipment selection which may be added to the existing equipment in the station, and the

decision is whether to use each such alternative in order to shorten the tasks duration, at a given

cost. Since the line is manual, each task may be performed at each station. Their solution

procedure consists of a branch and bound algorithm in which a SALB problem is solved in every

node of the branch and bound tree, therefore this algorithm may be used only for a small number

of possible processing alternatives.

Rubinovitz and Bukchin [10] present a branch and bound algorithm for the problem of

designing and balancing a robotic assembly line when several robot types are available and the

objective is to minimize the number of workstations. Their model is a special case of ours, in

which any of the equipment alternatives has an identical purchasing cost. Tsai and Yao [11]

proposed a heuristic approach for the design of a flexible robotic assembly line which produces a

family of products. Given the work to be done in each station, the demand of each product and a

budget constraint, the heuristic determines the robot type and number of robots required in each

workstation. Their objective is to minimize the standard deviation of output rates of all

workstations, which is their measurement for a balanced line.

The remainder of the paper is organized as follows: in Section 2 we introduce the notation

and a formulation of the problem and illustrate it with an example. In Section 3 we develop two

types of lower bounds, that are used later in our algorithm. In Section 4 we describe our exact

branch and bound algorithm and present some qualitative insights with respect to the problem’s

parameters, based on an empirical study that we performed. We also examine the quality of the

lower bound that we developed for the problem. In section 5 we discuss how a heuristic

procedure, based on the branch and bound algorithm, may be designed for the very large

problems. Finally, Section 6 contains our conclusions.

4

2. Problem Formulation

In this section we introduce the notation as well as our precise assumptions, and present an

integer programming formulation of the problem. Based on this formulation we develop, in the

next section, lower bounds for the problem. To illustrate the model’s assumptions and help the

reader follow our analysis, we provide at the end of this section an example problem.

The problem is defined by the following parameters:

tij = duration of task i when performed by equipment j (i=1,...,n, j=1,...,r)

ECj = cost of equipment type j (j=1,...,r)

(We use interchangeably equipment and equipment type, this should cause no confusion.)

C = required cycle time

Pi = set of immediate predecessors of task i (i=1,...,n)

The following assumptions are stated to clarify the setting in which the problem arises:

 1. There is a given set of equipment types, each type is associated with a specific cost. The

equipment cost is assumed to include the purchasing and operational cost of using the

equipment.

 2. The precedence relation between assembly tasks is known.

 3. The assembly tasks cannot be further subdivided.

 4. The duration of a task is deterministic, but depends on the equipment selected to perform the

task.

 5. A task can be performed at any station of the assembly line, provided that the equipment

selected for this station is capable of performing the task, and that precedence relations are

satisfied.

 6. The total duration time of tasks that are assigned to a given station should not exceed the

pre-determined cycle time.

 7. A single equipment is assigned to each station on the line.

 8. A single product is assembled on the line.

 9. Material handling, loading and unloading times are negligible or included in the tasks

duration.

 10. Set up and tool changing times are negligible or included in the task’s duration.

5

The decisions that have to be made address two issues: the first is the design issue, where

the equipment has to be selected and assigned to stations; the second is the assignment of all

tasks to the stations, such that the precedence as well as the cycle time constraints are satisfied.

The following two sets of binary decision variables correspond to each of these two issues,

respectively. (In the Appendix, we summarize all the notation used throughout the paper.)

We define for every equipment j and every station number k:

y
j k

jk =




1
0
 if equipment is assigned to station
 otherwise

In addition, we define for every task i, every equipment j and station number k:

x
 i j k

ijk =




1
0
 if task is performed by equipment at station
 otherwise

The following is the resulting integer programming formulation of the problem, denoted as

(P1):

Min EC yj jk
k

n

j

r

==
∑∑

11
(1)

s.t.

k x l x g h s t g Pgjk
k

n

j

r

hjl
l

n

j

r

h⋅ ≤ ⋅ ∀ ∈
== ==
∑∑ ∑∑

11 11
 , . . (2)

x iijk
k

n

j

r

==
∑∑ = ∀

11
1 (3)

t x C y j kij ijk jk
i

n

≤ ⋅ ∀
=
∑ ,

1
(4)

y kjk
j

r

=
∑ ≤ ∀

1
1 (5)

x i j kijk = ∀0 1, , , (6)

y j,kjk = ∀0 1, (7)

The objective function (1) represents the total design cost to be minimized. Note that the

number of tasks, n, serves as an upper bound for the number of stations. Constraint set (2)

ensures that if task g is an immediate predecessor of task h, then it cannot be assigned to a station

with a higher index than the station which task h is assigned to. Constraint set (3) ensures that

6

each task is performed exactly once. Constraint set (4) represents the relationship between the

xijk - and the y jk -variables by not allowing to perform any task on a given equipment in a given

station, if this equipment is not assigned to that station. Also, if a given equipment is assigned to

a given station, constraint set (4) specifies the cycle time requirement. Constraint set (5)

represents the requirement of at most one equipment to any station and constraint sets (6) and (7)

define the decision variables to be binary. Since this is the first time that this problem is being

considered, the formulation is new, although elements of it have appeared previously in the

literature. The formulation consists of O n r()2 variables and O n n r(())+ constraints, but the

main importance of this formulation is the relaxation resulting from it, which enables us to obtain

good bounds, as explained in Section 3.

An example problem
Our example problem is based on the example analyzed in [9]. In particular, we adopted

the precedence diagram of their ten tasks problem, shown in Figure 1. In our example, a product

is assembled on an automated assembly line, using three different types of equipment (machines).

The cost of each equipment type and the time required to perform every assembly task by each of

the selected equipment types are shown in Figure 1. Empty elements in the duration table imply

that the task cannot be performed by the associated equipment type.

We can compare among different equipment types along three dimensions: cost, speed and

flexibility (number of tasks that can be performed by the equipment). When no equipment type

is dominated by the others, a trade off exists between different types, with respect to at least two

of the above mentioned properties. For example: a fast and flexible equipment is likely to be

more expensive. In our example, one can observe that each equipment type has an advantage

over the others in one of the three dimensions:

1. E1- a highly flexible equipment, namely, an equipment which is capable of performing a

large number of assembly tasks (all tasks, in this example).

2. E2- a fast assembly equipment characterized by short tasks’ duration.

3. E3- the least expensive assembly equipment.

<Insert Figure 1 approximately here>

7

The IP formulation of this example, based on formulation (P1) presented in Section 2, consists of

330 binary variables and 61 constraints.

We solved this problem by our optimal algorithm (described in Section 4), determining task

assignments and equipment selection, while minimizing the total equipment cost (1), subject to a

cycle time constraint of 50. The optimal configuration was obtained in 0.05 second and is shown

in Figure 2. The minimal equipment cost required for a cycle time of 50 is $360K (three

machines of $100K each plus one machine of $60K). The trade off between the different types is

demonstrated in the optimal solution, by the fact that all three types of equipment are used. An

important conclusion drawn from this example is that as long as a given equipment type is not

dominated by another type along all three dimensions, it may be included in the optimal

configuration.

<Insert Figure 2 approximately here>

3. Lower Bounds

In this section we develop lower bounds for the problem, as well as for subproblems of it.

As we show below, the bounds are obtained by relaxing some of the constraints of the

formulation (P1) and solving the relaxed problem; the bounds are used in our branch and bound

algorithm that will be discussed in the next section.

Consider problem (P1), and make the following relaxations to it:

 1. Eliminate the precedence constraints (2).

 2. Sum the constraints in (4) over all stations, for every equipment j. The resulting set of

constraints, denoted by (4’) is the following:

 t x C y jij ijk
i

n

jk
k

n

k

n

= ==
∑ ∑∑ ≤ ∀

1 11
(4’)

As a result of these relaxations, constraint set (5) is no longer meaningful since all the

stations are now considered together in the formulation. Equation (4’) implies that it is not

required to keep the cycle time constraint in every station, only the aggregate cycle time

constraint, representing a capacity constraint for each equipment type. Therefore we define the

following new decision variables, which are independent of the stations:

8

y y jj jk
k

n

= =
=
∑ total number of type equipment

1

x x
i j

ij ijk
k

n

= =


=

∑
 if task is performed by equipment
 otherwise1

1
0

The relaxed formulation, denoted as (P2), is now described as follows:

 Min EC yj j
j

r

=
∑

1
(8)

s.t.

x iij
j

r

= ∀
=
∑ 1

1
 (9)

t x C y jij ij j
i

n

≤ ⋅ ∀
=
∑

1
(10)

x i jij = ∀0 1, , (11)

y jj integer ∀ (12)

Here, (8) is equivalent to (1), representing the total equipment cost to be minimized; (9) is

replacing (3), ensuring that each task is performed exactly once, and (10) is in fact constraint (4’)

discussed above. To simplify the problem further, we relax the integrality constraints regarding

the y j -variables (12) and obtain problem (P3). Therefore, problem (P3) is defined by (8)-(11)

and:

y jj ≥ ∀0 (12’)

and we prove the following:

Theorem 1: The following solution is optimal for problem (P3):

x
EC t EC t

ij

j ij l l il
=

⋅ = ⋅





1

0

 if

 otherwise

min{ }
 ∀ i (13)

(If more than one index j achieves the minimum, choose one of them, arbitrarily.)

y t x C jj ij ij
i

n

= ∀
=
∑

1
(14)

Before proving the theorem formally, let us first explain it intuitively. Note first that each

unit of an equipment type may be assigned as much work as the cycle time, C. Therefore, the

9

number of units (which may be fractional) to be purchased from each equipment type is the sum

of the duration of all tasks assigned to this type, divided by the cycle time, resulting in (14). This

means that in order to perform a certain task, say i, by a certain equipment type, say j, a fraction

of the equipment needs to be purchased, which equals to the fraction of cycle time required to

perform it, i.e.: t Cij / . The cost of this fraction of equipment is: EC t Cj ij⋅ (/) . Comparing the

costs of all equipment alternatives for a given task i, and choosing the type whose cost is

minimal, one obtains equation (13). We now provide a more formal proof.

Proof of Theorem 1: Note first that the solution defined by (13) and (14) is feasible. Note

also that given any solution to the xij - variables, the solution to the y j - variables as defined by

(14) is optimal. Therefore it remains to prove that the solution of the xij - variables as defined by

(13) is optimal.

Assume, by contradiction, that this solution is not optimal, therefore there exists a

variable xim in the optimal solution s.t. xim = 1 but EC t EC tm im l l il⋅ > ⋅min{ } . This variable,

associated with task i, contributes t Cim units to the variable ym and therefore EC t Cm im⋅ to the

objective value of (P3). If instead we choose for task i xij = 1 for j that satisfies

EC t EC tj ij l l il⋅ = ⋅min{ } then the contribution to the y j variable is t Cij units and therefore

EC t Cj ij⋅ (< EC t Cm im , by definition) to the objective value of (P3), a contradiction to the

optimality of the former solution. �

We define:

LB EC yj j
j

r

1
1

=
=
∑ (15)

where y j is determined by (13) and (14).

Corollary 1: LB1 is a lower bound to the value of (P1).

The Corollary is true since LB1 is the optimal objective value of problem (P3) which is a

relaxation of problem (P1). In conclusion, we have shown how to obtain a lower bound to the

problem, which is easy to compute. The deviation of this bound from the optimal solution value

results from ignoring the precedence constraints, from considering the cycle time requirement in

aggregation to all stations (i.e. a task may be performed in more than one station), and from the

10

ability to use a fraction of an equipment. In the next section a branch and bound algorithm is

developed, which uses the proposed lower bound.

In the process of solving problem (P1) via the branch and bound algorithm, a node in the

branch and bound tree represents a partial solution, in which some of the tasks have already been

assigned to specific equipment types. For this node, the calculation of a lower bound is required.

This leads us to consider a subproblem of the relaxed problem (P3), in which it is given that a

subset of the original set of tasks is performed by an already determined set of equipment types.

In addition, a given number of time units, say S, are still available on the last selected equipment

type, say type m. Since this equipment has already been purchased, no cost is associated with

these S time units. The subproblem has to determine the number and type of additional

equipment to be purchased (at minimal cost) in order to perform the remaining subset of tasks,

say σ, and to assign the tasks in σ to the new equipment while satisfying the aggregate (and

possibly fractional) cycle time constraint.

We denote this subproblem as (P4) and state its exact formulation:

Min EC yj j
j

r

=
∑

1

s.t.

x iij
j

r

= ∀
=
∑ 1

1
 ∈σ

t x C y j mij ij j
i

≤ ⋅ ∀ ≠
∈
∑

σ
(10a)

t x S C yim im m
i

≤ + ⋅
∈
∑

σ
 (10b)

x i jij = ∀ ∈ ∀0 1, ,σ

y jj ≥ ∀0

As discussed, this formulation is identical to (P3), except that only tasks in the set σ are

considered, and the original constraint (10) is replaced by (10a) and (10b). Constraint (10b) is a

modification of the original constraint (10) for equipment type m, which reflects the S free time

units on this equipment type. Ideally, all S (free) time units of equipment m should be used, in

11

which case the desired value for the xij -variables may be fractional. Therefore we denote by

(P5) a subproblem which is a relaxation of problem (P4), obtained by allowing the xij variables

to be fractional. This relaxation enables us to solve problem (P5) to optimality, providing us

with a lower bound to the value of problem (P4). (As becomes clear from the algorithm below,

at most two xij -variables, which refer to the same task, will be fractional).

We use the following algorithm, denoted as Algorithm TES (Task Equipment Selection),

to solve problem (P5):

 (a) Let j i() be the equipment type for which t EC t EC a iij j l il l ii i() ()
min{ }⋅ = ⋅ ≡ ∀ ∈ σ

 (b) Let i* be the task for which a t a ti i m i i im* * max{ }=
∈ σ

 (c) If t S x = S S t ii m i m i m** *, \ { }.*< = − = then: set and 1 σ σ If σ=Φ, go to (e); otherwise, go

back to (b).

 Otherwise: if m j i= ()* then xij i()
= 1,

 if m j i≠ ()* then x S t x xi m i m i j i m
i

* * *
(*)

*= = − , 1

 σ σ= \ { }*i .

 (d) For every i ∈ σ set xij i()
= 1.

 (e) y t x Cj ij ij
i

=
∈
∑

σ
.

The basic idea of this algorithm is to first assign tasks to the S free time units of equipment

type m. Recall that when no free time units are available (as in problem (P3)), every task i is

assigned to the equipment which has the minimal value of t ECij j⋅ which we define here (step (a)

of algorithm TES) as equipment type j i() . This is also the solution for problem (P5), once the S

free time units of equipment m have been exhausted. Therefore, the tasks that are assigned to the

S free time units of equipment m are those for which the “alternative cost” per unit time of usage

of equipment m, defined in step (b) of the algorithm, is maximal. The optimality of Algorithm

TES is stated in the next theorem.

Theorem 2: Algorithm TES produces the optimal solution for subproblem (P5).

12

Proof: Note first that the solution produced by the algorithm is feasible. It is also clear that

an optimal solution will necessarily use all S free time units of equipment m. Moreover, once

these units are used up, the rest of the problem is of the type of problem (P3) (only with less

tasks), and therefore the solution is as defined in steps (a), (d) and (e) of algorithm TES. It

remains to prove that the choice of tasks to be assigned to equipment m, as described in steps

(b)-(c), is optimal.

Assume that the suggested solution (the solution produced by algorithm TES) assigns to the

free time units of equipment m the tasks in the set M i ik= { ,..., }1 s.t.

x x x f fi i ik k1 1
1 0 1= = = = < ≤

−
... . and where Now assume by contradiction that in the optimal

solution x tim im≥ 1 for some i∉ M, i.e., at least one time unit of the free units of equipment m is

allocated to a task which is not in M, and consider the first such unit. (We discuss here only the

usage of the free units of equipment type m, as if they are marked; the assignment of tasks to

additional equipment of that type are not relevant here). As a result, one (maybe additional) time

unit of a task in M (say task ik) has to be assigned to another equipment (instead of equipment

m); as discussed earlier, the best alternative is the equipment identified in step (a) of algorithm

TES. If we consider the contribution to the objective value of problem (P5) of the time unit

whose assignment differs between the suggested solution and the optimal solution, we obtain that

in the suggested solution the contribution is () min{ }1 t t EC Cim l il l⋅ ⋅ and in the optimal solution

the contribution is () min{ }1 t t EC Ci m l i l lk k
⋅ ⋅ . By definition (step (b) of algorithm TES), the latter

is higher than the former, a contradiction to the optimality of the latter solution. �

We define:

LB EC yj j
j

r

2
1

=
=
∑ (16)

where y j is obtained from Algorithm TES.

Corollary 2: LB2 is a lower bound to the value of (P4).

4. The Branch and Bound Algorithm

Branch and bound algorithms have been extensively used for solving complex

combinatorial problems, including assembly line design and balancing problems ([12], [10]). In

13

this study, a frontier search branch and bound algorithm is developed for minimizing the total

equipment cost. The advantage of a frontier search branch and bound algorithm is that the

number of nodes investigated in the branch and bound tree, is minimal. In addition, the use of

subproblems and lower bounds at each node of the branch and bound tree, which are specific to

the problem investigated, improve the effectiveness of the algorithm considerably. Those were

developed in the previous section, and their use will be illustrated in this section.

Throughout the algorithm, workstations are opened (established) sequentially, an equipment

is selected and placed in the newly opened workstation, and tasks to be performed by the selected

equipment are assigned to this workstation. Therefore, throughout the algorithm, partial

solutions to the problem exist, which describe partial assignments of tasks to equipment and

stations. In addition, for each partial solution a lower bound may be computed based on the

solution of subproblem (P5), as described below. The algorithm ends when all tasks are assigned

to equipment and workstations, and the obtained solution value is no larger than the lower bound

of all partial solutions. The following characterizations enable us to describe the details of the

algorithm:

 • A node in the branch and bound tree. Each branch and bound node X represents one

partial solution of the original problem. A partial solution is characterized by a set of tasks,

σ ' , which have already been assigned to stations, along with the equipment selected to

perform these tasks, i.e.: the equipment selected for these stations. Among the stations that

were used thus far in the partial solution, the last opened station is the only one to which tasks

may still be assigned. Finally, such a partial solution is associated with an accumulated cost,

TCX , representing the cost of purchasing the equipment decided upon thus far.

 We define the slack of the last opened station at node X, SX , as the difference between the

required cycle time and the time already assigned to that station by some of the tasks in σ ' .

Any task i, is a candidate to be assigned to the last station opened if the following conditions

hold:

 1. The task has no predecessors, or its predecessors are already assigned.

 2. The time to perform task i by the already selected equipment type j (at the last opened

station), tij , is no larger than the remaining slack, SX .

14

 If the set of candidate tasks is not empty, the station is defined as an open station. Otherwise, if

the set of candidate tasks is empty, the station is defined as a closed station.

 • The lower bound. The lower bound which is calculated for each node of the branch and

bound tree, consists of two elements. The first element, associated with past decisions, is the

(exact) cost of the already selected equipment in the partial solution associated with node X, a

known value which we denoted as TCX . The second element, associated with future

decisions, is a lower bound on the cost of the equipment which is yet to be selected for the set

of yet unassigned tasks, σ (where σ is the complement of σ ' in the original set of tasks).

This second element is computed in one of two ways, according to whether the last opened

station is closed or open:

 - If node X represents a closed station, the remaining decisions concern the assignment of the

tasks in σ to new stations that need to be opened, whose equipment types have not been

chosen yet. Note that this is exactly problem (P1) (see Section 2), only limited to the set of

tasks in σ . Therefore the lower bound for the element associated with future costs of node X

when X is a closed station is ()LB1 σ , where ()LB1 σ is obtained by calculating the value of (15)

to the set of tasks in σ (see Section 3).

- If node X represents an open station, the relaxation which is equivalent to LB1 but in

addition takes into consideration the last opened station, is represented by a problem which is

in the form of (P4). Equipment m in (P4) represents the equipment type of the last opened

station in the partial solution of node X, and S in (P4) represents the remaining slack of that

station, SX . Therefore the lower bound for the element associated with future costs of node X

when X is an open station is ()LB2 σ , where ()LB2 σ is the solution of (P5) (the relaxation of

(P4)), obtained by solving Algorithm TES.

Summing up the two elements discussed above of the lower bound of a given node X, we

conclude that the lower bound of X is ()LB TC LBX X= + 1 σ when X is a closed station, and

()LB TC LBX X= + 2 σ when X is an open station. In both cases, the lower bound is easily

calculated.

The main stages of the proposed algorithm are as follows:

15

 1. Creation of the first level of the branch and bound tree. At this level each node contains a

task which does not have precedence requirements, along with an equipment type that is

capable of performing this task. Such a node is generated for every feasible equipment-task

combination.

 2. Selection of a node to be extended. As described above, a lower bound of the optimal cost is

calculated for each node of the tree. The open node (node without descendants) with the

lowest lower bound is selected for further extension, representing our choice of a frontier

search algorithm..

 3. Node extension. Each descendant of the extended node contains an assignment of a new

single task. If the extended node represents an open station, an extension is performed for

each candidate task. If the extended node represents a closed station, a new station is opened,

and the extension is performed for every feasible equipment-task combination.

 4. Elimination of dominated nodes. Each time a station becomes closed, a comparison

between the current node and all other open nodes that are associated with closed stations, is

performed in order to eliminate dominated nodes. The dominated node could be either the

new one, or a previously created node. The dominance rule is described as follows: assume

that at node Y, a set of tasks G has already been assigned, with an associated equipment cost,

TCY . At another node, X, a set of tasks H has already been assigned, with an associated

equipment cost TCX . Node Y is dominated by node X if H G⊇ and TC TCX Y≤ , and

therefore can be eliminated.

 5. End condition. If an extended node contains all tasks, and its solution value is no larger than

the lower bound of all open nodes, an optimal solution has been found. Otherwise, the

algorithm proceeds as in stage 2 above.

Experimental study for the optimal algorithm
We have coded our branch and bound algorithm and conducted an experimental study. As

can be concluded from the running time reported in the next section, the optimal branch and

bound algorithm is capable of solving moderate problem sizes in a reasonable amount of time,

i.e., problems with a few dozens of tasks and with five to ten equipment types. This is only an

approximation, since the variability of the run time for different instances of the same size is

16

quite large. The purpose of the experimental study presented in this section is to examine the

impact of various problem parameters on the algorithm’s performance, and to investigate the

effectiveness of the initial lower bound (LB1), measured by its distance from the optimal solution

value.

We report on three performance measures in this study:

 1. the size of the branch and bound tree (the total number of nodes generated)

 2. the maximum number of open nodes in the branch and bound tree

 3. the running time of the algorithm

In fact, the complexity of the algorithm (a measure for its running time) is approximately the

number of nodes generated, multiplied by the complexity of the work to be done at each node.

The latter is O T n r(log)2 ⋅ ⋅ , where T is the maximum number of open nodes in the branch and

bound tree, since calculating LB1 or LB2 is O n r()⋅ , and for each new node its lower bound has

to be placed in a sorted list of length O T() . While the running time performance measure

implies on the current capabilities of the algorithm, the other two performance measures have the

advantage of being independent of the coding efficiency and the computer type. The maximal

number of nodes opened simultaneously during a run is a measure for the memory space required

(in addition to its impact on the complexity of the algorithm), see the next sections for more

details.

We examined the impact of five parameters of the problem on the first two performance

measures mentioned above. A two level full factorial experimental design has been performed,

examining the significance level of each factor. The parameters and the values that were

examined are described next.

1. The number of tasks. The number of tasks was set to 15 and 30.

2. Equipment alternatives. The number of equipment alternatives was set to 3 and 5.

3. Variability of task duration. The duration of every task was generated from a uniform

distribution. We examined a distribution with a small variance, U (. , .)0 8 12µ µ , and a

distribution with a high variance U (. , .)0 4 16µ µ , where µ is the expected value of the task

duration.

4. F-ratio. The F-ratio is a measure for the flexibility in creating assembly sequences, developed

by Mansoor and Yadin [13], and defined as follows:

17

 Let pij be an element of a precedence matrix P, such that:

 p
i j

ij =




1
0
 if task precedes task
 otherwise

 Then, F-ratio = −2 1Z n n() , where Z is the number of zeroes in P, and n is the number of

assembly tasks. The F-ratio value is therefore between zero, when there are no precedence

constraints between tasks (any sequence is feasible), and one, when only a single assembly

sequence is feasible. Assembly tasks are often characterized by relatively low F-ratios.

Hence, precedence diagrams with F-ratios of 0.1 and 0.4 were generated in this study.

5. E-ratio. The E-ratio is a measure for the flexibility of the assembly equipment, developed by

Rubinovitz and Bukchin [10], and defined as follows:

Let tij , an element in a matrix T, represent the time to perform task i by equipment type j. If

task i cannot be performed by equipment type j, tij is set equal to infinity. Let M represent the

number of elements set to infinity, n be the number of tasks, and r be the number of

equipment types, then E-ratio = 1 1− −M n r() . The E-ratio value is therefore between zero,

when each task can be performed by only a single equipment type, and one, when each task

can be performed by any one of the equipment alternatives. The value of the E-ratio in this

study was set to 0.3 and 0.6.

In addition to these parameter settings, we note that the cost of each equipment type was

determined as a decreasing function of the value of µ . This latter choice ensures that no

equipment type may dominate the other along the two dimensions of expected task duration and

cost. The third desired property of an equipment which was discussed in Section 2, namely its

flexibility, was generated arbitrarily according to the specified E-ratio, in order to preserve

generality of possible equipment characteristics.

The total number of experiments in a 2 level, 5 factors full factorial experimental study is

2 325 = . We generated 10 instances for each experiment, resulting in a total of 320 algorithm

runs.

The results of the experiments are analyzed with respect to the impact that each factor has

on each of the following three values of interest: the total number of nodes visited, the maximal

number of open nodes, and the difference between the initial lower bound and the optimal

18

solution value. The results are presented in the form of standard ANOVA (Analysis of

Variance) tables (Tables 1-3), including the values of the main effects, as well as their

significance levels. Following each table, we discuss the results, and provide additional insight.

In Table 1, the values of the main effects represent the differences in the average number of

nodes between the experiments with high and low value of each factor. We can see that all main

effects are highly significant, with very small p-values. Even the least significant factor, the

duration variability, has a p-value of less than 2 percent. Not surprisingly we discover that the

first two main effects are positive, that is, increasing the number of tasks or the number of

alternative equipment types leads to a larger branch and bound tree. The tree size is also highly

and positively affected by the value of the F-ratio, which can be explained by the increase in the

number of assembly alternatives (sequences) for higher F-ratio values. A similar phenomenon

occurs for the E-ratio, where high values of this measure mean that there are many alternatives

for the equipment assignments, leading to a larger tree. The less predictable result is the negative

sign of the duration variability effect. Here we see that a smaller variability leads to a larger tree

size. We believe that the reason is that small variability among tasks’ duration increases the

number of candidate tasks to be assigned at each stage of the branch and bound procedure since

more tasks have similar duration.

<Insert Table 1 approximately here>

The results with respect to the maximum number of open nodes, which is our measure for

the memory space required, are summarized in Table 2. We can see that there is a similarity

between the results of Tables 1 and 2, and the main effects in both have the same signs. This

implies that both the running time and the memory requirements are affected by these factors in

the same way. The similarity can also be noticed when looking at the p-value column, though the

p-values in Table 2 are generally higher. Four out of the five factors are highly significant, while

the duration variability factor has a high p-value (0.17), and cannot be identified as significant.

<Insert Table 2 approximately here>

19

Finally, we examined the impact of the main factors on the lower bound effectiveness,

measured as the difference between the initial lower bound and the optimal solution value. It is

interesting to discover (see Table 3) the sign of each effect and to note that all five main effects

are highly significant. We observe that the gap between the lower bound and the optimal

solution value is an increasing function of the number of equipment types and the duration

variability; it is a decreasing function of the number of tasks, as well as the F-ratio and E-ratio.

The average gap between the initial lower bound and the optimal solution value was 33.9%,

which is reasonable considering the relaxation that we have made. The minimal gap was

obtained for problems with 30 tasks, 3 equipment types, small variability of task duration, F-ratio

of 0.4 and E-ratio of 0.6, with an average gap of 14.1% for these characteristics. The average

largest gap, which was obtained for the opposite factor values, was equal to 51.7%. This

information is useful for assessing the distance of a heuristic solution’s value from the optimal

solution’s value, when a heuristic algorithm is employed. A suggested heuristic for the problem

is described in the next section.

<Insert Table 3 approximately here>

5. Heuristic algorithm - description and experiments

The frontier search branch and bound algorithm requires large computer resources in order

to solve very large problems, and therefore a heuristic is required for most real world problems.

In this section we present a heuristic procedure whose control parameter may be chosen

according to the problem size. This control parameter determines how many nodes of the tree

may be skipped, and therefore is responsible for the running time, for the memory requirements,

as well as for the distance from optimality of the resulting solution.

According to the rules of the frontier search branch and bound procedure, the node with the

smallest lower bound is extended at each iteration. However, some of these nodes have a very

small probability of eventually providing the optimal solution, and their extension is essential

20

only for proving the optimality of the solution. In the proposed heuristic, we modified the node

selection rule, in order to avoid the extension of such nodes.

Let X be an open node at the tree level N X , with a lower bound, LBX . Let Y be another

open node at the tree level N Y , with a lower bound LBY . Define LB0 to be the initial lower

bound of the problem (before doing any assignment). Note that the levels of the tree are

numbered such that the root of the tree is level 0 and the highest index level is level n, where all

tasks are already assigned. The node selection rule is modified as follows:

 1. If N NX Y≥ , and LB LBX Y≤ , select node X.

 2. If N NX Y≥ , and LB LBX Y> ,

 2.1. If
LB LB
N N

K
LB LB

N
X Y

X Y

X

X

−
−

≤
− 0 , select node X, otherwise, select node Y.

The parameter K in 2.1 is the heuristic’s control parameter; the selection of the value of K

is discussed below.

Note that in step 1 above, the usual node selection rule is applied, while in step 2 this rule is

sometimes reversed. According to step 2, we prefer high indexed over low indexed nodes if their

lower bounds are only slightly larger. The reasoning is that by the time the lower indexed node

will become a higher indexed node, it may accumulate higher costs than the difference in their

lower bounds. The left hand side in step 2.1 of the selection process represents the average cost

per level for the levels between nodes X and Y, and this is compared with the average cost per

level that was accumulated along the branch that reached the higher indexed node, X. If the

former is smaller than the latter, it may be an indication that the branch that emanates from node

X has better chances of providing the optimal solution. This is weighted by the control

parameter, K, which represents the trade off between the tree size and the solution’s quality.

When K=0, the inequality in step 2.1 never holds, so that the node with the lowest lower bound is

always selected, and the optimal solution is achieved. On the other hand, if K is very large,

nodes with high indexed levels are always preferable over nodes with low indexed levels, and a

heuristic solution is quickly obtained. However, such a solution is not likely to be a good one. In

order to choose a good value for K, namely, a value in which the problem is solvable in a

reasonable time and the solution is close enough to the optimum, a sensitivity analysis on the

value of K was performed.

21

We selected the eight problems that required the longest time to be solved by the optimal

algorithm, all from the category of 30 tasks, 5 equipment alternatives, small variance of task

duration, high F-ratio and high E-ratio. We examined those problems for ten different values of

K, between 0 to 10. The results are presented in Table 4, where we can see for each K and each

of the eight problems the solution value, the size of the branch and bound tree, the maximal

number of open nodes created during the algorithm run and the CPU time. The CPU time

reported is in seconds, using Pentium II 266 MHz. The memory requirement for each node of the

branch and bound tree is approximately 150 bytes, implying that the largest memory requirement,

among the eight problems, was about 2.5MB (for problem 4).

The results marked with an asterisk are optimal. It is apparent from the table that for each

problem there is a point in which the tree size, along with the CPU time, increases dramatically,

and then almost immediately the optimal solution is obtained. For all problems, the optimal

solution was obtained for a relatively small number of nodes, compared with the optimal

algorithm. The stochastic nature of the heuristic is also recognized, where in some cases a lower

value of K caused an increase in the objective value (see for example problem 1, K=1 and

K=0.7). To identify the recommended value of K for this set of problems, two graphs were

created and are presented in Figure 3. The top graph shows the difference between the heuristic’s

and the optimal solution’s values, where each point associated with a specific value of K is an

average of the eight results. The bottom graph shows the ratio between the average size of the

branch and bound tree for the heuristic algorithm and the average size required by the optimal

solution. We can see a clear similarity and dependency between the two graphs, which can be

divided into three ranges. In the first range where K has high values, the heuristic solution’s

value is much larger than the optimal solution’s value (a difference of 32% for K=10), and the

ratio between the two branch and bound trees is very small. When K=1.5, the difference in the

values becomes much smaller (8.2%) and the average size of the heuristic’s branch and bound

tree increases significantly. Finally, when K=1, the graph becomes sharper with a higher rate of

increase; at that point, a relatively good solution is obtained, with an average difference of 1.7%

from the optimal solution, and with only 5.3% of the average tree size of the optimal solution.

Beyond that point, when K is smaller than one, the tree size is increasing dramatically while the

solution value is only slightly improving. For this set of problems, the value of K=1 provides a

22

relatively good solution where the size of the tree is relatively small. While the “best” value of

K may be dependent on the parameters’ characteristics, we expect that in general small values of

K will provide good and fast solutions for the most difficult problems that cannot be solved to

optimality.

<Insert Table 4 approximately here>

<Insert Figure 3 approximately here>

Due to the large variability in solution time, a solution may not be obtained as fast as

expected for certain problems. In these cases our recommendation is to first run the algorithm

with a large value of K, in order to obtain a fast heuristic solution; then by decreasing its value

gradually, we expect that the solution obtained will be improved, This process may be repeated

as long as a solution is obtained in a reasonable amount of time.

6. Conclusions

In this paper we proposed a new method for the design of a flexible assembly line which

may consist of several types of assembly equipment. The purpose of the design process is to

choose the type of equipment to place in every station of the line and to determine the assignment

of tasks to each equipment, where the objective is minimizing total equipment cost. This design

problem is NP-hard since a special case of it is the simple assembly line balancing problem,

which is known to be NP-hard.

We present a formulation of the problem, based on which we develop lower bounds for

the complete and for partial problems. These lower bounds are then used in a branch and bound

algorithm. Our branch and bound algorithm also uses a dominance rule for cutting branches of

the branch and bound tree, therefore reducing its running time. Although the algorithm has an

exponential complexity, it is capable of solving problems of moderate size. Since it is a design

problem which has to be solved only every once in a while and not frequently during operation,

we are able to devote to it relatively large computational resources.

23

Finally, we developed a heuristic procedure which may be used for large problems that

cannot be solved by the optimal algorithm. The heuristic is very flexible in determining its

accuracy on one hand, and its computational time on the other hand. The trade-off between the

accuracy and the computational time is controlled by the heuristic’s control parameter. An

experimental study demonstrated the sensitivity of the accuracy and the computational time of

the heuristic as a function of the control parameter, and implied on its preferred value for the

examined set of problems.

24

References
 [1] Baybars, I. (1986) A survey of exact algorithm for the simple assembly line balancing

problem. Management Science 32, 909-932.

 [2] Ghosh, S. and Gagnon, R.J. (1989) A comprehensive literature review and analysis of the

design, balancing and scheduling of assembly systems. International Journal of Production

Research 27, 637-670.

 [3] Scholl, A. (1995) Balancing and sequencing of assembly lines. Physica-Verlag, Production

and Logistics Series.

 [4] Sarin, S.C. and Erel, E. (1990) Development of cost model for the single-model stochastic

assembly line balancing problem. International Journal of Production Research 28,

1305-1316.

 [5] Karp, R.M. (1972) Reducibility among combinatorial problems. In: Miller, R.E. and

Thatcher, J.W. (eds.), Complexity of computer computation, Plenum Press, New York,

85-103.

 [6] Graves, S.C. and Holmes Redfield, C. (1988) Equipment selection and task assignment for

multiproduct assembly system design. The International Journal of Flexible Manufacturing

Systems 1, 31-50.

 [7] Graves, S.C. and Whitney, D.E. (1979) A mathematical programming procedure for the

equipment selection and system evaluation in programmable assembly. In Proceedings of

the Eighteenth IEEE Conference on Decision and Control, 531-536.

 [8] Graves S.C. and Lamar B.W. (1983) An integer programming procedure for assembly

design problems. Operations Research 31(3), 522-545.

 [9] Pinto, P.A., Dannenbring, D.G. and Khumawala, B.M. (1983) Assembly line balancing

with processing alternatives: an application. Management Science 29, 817-830.

 [10] Rubinovitz, J. and Bukchin, J. (1993) RALB - a heuristic algorithm for design and

balancing of robotic assembly lines. Annals of the CIRP 42, 497-500.

 [11] Tsai, D.M. and Yao, M.J. (1993) A line-balanced-base capacity planning procedure for

series-type robotic assembly line. International Journal of Production Research 31,

1901-1920.

25

 [12] Johnson, J.R., 1988 Optimally balancing large assembly lines with FABLE, Management

Science, 34, 240.

 [13] Mansoor, E.M. and Yadin, M., 1971, On the problem of assembly line balancing, in:

Developments in operations research, edited by B. Avi-Itzhak, Gordon & Breach,

New-York, p.361.

26

Appendix - Summary of Notation

Parameters

 • tij = duration of task i when performed by equipment j (i=1,...,n, j=1,...,r)
 • ECj = cost of equipment type j (j=1,...,r)
 • C = required cycle time
 • Pi = set of immediate predecessors of task i (i=1,...,n)

Decision variables

 • y
j k

jk =




1
0
 if equipment is assigned to station
 otherwise

 • x
 i j k

ijk =




1
0
 if task is performed by equipment at station
 otherwise

 • y y jj jk
k

n

= =
=
∑ total number of type equipment

1

 • x x
i j

ij ijk
k

n

= =


=

∑
 if task is performed by equipment
 otherwise1

1
0

Lower bounds

 • LB1 = the solution of problem (P3) and a lower bound for problem (P1).
 • LB2 = the solution of problem (P5) and a lower bound for problem (P4).

Optimal branch and bound related values

 • X = a node n the branch and bound tree
 • TCX = the cost of purchasing the equipment decided upon thus far in the partial solution

associated with node X.
 • SX = slack of the last opened station at node X.
 • σ ' = a set of tasks which have already been assigned to stations in the partial solution

associated with node X.
 • σ = the complement of σ ' in the original set of tasks, i.e.: the set of tasks which have not

been assigned yet to stations in the partial solution associated with node X.
 • ()LB1 σ = the value of LB1 when only the set of tasks σ is considered.
 • ()LB2 σ = the value of LB2 , given the set of tasks σ .
 • Z X = the lower bound of node X.

27

Parameters used in the experimental study

 • µ = the expectation of the task duration.
 • F-ratio = −2 1Z n n() , where Z is the number of zeroes in the matrix P whose elements are:

p
i

ij =




1
0
 if task precedes task j
 otherwise

 • E-ratio = 1 1− −M n r() where M = the number of tij elements that equal to infinity.

Heuristic branch and bound related values

 • N X = tree level of node X
 • LBX = lower bound of node X in the branch and bound tree.
 • LB0 = the initial lower bound of the problem.
 • K = the heuristic’s control parameter.

Equipment E1 E2 E3

jEC $100K $100K $60K

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Task 7

Task 8

Task 9

Task 10

8

13

49

15

18

15

10

10

33

25

6

40

14

12

8

8

20

14

17

20

13

38

28

1

2

3

4

5

6

7

8

9

10

Figure 1. Precedence diagram, task times and equipment costs

E2
tasks: 1,3

St. time=46

E1
tasks: 2,4,6
St. time=43

E3
tasks: 9

St. time=38

E2
tasks:5,7,8,10
St. time=50

Station 1 Station 2 Station 3 Station 4

Figure 2. Optimal configuration of the example problem (Total cost = 360)

The difference between the heuristic's and
the optimal solution's values

0

5

10

15

20

25

30

35

10 5 3 2 1.5 1 0.7 0.5 0.3 0

Heuristic's control parameter (K)

D
iff

er
en

ce
 (%

)

The ratio between the heuristic's and the
optimal solution's tree size

0
0.1
0.2
0.3
0.4
0.5

0.6
0.7
0.8
0.9

1

10 5 3 2 1.5 1 0.7 0.5 0.3 0

Heuristic's control parameter (K)

Figure 3 - Comparison between the heuristic and the optimal solution

Table 1 - Factors’ impact on the total number of nodes

Factor Effect SS df MS F p

(1) No. of tasks 11240 101.07E8 1 101.07E8 50.73 7.693E-12

(2) No. of Eq. Types 7978 509.18E7 1 509.18E7 25.56 7.433E-07

(3) Duration variability -3790 114.89E7 1 114.89E7 5.77 0.0169359

(4) F-ratio 11217 100.66E8 1 100.66E8 50.52 8.434E-12

(5) E-ratio 9019 650.76E7 1 650.76E7 32.66 2.615E-08

Error 951.69E8 314 303.09E6

Total SS 128.09E9 319

Table 2 - Factors’ impact on the maximal number of open nodes

Factor Effect SS df MS F p

(1) No. of tasks 1022 834.80E5 1 834.80E5 36.96 3.603E-09

(2) No. of Eq. types 859 589.94E5 1 589.94E5 26.12 5.676E-07

(3) Duration variability -230 423.91E4 1 423.91E4 1.88 0.1716794

(4) F-ratio 1048 878.30E5 1 878.30E5 38.89 1.498E-09

(5) E-ratio 929 690.18E5 1 690.18E5 30.56 6.97E-08

Error 102.61E7 314 326.78E4

Total SS 132.50E7 319

Table 3 - Factors’ impact on the difference between the initial lower bound and the optimal
solution value

Factor Effect SS df MS F p

(1) No. of tasks -0.053 0.221 1 0.221 58.57 2.52E-13

(2) No. of Eq. types 0.054 0.229 1 0.229 60.53 8.60E-14

(3) Duration variability 0.109 0.955 1 0.955 252.72 0.00E+00

(4) F-ratio -0.078 0.485 1 0.485 128.18 4.33E-25

(5) E-ratio -0.143 1.631 1 1.631 431.43 0.00E+00

Error 1.303 314 0.0041

Total SS 4.824 319

Table 4 - Heuristic’s results

Problem 1 Problem 2 Problem 3 Problem 4

K Tree

size

Tree

Width

CPU

time

Sol. 1 Tree

size

Tree

Width

CPU

time

Sol. 2 Tree

size

Tree

Width

CPU

time

Sol. 3 Tree

size

Tree

Width

CPU

time

Sol. 4

10 107 75 .05 1900 122 84 .05 1740 111 78 .05 1570 88 53 .05 1440

5 107 70 .05 1780 127 84 .05 1440 115 73 .05 1550 98 58 .05 1420

3 112 72 .05 1750 127 63 .05 1490 137 77 .05 1420 109 51 .05 1370

2 112 69 .05 1640 165 64 .05 1360 158 78 .05 1420 93 39 .05 1500

1.5 106 63 .05 1620 240 67 .05 1370 563 119 .17 1320 146 61 .05 1400

1 379 80 .11 1280 * 6690 397 2.25 1330 1624 198 .44 1290 6663 612 2.58 1290 *

0.7 12785 852 6.10 1290 18243 920 8.35 1330 10349 457 3.95 1270 * 31338 1538 23.78 1290 *

0.5 19359 1360 13.24 1280 * 33375 1637 20.43 1320 * 13457 662 6.27 1270 * 86927 4263 122.87 1300

0.3 49776 3799 51.41 1280 * 42029 1930 26.75 1320 * 19948 1148 9.56 1270 * 75295 5558 102.93 1290 *

0 98699 11365 196.09 1280 * 55109 2933 39.54 1320 * 25965 1905 14.06 1270 * 163618 16788 550.85 1290 *

Problem 5 Problem 6 Problem 7 Problem 8

K Tree

size

Tree

Width

CPU

time

Sol. 5 Tree

size

Tree

Width

CPU

time

Sol. 6 Tree

size

Tree

Width

CPU

time

Sol. 7 Tree

size

Tree

Width

CPU

time

Sol. 8

10 85 49 .05 1880 100 63 .05 1580 75 42 .05 1840 105 70 .05 1900

5 93 52 .05 1700 105 64 .05 1400 75 42 .05 1840 110 70 .05 1920

3 101 52 .05 1670 105 64 .05 1400 86 40 .05 1630 109 51 .05 1690

2 162 66 .05 1520 124 61 .05 1400 90 40 .05 1640 132 60 .05 1490

1.5 167 68 .05 1520 221 82 .05 1400 114 40 .05 1410 460 92 .11 1320 *

1 6653 233 1.81 1420 4756 501 1.71 1340 1588 77 .38 1410 3732 330 1.16 1320 *

0.7 23782 714 11.26 1370 * 14409 1499 7.74 1300 * 10852 651 4.55 1350 * 61242 1809 54.37 1320 *

0.5 68474 1830 55.42 1370 * 22654 2415 16.64 1320 39705 1995 32.41 1350 * 47148 3088 39.28 1320 *

0.3 70684 3372 59.81 1370 * 35454 3432 29.72 1300 * 60834 3229 56.85 1350 * 67928 5955 84.86 1320 *

0 103208 5847 128.86 1370 * 53617 6408 61.19 1300 * 69131 5595 75.35 1350 * 161320 16414 581.39 1320 *

	Introduction and Literature Review
	Problem Formulation
	Lower Bounds
	The Branch and Bound Algorithm
	Heuristic algorithm - description and experiments
	Conclusions

